ebook img

Polymer Viscoelasticity: Basics, Molecular Theories, Experiments and Simulations PDF

441 Pages·2010·3.126 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polymer Viscoelasticity: Basics, Molecular Theories, Experiments and Simulations

Polymer Viscoelasticity Basics, Molecular Theories, Experiments and Simulations 2nd Edition 7786 tp.indd 1 9/9/10 11:27 AM September6,2010 9:42 WSPC/BookTrimSizefor9inx6in b959-fm FA TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Y n - H w a n g L i n National Chiao Tung University, Taiwan Polymer Viscoelasticity Basics, Molecular Theories, Experiments and Simulations 2nd Edition World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI 7786 tp.indd 2 9/9/10 11:27 AM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Lin, Y.-H. Polymer viscoelasticity : basics, molecular theories, experiments, and simulations / Yn-Hwang Lin. -- 2nd ed. p. cm. Includes bibliographical references and index. ISBN-13: 978-981-4313-03-2 (hardcover : alk. paper) ISBN-10: 981-4313-03-3 (hardcover : alk. paper) 1. Polymers--Viscocity. 2. Viscoelasticity. I. Title. QD281.P6L56 2010 620.1'9204232--dc22 2010038333 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Typeset by Stallion Press Email: [email protected] Printed in Singapore. Polymer Viscoelasticity (2nd Ed).pmd 1 12/13/2010, 7:45 PM September6,2010 9:42 WSPC/BookTrimSizefor9inx6in b959-fm FA Contents Preface xiii Preface to the Second Edition xvii 1. Conformation of Polymer Chains 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Probability Distribution Functions, Moments and Characteristic Functions . . . . . . . . . . . . . . . 2 1.3 A Central Limit Theorem . . . . . . . . . . . . . . . . . 5 1.4 The Freely Jointed Chain Model . . . . . . . . . . . . . 7 1.5 Distribution of the End-to-End Vector . . . . . . . . . . 10 1.6 The Gaussian Chain . . . . . . . . . . . . . . . . . . . . 11 Appendix 1.A — The Dirac Delta Function . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. Rubber Elasticity 16 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Entropy and Rubber Elasticity . . . . . . . . . . . . . . 17 2.3 Molecular Theory for Rubber Elasticity . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. Polymer Chain Dynamics 26 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 The Smoluchowski Equation . . . . . . . . . . . . . . . . 28 3.3 The Langevin Equation . . . . . . . . . . . . . . . . . . 32 3.4 The Rouse Model . . . . . . . . . . . . . . . . . . . . . . 33 v September6,2010 9:42 WSPC/BookTrimSizefor9inx6in b959-fm FA vi Contents 3.5 Diffusion Motion of the Rouse Chain . . . . . . . . . . . 35 3.6 The Rouse Normal Modes of Motion . . . . . . . . . . . 35 Appendix 3.A — Eigenvalues and Eigenvectors of the Rouse Matrix . . . . . . . . . . . . . . . . . . . . 40 Appendix 3.B — The Langevin Equation of a Particle in a Harmonic Potential . . . . . . . . . . . . . . . . . . 42 Appendix 3.C — The Continuous Rouse Model . . . . . . . . . 43 Appendix 3.D — Binomial Random Walk . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. Linear Viscoelasticity 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Maxwell Equation . . . . . . . . . . . . . . . . . . . . . 52 4.3 Boltzmann’s Superposition Principle . . . . . . . . . . . 57 4.4 Relaxation Modulus . . . . . . . . . . . . . . . . . . . . 58 4.5 Steady-State Shear Flow . . . . . . . . . . . . . . . . . . 60 4.6 Dynamic-Mechanical Spectroscopy . . . . . . . . . . . . 61 4.7 Steady-State Compliance. . . . . . . . . . . . . . . . . . 65 4.8 Creep Compliance . . . . . . . . . . . . . . . . . . . . . 71 Appendix 4.A — The Hopkins–Hamming Method for the Conversionof G(t) into J(t) . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5. Stress and Strain 78 5.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Finite Strain . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 A neo-HookeanMaterial . . . . . . . . . . . . . . . . . . 90 5.4 A Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . 92 Appendix 5.A — Tensor Operations . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6. Molecular Theory of Polymer Viscoelasticity — Elastic Dumbbell Model 98 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 The Smoluchowski Equation for an Elastic Dumbbell . . 99 6.3 Rheological Constitutive Equation of the Elastic Dumbbell Model . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Applications of the Constitutive Equation . . . . . . . . 109 September6,2010 9:42 WSPC/BookTrimSizefor9inx6in b959-fm FA Contents vii Appendix 6.A — Codeformational (Convected) Time Derivative . . . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7. MolecularTheoryofPolymerViscoelasticity—The Rouse Model 119 7.1 The Smoluchowski Equation of the Rouse Model . . . . 119 7.2 Rheological Constitutive Equation of the Rouse Model . . . . . . . . . . . . . . . . . . . . . 127 Appendix 7.A — Eigenvalues and the Inverse of the Rouse Matrix . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8. Molecular Theory of Polymer Viscoelasticity — Entanglement and the Doi–Edwards (Reptation) Model 133 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.2 The Primitive Chain . . . . . . . . . . . . . . . . . . . . 135 8.3 Diffusion Motion . . . . . . . . . . . . . . . . . . . . . . 138 8.4 Relaxation Modulus . . . . . . . . . . . . . . . . . . . . 141 8.5 Relaxation of Stress by Reptation . . . . . . . . . . . . . 146 Appendix 8.A — Tension in a Gaussian Chain Between Two Fixed Points . . . . . . . . . . . . . . . . . . . . . . 150 Appendix 8.B — Equivalent Expressions for Rubber Elasticity . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9. MolecularTheoryofPolymerViscoelasticity—The Extended Reptation Model 153 9.1 Intramolecular Processes . . . . . . . . . . . . . . . . . . 153 9.2 Contour Length Fluctuations of the Primitive Chain . . 156 9.3 Relaxation Processes before t≈Teq . . . . . . . . . . . . 161 9.4 Universality of the G(t) Line Shape in Terms of the Extended Reptation Theory (ERT) . . . . . . . . . . . . 164 9.5 Zero-Shear Viscosity and Steady-State Compliance . . . 165 9.6 Note: A Clarification of the Term “Transition Region” . 167 Appendix 9.A — Contour Length Fluctuations of the Primitive Chain . . . . . . . . . . . . . . . . . . . 168 September6,2010 9:42 WSPC/BookTrimSizefor9inx6in b959-fm FA viii Contents Appendix 9.B — Rouse Motions in an Entanglement Strand: The Rouse–Mooney Normal Modes of Motion . . . . . . 171 Appendix 9.C — Eigenvalues and Eigenvectors of the Rouse–Mooney Matrix . . . . . . . . . . . . . . . 176 Appendix 9.D — Hierarchy and Universality among the Inherent Characteristic Times in the (Extended) Slip-Link Model . . . . . . . . . . . . . . . . . . . . . . . 177 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 10. Comparison of the Extended Reptation Theory (ERT) with Experiments 182 10.1 Effects of the Molecular-Weight Distribution of the Sample . . . . . . . . . . . . . . . . . . . . . . . . 183 10.2 Analysis of the G(t) Line Shape . . . . . . . . . . . . . . 186 10.3 Zero-Shear Viscosity and Steady-State Compliance . . . 197 10.4 Viscoelasticity and Diffusion . . . . . . . . . . . . . . . . 205 10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Appendix 10.A — The Reason Why G(cid:1)(cid:1)(ω) Should Be Excluded from the Line-Shape Analysis in Terms of the Rouse Theory or the ERT If Only the Entropic Region Is to Be Covered . . . . . . . . . . . . . . . . . . 211 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 11. ERTvs. RouseTheory, Concentration Dependence and Onset of Entanglement, and Tube Dilation 215 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 215 11.2 Entanglement Region. . . . . . . . . . . . . . . . . . . . 217 11.3 Entanglement-Free Region and Onset of Entanglement . 226 11.4 Tube Dilation . . . . . . . . . . . . . . . . . . . . . . . . 234 Appendix 11.A — Basic Form of the Blending Law in a Binary Blend . . . . . . . . . . . . . . . . . . . . . . 238 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 12. Molecular Theory of Polymer Viscoelasticity — Nonlinear Relaxation Modulus of Entangled Polymers 242 12.1 Chain-Tension Relaxation . . . . . . . . . . . . . . . . . 243 12.2 Comparison of Theory and Experiment. . . . . . . . . . 249 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 September6,2010 9:42 WSPC/BookTrimSizefor9inx6in b959-fm FA Contents ix 13. Number of Entanglement Strands per Cubed Entanglement Distance, nt 257 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 257 13.2 Theoretical Basis and Experimental Support for n t Being a Universal Constant . . . . . . . . . . . . . . . . 259 13.3 Concentration Dependence of n . . . . . . . . . . . . . 263 t 13.4 Packing of Polymer Chains . . . . . . . . . . . . . . . . 263 13.5 Some Comments . . . . . . . . . . . . . . . . . . . . . . 264 Appendix 13.A — The Rouse Segment vs. the Kuhn Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 14. Glass Transition-Related Thermorheological Complexity in Polystyrene Melts 269 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 269 14.2 G(t) Functional Forms . . . . . . . . . . . . . . . . . . . 271 14.3 J(t) Line-Shape Analyses of Entangled Systems . . . . . 273 14.4 Analyses of J(t), Je0 and η0 in an Entanglement-Free System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 14.5 Analyses of the G∗(ω) Spectra of Entanglement-Free Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 14.6 Dynamic Anisotropy in Entangled Systems . . . . . . . 298 14.7 Comparison of the Af and β Values Extracted G from the J(t) and G∗(ω) Line Shapes. . . . . . . . . . . 301 14.8 T Defined by the Structural Relaxation Time g τ =1,000sec. . . . . . . . . . . . . . . . . . . . . . . . 303 S 14.9 Dependences of τ , s(cid:1) and K(cid:1) on ∆T =T −T . . . . . 305 S g 14.10 Structure as Revealed in G(t) . . . . . . . . . . . . . . . 312 14.11 Frictional Slowdown and Structural Growth . . . . . . . 316 14.12 K Values in the Close Neighborhood of T . . . . . . . . 318 g 14.13 Internal Viscosity and Zero Shear Viscosity . . . . . . . 321 Appendix 14.A — Calculations of the G(cid:1)(ω) and G(cid:1)(cid:1)(ω) Spectra from a G(t) Functional Form . . . . . . . . . . . 322 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 15. The Basic Mechanism for the Thermorheological Complexity in Polystyrene Melts 328 15.1 The Basic Mechanism of the Thermorheological Complexity (TRC) . . . . . . . . . . . . . . . . . . . . . 329

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.