ebook img

Polymer Processing.. Modeling and Simulation PDF

651 Pages·2006·11.606 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polymer Processing.. Modeling and Simulation

Tim A. Osswald Juan P. Hernández-Ortiz Polymer Processing - Modeling and Simulation Hanser Publishers, Munich • Hanser Gardner Publications, Cincinnati TheAuthors: Prof.Dr.TimA.Osswald,DepartmentofMechnicalEngineering,UniversityofWisconsin-Madison,USA Dr.JuanP.Hernández-Ortiz,DepartmentofChemicalandBiologicalEngineering, UniversityofWisconsin-Madison,USA DistributedintheUSAandinCanadaby HanserGardnerPublications,Inc. 6915ValleyAvenue,Cincinnati,Ohio45244-3029,USA Fax:(513)527-8801 Phone:(513)527-8977or1-800-950-8977 www.hansergardner.com Distributedinallothercountriesby CarlHanserVerlag Postfach860420,81631München,Germany Fax:+49(89)984809 www.hanser.de Theuseofgeneraldescriptivenames,trademarks,etc.,inthispublication,eveniftheformerarenotespecially identified,isnottobetakenasasignthatsuchnames,asunderstoodbytheTradeMarksandMerchandiseMarks Act,mayaccordinglybeusedfreelybyanyone. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofgoingtopress, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsoromissions thatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothematerialcontained herein. LibraryofCongressCataloging-in-PublicationData Osswald,TimA. Polymerprocessing:modelingandsimulation/TimA.Osswald,JuanP. Hernández-Oritz.--1sted. p.cm. ISBN-13:978-1-56990-398-8(hardcover) ISBN-10:1-56990-398-0(hardcover) 1. Polymers--Mathematicalmodels.2. Polymerization--Mathematicalmodels. I.Hernández-Oritz,JuanP.II.Title. TP1087.O872006 668.901‘5118--dc22 2006004981 BibliografischeInformationDerDeutschenBibliothek DieDeutscheBibliothekverzeichnetdiesePublikationinderDeutschenNationalbibliografie;detailliertebiblio- grafischeDatensindimInternetüber<http://dnb.ddb.de>abrufbar. ISBN-13:978-3-446-40381-9 ISBN-10:3-446-40381-7 Allrightsreserved.Nopartofthisbookmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopyingorbyanyinformationstorageandretrievalsystem,withoutpermissionin writingfromthepublisher. ©CarlHanserVerlag,Munich2006 ProductionManagement:OswaldImmel Coverconcept:MarcMüller-Bremer,Rebranding,München,Germany Coverdesign:MCP•SusanneKrausGbR,Holzkirchen,Germany PrintedandboundbyDruckhaus“ThomasMüntzer”GmbH,BadLangensalza,Germany Lovingly dedicated to our maternal Grandfathers Ernst Robert Georg Victor and Luis Guillermo Ortiz; Two great men whose own careers in chemical engineering influenced the paths we have taken In gratitude to Professor R.B. Bird, the teacher and the pioneer who laid the groundwork for polymer processing − modeling and simulation PREFACE ThegroundworkforthefundamentalsofpolymerprocessingwaslaidoutbyProfessorR.B. Bird,hereattheUniversityofWisconsin-Madison,over50yearsago. Almosthalfacentury haspastsincethepublicationofBird,StewardandLightfoot’stransportphenomenabook. TransportPhenomena(1960)wasfollowedbyseveralbooksthatspecificallyconcentrate onpolymerprocessing,suchathebooksbyMcKelvey(1962),Middleman(1977),Tadmor andGogos(1979),andAgassant,Avenas,SergentandCarreau(1991). Thesebookshave influenced generations of mechanical and chemical engineering students and practicing engineers. MuchhaschangedintheplasticsindustrysincethepublicationofMcKelvey’s 1962 Polymer Processing book. However, today as in 1962, the set-up and solution of processingproblemsisdoneusingthefundamentalsoftransportphenomena. Whathaschangedinthelast50years,isthecomplexityoftheproblemsandhowthey are solved. While we still use traditional analytical, back-of-the-envelope solutions to model,understandandoptimizepolymerprocesses,weareincreasinglyusingcomputers tonumericallysolveagrowingnumberofrealisticmodels. In1990,ProfessorC.L.Tucker III,attheUniversityofIllinoisatUrbana-ChampaigneditedthebookComputerSimulation forPolymerProcesses. Whilethisbookhasbeenoutofprintformanyyears,itisstillthe standardworkforthegraduatestudentlearningcomputermodelinginpolymerprocessing. Since the publicationof Tucker’s bookand the textbookby Agassantet al., advances intheplasticsindustryhavebroughtnewchallengestothepersonmodelingpolymerpro- cesses. Forexample,partshavebecomeincreasinglythinner,requiringmuchhigherinjec- tionpressuresandshortercoolingtimes. Someplasticpartssuchaslensesandpatswith microfeaturesrequiremuchhigherprecisionandareoftendominatedbythree-dimensional flows. viii PREFACE Thebookwepresenthereaddressestraditionalpolymerprocessingaswellastheemerg- ingtechnologiesassociatedwiththe21stCenturyplasticsindustry,andcombinesthemod- elingaspectsinTransportPhenomenaandtraditionalpolymerprocessingtextbooksofthe lastfewdecades,withthesimulationapproachinComputerModelingforPolymerProcess- ing. Thistextbookisdesignedtoprovideapolymerprocessingbackgroundtoengineering studentsand practicingengineers. This three-parttextbookis written for a two-semester polymerprocessingseriesinmechanicalandchemicalengineering. Thefirstandsecond partofthebookaredesignedforthesenior-tograd-levelcourse,introducingpolymerpro- cessing, and the third part is for a graduatecourse on simulation in polymer processing. Throughoutthe book, manyapplicationsare presented in formof examplesand illustra- tions. Thesewillalsoservethepracticingengineerasaguidewhendeterminingimportant parametersandfactorsduringthedesignprocessorwhenoptimizingaprocess. Polymer Processing − Modeling andSimulation is based on lecture notes frominter- mediateandadvancedpolymerprocessingcoursestaughtattheDepartmentofMechanical Engineering at the University of Wisconsin-Madison and a modeling and simulation in polymerprocessingcoursetaughtonceayeartomechanicalengineeringstudentsspecial- izing in plastics technology at the University of Erlangen-Nurenburg,Germany. We are deeplyindebtedtothehundredsofstudentsonbothsidesoftheAtlanticwhointhepast fewyearsenduredourexperimentingandtryingoutofnewideasandwhocontributedwith questions,suggestionsandcriticisms. The authors cannot acknowledge everyone who helped in one way or another in the preparationofthismanuscript. WearegratefultotheengineeringfacultyattheUniversity ofWisconsin-Madison,andtheUniversityofErlangen-Nurenbergfortheirsupportwhile developingthecourseswhichgavethebaseforthisbook. IntheDepartmentofMechanical EngineeringatWisconsinweareindebtedtoProfessorJeffreyGiacomin,forhissuggestions andadvise,andProfessorLih-ShengTurngforlettingususehis3Dmoldfillingresultsin Chapter9. IntheDepartmentofChemicalandBiologicalEngineeringinMadisonweare gratefultoProfessorsJuandePabloandMichaelGrahamforJPH’sfinancialsupport,and forallowinghimtoworkonthisproject. WewouldliketothankProfessorG.W.Ehrenstein, oftheLKT-Erlangen,forextendingtheyearlyinvitationtoteachthe"Blockvorlesung"on ModelingandSimulationinPolymerProcessing.Thenotesforthatclass,andthesameclass taughtattheUniversityofWisconsin-Madison,presentedthestartingpointforthistextbook. We thank the following students who proofread, solved problemsand gave suggestions: JavierCruz,MikeDattner,ErikFoltz,YonghoJeon,FritzKlaiber,AndrewKotloski,Adam Kramschuster,AlejandroLondon˜o,IvanLo´pez,PetarOstojic,SeanPetzold,BrianRalston, AlejandroRolda´nandHimanshuTiwari.WearegratefultoLuzMayed(Lumy)D.Nouguez forthesuperbjobofdrawingsomeofthefigures. MariadelPilarNoriegafromtheICIPC and Whady F. Florez from the UPB, in Medell´ın, Colombia, are acknowledgedfor their contributionstoChapter11. WearegratefultoDr. ChristineStrohmandOswaldImmelof HanserPublishersfortheirsupportthroughoutthedevelopmentofthisbook. TAOthanks hiswife,DianeOsswald,forasalwaysservingasasoundingboardfromthebeginningto theendofthisproject. JPHthankshisfamilyfortheircontinuingsupport. TIMA.OSSWALDANDJUANP.HERNANDEZ-ORTIZ Madison,Wisconsin Spring2006 INTRODUCTION Ignoranceneversettlesaquestion. —BenjaminDisraeli The mechanical properties and the performance of a finished product are always the resultofasequenceofevents. Manufacturingofaplasticpartbeginswithmaterialchoice intheearlystagesofpartdesign. Processingfollowsthis,atwhichtimethematerialisnot onlyshapedandformed,butthepropertieswhichcontroltheperformanceoftheproductare setorfrozenintoplace. Duringdesignandmanufacturingofanyplasticproductonemust always be aware that material, processingand design propertiesall go hand-in-handand cannotbedecoupled. ThisapproachisoftenreferredtoasthefiveP’s: polymer,processing, product,performanceandpostconsumerlifeoftheplasticproduct. This book is primarily concerned with the first three P’s. Chapters 1 and 2 of this book dealwith the materialsscience of polymers, or the first P, and the rest of the book concernsitselfwithpolymerprocessing. Theperformanceoftheproduct,whichrelatesto themechanical,electrical,optical,acousticproperties,tonameafew,arenotthefocusof thisbook. I.1 MODELINGANDSIMULATION Amodelofaprocessisasimplifiedphysicalormathematicalrepresentationofthatsystem, whichisusedtobetterunderstandthephysicalphenomenathatexistwithinthatprocess. A physicalmodelis onewherea simplified representationofthatprocessisconstructed, xviii INTRODUCTION Screw flights Tracer ink nozzle Initial tracer ink Flow line formed by the ink tracer FigureI.1: Photographofthescrewchannelwithnozzleandinitialtracerinkposition. such as the screw extruderwith a transparentbarrel shown in Fig. I.1 [5]. The extruder inthephotographsisa6inchdiameter,6Dlongconstantchanneldepthscrewpumpthat was built to demonstrate that a system where the screw rotates is equivalentto a system wherethebarrelisrotating. Inaddition,thisphysicalmodel,whichcontainedaNewtonian fluid(siliconeoil),wasusedtotesttheaccuracyofboundaryelementmethodsimulations by comparingthe deformationof tracer ink markingsthat were injected throughvarious nozzleslocatedatdifferentlocationsinthescrewchannel. MODELINGANDSIMULATION xix FigureI.2: BEMsimulationresultsoftheflowlinesinsidethescrewchannelofasinglescrew extruder. Hence,thephysicalmodelofthescrewpumpservedasatooltounderstandtheunder- lyingphysicsofextrusion,aswellasameanstovalidatemathematicalmodelsofpolymer processes. Physicalmodelscanbeascomplexastheactualsystem, exceptsmallerinsize. Such a model is called a pilot operation. Usually, such a system is built to experiment with differentmaterialformulations,screwgeometries,processingconditionsandmanymore, withouthavingtouseexcessivequantitiesofmaterial,energyandspace. Oncethedesired resultsareachieved,oraspecificinventionhasbeenrealizedonthepilotoperationscale, it is important to scale it up to an industrial scale. Chapter 4 of this book presents how physicalmodelscanbeusedtounderstandandscaleaspecificprocess. Inlieuofa physicalmodelitisoftenlessexpensiveandtimeconsumingtodevelopa mathematicalmodelof theprocess. A mathematicalmodelattemptstomimic the actual processwithequations. Themathematicalmodelisdevelopedusingmaterial,energyand momentumbalanceequations,alongwithaseriesofassumptionsthatsimplifytheprocess sufficientlytobeabletoachieveasolution. FigureI.2presentstheflowlinesinthemetering section of a single screw extruder,computedusing a mathematicalmodelof the system, solved with the boundary element method (BEM), for a BEM representation shown in Fig. 11.25, composed of 373 surface elements and 1202 nodes [22, 5]. Here, although the geometryrepresentationwas accurate, the polymermeltwas assumed to be a simple Newtonianfluid. Themorecomplexthismathematicalmodel,themoreaccuratelyitrepresentstheactual process. Eventually,thecomplexityissohighthatwemustresorttonumericalsimulation tomodeltheprocess,oroftenthemodelissocomplexthatevennumericalsimulationfails todeliverasolution. Chapters5and6ofthisbookaddresshowmathematicalmodelsare used to representpolymerprocessesusinganalyticalsolutions. Chapters7 to 11present variousnumericaltechniquesusedtosolvemorecomplexpolymerprocessingmodels. xx INTRODUCTION FigureI.3: BEMrepresentation ofthescrew andbarrel usedtopredict theresultspresentedin Fig.I.2. I.2 MODELINGPHILOSOPHY Wemodelapolymerprocessoraneventinordertobetterunderstandthesystem,tosolvean existingproblemorperhapsevenimprovethemanufacturingprocessitself. Furthermore, amodelcanbeusedtooptimizeagivenprocessorpropertiesofthefinalproduct. Inorder tomodelorsimulateaprocessweneedtoderivetheequationsthatgovernorrepresentthe physicalprocess. Beforewesolvetheprocess’governingequationswemustfirstsimplify thembyusingasetofassumptions. Theseassumptionscanbegeometricsimplifications, boundaryconditions,initialconditions,physicalassumptions,suchasassumingisothermal systems or isotropic materials, as well as material models, such as Newtonian, elastic, visco-elastic,shearthinning,orothers. Whenmodeling,itisgoodpracticetobreaktheanalysisandsolutionprocessintosetof standardstepsthatwillfacilitateasolutiontotheproblem[1,2,4]. Thesestepsare: • Clearlydefinethescopeoftheproblemandthegoalsyouwanttoachieve, • Sketchthesystemanddefineparameterssuchasdimensionsandboundaryconditions, • Writedownthegeneralgoverningequationsthatgovernthevariablesintheprocess, suchasmass,energyandmomentumbalanceequations, • Introducetheconstitutiveequationsthatrelatetheproblem’svariables, • Stateyourassumptionsandreducethegoverningequationsusingtheseassumptions, • Scalethevariablesandgoverningequations, • Solvetheequationandplotresults.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.