Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Group VIII: Advanced Materials and Technologies Volume 6 Polymers Subvolume D Polymer Solutions Part 2 Physical Properties and their Relations I (Thermodynamic Properties: PVT-Data and Miscellaneous Properties of Polymer Solutions) Editors: M.D. Lechner, K.F. Arndt Author: Ch. Wohlfarth ISSN 1619-4802(Advanced Materialsand Technologies) ISBN 978-3-642-02889-2 SpringerBerlin HeidelbergNew York eISBN 978-3-642-02890-8 LibraryofCongressCataloginginPublicationData ZahlenwerteundFunktionenausNaturwissenschaftenundTechnik,NeueSerie EditorinChief:W.Martienssen Vol.VIII/6D2:Editors:M.D.Lechner,K.F.Arndt Atheadoftitle:Landolt-Börnstein.Addedt.p.:Numericaldataandfunctionalrelationshipsinscienceandtechnology. TableschieflyinEnglish. IntendedtosupersedethePhysikalisch-chemischeTabellenbyH.LandoltandR.Börnsteinofwhichthe6thed.beganpublicationin1950undertitle: ZahlenwerteundFunktionenausPhysik,Chemie,Astronomie,GeophysikundTechnik. Vols.publishedafterv.1ofgroupIhaveimprint:Berlin,NewYork,Springer-Verlag Includesbibliographies. 1.Physics–Tables.2.Chemistry–Tables.3.Engineering–Tables. I.Börnstein,R.(Richard),1852-1913.II.Landolt,H.(Hans),1831-1910. III.Physikalisch-chemischeTabellen.IV.Title:Numericaldataandfunctionalrelationshipsinscienceandtechnology. QC61.23502'.1262-53136 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned,specificallytherightsoftranslation, reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmor inotherways,andstorageindatabanks.Duplicationofthis publicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermis- sionforusemustalwaysbeobtainedfromSpringer-Verlag.ViolationsareliableforprosecutionactunderGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2010 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement,that suchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. ProductLiability:Thedataandotherinformationinthishandbookhavebeencarefullyextractedandevaluatedbyexpertsfromtheoriginalliterature. Furthermore,theyhavebeencheckedforcorrectnessbyauthorsandtheeditorialstaffbeforeprinting.Nevertheless,thepublishercangivenoguarantee forthecorrectnessofthedataandinformationprovided.Inanyindividualcaseofapplication,therespectiveusermustcheckthecorrectnessbyconsulting otherrelevantsourcesofinformation. Coverlayout:ErichKirchner,Heidelberg Typesetting:AuthorsandRedaktionLandolt-Börnstein,Heidelberg SPIN:12253043 63/3020-543210–Printedonacid-freepaper Preface of the editors Polymersbelongtoanessentialmaterialgroupwithmanyapplicationsnotonlyforpolymermanufacturersbutalsoin physics,chemistry,medicineandengineeringtechniques.Thepresentedvolume“Polymers”withseveralsubvolumes connectsacompletedatacollectionwithshortbutprecisedescriptionsofthedifferentquantitiesandtheirsignificances. Theexperimentaldeterminationofthephysicalquantitiesisgivenaswellastheinfluencetootherphysicalquantities. Thisvolumecouldhelptochoosethebestmaterialforallkindsofapplicationsalsoforthoseoneswhicharenotmen- tionedinpolymermaterialbooks.Landolt-Börnstein“Polymers”isfocusedonpolymersinitsdifferentformsofrepre- sentationsandphenomena,e.g.solids,melts,solutions.Thedifferentchaptersofthisvolumearewrittenbyexcellent scientists.Thedataareevaluatedandweighted. Thetargetgroupandpotentialusersarephysicists,chemists,materialscientistsandengineersinuniversitiesandin theindustry.Thebookisintendedforthosewhoworkonpracticalproblemsinthepolymerfieldandwhoareinthe needofnumericaldataonpolymerproperties. Thevolumeissubdividedinto Nomenclature,Definition,Structure,andArchitectureofPolymers PolymerSolidsandPolymerMelts PolymerSolutions ApplicationofPolymersandincludesThermodynamicProperties,Diffusion,Permeation,GasSolubility,Miscibility, CrystallographicStructures,MechanicalProperties,ElectromagneticProperties,OpticalProperties,SpectroscopicProp- erties,andTransportProperties. In2004theeditorinchief,W.Martienssen,introducedanewgroupVIII“AdvancedMaterialsandTechnologiesand suggestedavolume“Polymers”.ThepresentedvolumeVIII/6D2“ThermodynamicProperties–PhaseEquilibria”is thesecondofapproximately7subvolumes.TheeditorswishtoexpresshisthankstotheauthorCh.Wohlfarthforthis excellent volume. The encouraging and never ending support of the former editor in chief W. Martienssen and of R.Poerschke,K.SoraandR.MünzfromSpringer-Verlagiskindlyacknowledged.Thepublisherandtheeditorsare confidentthatthisvolumewillincreasetheuseofthe"Landolt-Börnstein". Thecompletevolume,includinglinkstotheoriginalcitations,isalsoavailableonline:youcannavigatethroughthe electronicversionofthisvolumestartingfromtheSpringerMaterials–TheLandolt-BörnsteinDatabasewebsitewww. springermaterials.com;simplyselectthevolumefromtheelectronic“Bookshelf”andjumpdirectlyintothePDFdata fileofinterestorsearchforentriesbythepowerfulsearchengine. Wewouldbegratefuliftheuserssendusanyerrors,misprints,omissionsandotherflaw.Anysuggestioniswelcome! Osnabrueck,Dresden,December2009 TheEditors Editors Lechner,M.D. InstitutfürChemie UniversitätOsnabrück Barbarastr.7 D-49069Osnabrück,Germany e-mail:[email protected] Arndt,K.F. InstitutfürPhysikalischeChemieundElektrochemie TechnischeUniversitätDresden Bergstr.66B D-01069Dresden,Germany e-mail:[email protected] Author Wohlfarth,Ch. InstituteofPhysicalChemistry MartinLutherUniversity Von-Danckelmann-Platz4 D-06120Halle(Saale),Germany e-mail:[email protected] Landolt-Börnstein Editorial Office SpringerVerlagGmbH Tiergartenstr.17,D-69221Heidelberg,Germany e-mail:[email protected] Internet www.springermaterials.com Contents VIII/6 Polymers SubvolumeD:PolymerSolutions Part2:PhysicalPropertiesandtheirRelationsI(ThermodynamicProperties:PVT-DataandMiscellaneousPropertiesof PolymerSolutions) 1. Introduction................................................................ 1 1.1. SelectionofData................................................................ 1 1.2. MeasurementMethods,PolymerCharacterization,Compositions.............................. 1 1.3. ArrangementofData ............................................................ 12 1.4. SubstancesandNomenclature...................................................... 12 1.5. Referencesfor1................................................................ 12 2. PVT-DataandVolumeChangesofPolymerSolutions................................... 14 2.1. PVT-Data..................................................................... 14 2.2. DensitiesofMixturesandExcessVolumes ............................................ 30 2.3. PartialSpecificVolumesofPolymers ............................................... 118 2.4. Referencesfor2............................................................... 148 3. MiscellaneousThermodynamicProperties ..........................................157 3.1. SecondVirialCoefficients........................................................ 157 3.2. EnthalpiesofMixingandDilution.................................................. 399 3.3. SolubilityParameters ........................................................... 480 3.4. Referencesfor3............................................................... 496 4. PolymerList................................................................ 5 Introduction 1 Introduction Data extract from Landolt-Börnstein VIII/6D2: Polymers, Polymer Solutions, Physical Properties and their Relations I (Thermodynamic Properties: PVT-data and miscellaneous properties of polymer solutions) 1 Selection of Data PVT-data, densities, excess volumes, second virial coefficients, enthalpies of mixing and solubility parameters of polymer solutions are necessary quantities for understanding the physical behavior of polymer solutions, for studying intermolecular interactions, and for gaining insights into the molecular natureofmixtures.Theyareimportantcomplementstophaseequilibriumdataandtogetherbuildthebasis foranydevelopmentsoftheoreticalthermodynamicmodels.However,thedatabaseforpolymersolutionsis still modest in comparison with the enormous amount of data for low-molecular mixtures. Basic informa- tion on thermodynamic properties of polymers and polymer solutions can be found in the Polymer Handbook [1999BRA1]. Especially, polymer partial specific volumes, second virial coefficients, and polymersolubilityparametersfromtheliteratureupto1996aresummarizedtosomeextendinthisPolymer Handbook. Additionally, there is a chapter on properties of polymers and polymer solutions in the CRC Handbook of Chemistry and Physics, [2007LID1]. Enthalpy data of polymer solutions were especially collected in [2006WOH1]. PVT-data of polymer solutions can also be found in [2005WOH1]. At least, polymersolution data are availablefrom the DortmundDataBank[2006DDB1]. It is the aim of this book to provide an overview for the most important new data for densities, excess volumes, second virial coefficients, enthalpies of mixing and solubility parameters of polymers of binary polymersolutions.However,nodataarecollectedherefornon-equilibriumstatesbelowtheglasstransition temperature.Nodigitizeddatafromgraphsinpapershavebeenincludedinthisdatacollection(but,anum- berofauthorsprovidedtheirexperimental results what isgratefully acknowledged). No data are collected forsolutionscontainingtwoormorepolymersortwoormoresolvents,andnosolutionsincludingsurfac- tants,salts,polyelectrolytes,ordendrimersareincludedintothisbook.Atleast,olderdataoflessaccuracy were omitted. The finaldate for including data into this volumewas December, 31, 2008. 1.1 Measurement Methods, Polymer Characterization, Compositions Thisvolumecontainsdataofbinarypolymersolutionsasafunctionoftemperature,pressure,andcomposi- tion. In the tables, the subscript 1 always denotes the polymer (because, the data tables are sorted alphabetically with respect to the polymer as first component of the solution) and subscript 2 denotes the solvent. pVT/density measurement for polymer solutions TherearetwowidelypracticedmethodsforthepVT-measurementofpolymersolutions:Piston-dietechni- que or confining fluid technique. Both were described in detail by Zoller [1995ZOL1]. In the piston-die technique, the material is confined in a rigid die or cylinder, which it has to fill completely. A pressure is appliedtothesampleasaloadonapiston,andthemovementofthepistonwithpressureandtemperature changes is used to calculate the specific volume of the sample. There are commercial devices as well as laboratory-builtmachineswhichhavebeenusedintheliterature.Intheconfiningfluidtechnique,themate- rialissurroundedatalltimesbyaconfining(inert)fluid,oftenmercury,andthecombinedvolumechanges of sample and fluid are measured by a suitable technique as a function of temperature and pressure. The volumechangeofthesampleisdeterminedbysubtractingthevolumechangeoftheconfiningfluid.Precise Landolt-Börnstein DOI:10.1007/978-3-642-02890-8_1 NewSeriesVIII/6D2 #Springer-VerlagBerlinHeidelberg2010 2 Introduction knowledge of the pVT-properties of the confining fluid is additionally required. For both techniques, the absolute specific volume of the sample must be known at a single condition of pressure and temperature. Measurement of densities for polymer solutions is usually made today by U-tube vibrating densimeters. Such instruments are commercially available. Excess volumes attemperature Tand pressure p aredetermined by: (cid:1) (cid:3) VEspec ¼ Vspec(cid:2) w1V01;spec þ w2V02;spec ð1Þ or VE ¼ðx1M1 þ x2M2Þ=(cid:2)(cid:2)ðx1M1=(cid:2)1 þ x2M2=(cid:2)2Þ ð2Þ where: M , M molarmass ofpolymeror solvent 1 2 V specific volume ofthe polymer solution spec VE, VE molar orspecific excess volume spec V , V specific volume ofpurepolymer(1) and puresolvent(2) 01, spec 02, spec w and w mass fraction of polymer(1) andsolvent (2) (definition seebelow) 1 2 x and x mole fraction ofpolymer (1) and solvent (2) (definition see below) 1 2 ρ densityof thepolymersolution ρ ,ρ densityof purepolymer(1) orpure solvent(2) 1 2 The second term inEqs.(1) and (2)correspondsto theideal volume,Vid, ofthe polymer solution. Partialspecific volumes ofpolymers The totalspecificvolume ofthe polymer solution,V , can bewritten as spec Vspec ¼ w1V1;spec þ w2V2;spec ð3Þ The partial specific volumesof polymer (1) and solvent(2), V , V , arecalculated by 1, spec 2, spec (cid:4) (cid:5) Vi;spec ¼ @m@Vmspec ði¼1;2Þ ð4Þ i p;T;mj6¼i where: m totalmass of thepolymersolution m ,m mass of polymer (1) or solvent (2) 1 2 Inthecaseofthebinarypolymersolution,thepartialspecificvolumeofthepolymercanalsobecalculated using the tangentrule from Gibbs-Duhem equation: (cid:4) (cid:5) (cid:4) (cid:5) V1;spec ¼Vspec(cid:2)w2 @@Vwsp2ec p;T¼Vspecþð1(cid:2)w1Þ @@Vwsp1ec p;T ð5Þ Forpracticalreasons,oftentheso-calledapparentpartialspecificvolumeofthepolymer,V * ,isapplied. 1, spec Eq. (3) isthen written as Vspec ¼w1V1(cid:3);spec þ w2V02;spec ð6Þ Thisapparentpartialspecificvolumenowcontainstheeffectsofnonidealmixingofboththepolymerand thesolvent.Substitutingthespecificvolumesofpolymersolutionandsolventbyexperimentallymeasured densities, it isreadilyfound that V(cid:3) ¼(cid:2)2(cid:2)w2(cid:2) ð7Þ 1;spec w1(cid:2)2(cid:2) The relation between apparent and exact partial specific volume is found from Eq. (5) when Eq. (6) is appliedfor thetotalspecificvolume. (cid:4) (cid:5) (cid:4) (cid:5) @V(cid:3) @V(cid:3) V1;spec ¼V1(cid:3);spec(cid:2)w1w2 @1w;s2pec p;T¼V1(cid:3);specþw1w2 @1w;s1pec p;T ð8Þ DOI:10.1007/978-3-642-02890-8_1 Landolt-Börnstein #Springer-VerlagBerlinHeidelberg2010 NewSeriesVIII/6D2 Introduction 3 Inpractice,however,thedifferenceisverysmallandcanbeneglectedifthepolymerconcentrationiskept low (w < 0.01). Therefore, most values reported in the literature are V * -values, since extrapolation 1 1, spec accordingto Eq. (8) isusually omitted. Sometimes, theexcess quantity, V E= V – V , isgiven in theliterature. 1 1 01 Determinationofsecondvirialcoefficients,A 2 Theosmoticvirialcoefficientsaredefinedviatheconcentrationdependenceoftheosmoticpressure,π,ofa polymersolution, e.g., [1974TOM1]: (cid:6) (cid:7) p 1 ¼RT þA2c1þA3c21þ... ð9Þ c1 Mn where: A , A second,thirdosmotic virial coefficient 2 3 c (mass/volume) concentration ofpolymer (1) 1 M number-averagemolarmass ofthe polymer n R gas constant T (measuring)temperature The vapor pressure depression of the solvent in a binary polymer solution Δp = p s - p , is expressed at 2 2 2 temperature Tas: (cid:6) (cid:7) (cid:2)p2 ¼Vm2c1 1 þA2c1þA3c21þ... ð10Þ p2 Mn where: p partial vapor pressure ofthe solvent(2) 2 p s saturation vapor pressure ofthe pure liquid solvent (2) 2 V molarvolumeof thepureliquidsolvent(2) m2 The freezing point depression,Δ T , isgiven by: SL 2 (cid:6) (cid:7) 1 (cid:2)SLT2 ¼ESLc1 þA2c1þA3c21þ... ð11Þ Mn The boilingpoint increase, Δ T , isgiven by: LV 2 (cid:6) (cid:7) 1 (cid:2)LVT2 ¼ELVc1 þA2c1þA3c21þ... ð12Þ Mn where: E ebullioscopicconstantof thesolvent LV E cryoscopic constantof thesolvent SL Δ T freezing point temperature differencebetweenpure solventand solution SL 2 Δ T boiling point temperaturedifference between solution andpure solvent LV 2 Scattering methods enable the determination of A viathe common relation: 2 Kc1RðqÞ¼1MwPzðqÞþ2A2QðqÞc1þ... ð13Þ where: K a constant that summarizesthe optical parameters ofa scattering experiment M mass-average relative molarmass ofthe polymer w P(q) z-average ofthe scatteringfunction z q scattering vector q¼4(cid:3)(cid:4)sin(cid:5) 2 Q(q) function for the q-dependence ofA 2 R(q) excess intensity of thescattered beam atthe value q λ wavelength θ scattering angle Landolt-Börnstein DOI:10.1007/978-3-642-02890-8_1 NewSeriesVIII/6D2 #Springer-VerlagBerlinHeidelberg2010 4 Introduction Dependingonthechosenexperiment(light,X-rayorneutronscattering),theconstant,K,istobecalculated from different relations. For experimental and theoretical details please see the corresponding textbooks [1972HUG1,1982GLA1, 1986HIG1, 1987KRA1, and 1991CHU1]. Thermodynamic data from the ultracentrifuge experiment can be obtained either from the sedimentation velocity (sedimentation coefficient) or from the sedimentation-diffusion equilibrium since the centrifugal forces arebalancedbytheactivitygradient.The determinationofsedimentation anddiffusioncoefficients yields the virial coefficients by: (cid:4) (cid:5) (cid:4) (cid:5) D (cid:1) (cid:3) 1 1(cid:2)V1;spec(cid:2)2 ¼RT þ2A2c1þ3A3c21þ... ð14Þ s M1 Sedimentation-diffusion equilibrium inan ultracentrifuge also gives a virial series: (cid:4) (cid:5) (cid:4) (cid:5) !2hD(cid:1)1(cid:2)V1;spec(cid:2)2(cid:3) @@lnhDc1 ¼RT M11þ2A2c1þ3A3c21þ... ð15Þ where: D diffusion coefficient h distance from the center of rotation D s sedimentation coefficient ω angular velocity Bothequationsarevalidformonodispersepolymersonly.Forallpolydispersepolymers,differentaverages wereobtainedforthesedimentationandthediffusioncoefficientswhichdependontheappliedmeasuring modes and the subsequent calculations. The averages of M correspond with averages of D and s and are 1 mixed ones that have to be transformed into the desired common averages. For details, please see the reviews [1975FUJ1, 1991MUN1, and 1992HAR1]. Inthediluteconcentrationregion,thevirialequationisusuallytruncatedafterthesecondvirialcoefficient which leads to a linear relationship. A linearized relation over a wider concentration range can be con- structed if the Stockmayer-Casassa relation between A and A isapplied: 2 3 (cid:4) (cid:5) 2 A3Mn ¼ A22Mn ð16Þ Thesecondvirialcoefficientdependsonmolarmass.Forflexible,nonassociatingpolymers,asimplescal- ingrelationcan be applied: A2 ¼(cid:6)Mw(cid:2)(cid:7) ð17Þ The constants α and βhave tobe fitted toexperimentaldata, e.g.[1994FET1]. Experiments using polydisperse polymers characterized by molar mass distribution functions (what is the common situation in older literature) lead to A -values depending on the experimental method applied. 2 EspeciallyA -valuesfromosmometryandlightscatteringcandiffer considerablysincetheyrepresentdif- 2 ferentaverageswithrespecttothemolarmassdistributionfunction.Averagesofthesecondvirialcoefficient obtained from measurements based on colligative properties, Eqs. (9–12), are double mass averages whereasclassicallightscatteringmeasurementsgivedoublez-averagesofA ,fordetailssee[1971YAM1]. 2 Z1 Z1 A(cid:3)2 ¼ AijwðMiÞwðMjÞdMidMj ¼hA2iw;w ð18Þ i¼0 j¼0 (cid:4) (cid:5) Z1 Z1 1 2 AL2S ¼ Mw AijMiMjwðMiÞwðMjÞdMidMj ¼hA2iz;z ð19Þ i¼0 j¼0 InthetableofChapter3.1,onecaneasilydistinguishbetweenA -valuesfromosmometryandlightscattering, 2 sinceinthefirstcaseM -valuesareusuallygiventocharacterizethepolymerwhereasinthelattercaseM -values n w areprovidedasthesemolarmassaveragesaretheexperimentalresultsobtainedfromEq.(9)orEq.(13). DOI:10.1007/978-3-642-02890-8_1 Landolt-Börnstein #Springer-VerlagBerlinHeidelberg2010 NewSeriesVIII/6D2