ebook img

Polymer Materials in Additive Manufacturing: Modelling and Simulation PDF

213 Pages·2023·17.071 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polymer Materials in Additive Manufacturing: Modelling and Simulation

Polymer Materials in Additive Manufacturing Modelling and Simulation Edited by Mohammadali Shirinbayan, Nader Zirak, Khaled Benfriha, Sedigheh Farzaneh and Joseph Fitoussi Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Polymer Materials in Additive Manufacturing: Modelling and Simulation Polymer Materials in Additive Manufacturing: Modelling and Simulation Editors Mohammadali Shirinbayan Nader Zirak Khaled Benfriha Sedigheh Farzaneh Joseph Fitoussi MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin Editors MohammadaliShirinbayan NaderZirak KhaledBenfriha PIMM PIMM LCPI ArtsetMetiersInstitute ArtsetMetiersInstitute ArtsetMetiersInstitute ofTechnology ofTechnology ofTechnology HESAMUniversity HESAMUniversity HESAMUniversity Paris Paris Paris France France France SedighehFarzaneh JosephFitoussi PIMM PIMM ArtsetMetiersInstitute ArtsetMetiersInstitute ofTechnology ofTechnology HESAMUniversity HESAMUniversity Paris Paris France France EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journalPolymers(ISSN2073-4360) (availableat: www.mdpi.com/journal/polymers/special issues/ Additive Manufacturing Polymers Polymer Composites). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-6863-8(Hbk) ISBN978-3-0365-6862-1(PDF) © 2023 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents MohammadAhmadifar,KhaledBenfrihaandMohammadaliShirinbayan Thermal, Tensile and Fatigue Behaviors of the PA6, ShortCarbonFiber-Reinforced PA6, and ContinuousGlassFiber-ReinforcedPA6MaterialsinFusedFilamentFabrication(FFF) Reprintedfrom: Polymers2023,15,507,doi:10.3390/polym15030507 . . . . . . . . . . . . . . . . . 1 MuhammadAbas,TufailHabib,SaharNoor,BashirSalahandDominikZimon Parametric Investigation and Optimization to Study the Effect of Process Parameters on the DimensionalDeviationofFusedDepositionModelingof3DPrintedParts Reprintedfrom: Polymers2022,14,3667,doi:10.3390/polym14173667 . . . . . . . . . . . . . . . . 21 FatehEnouarMamache,AmarMesbah,HanbingBianandFahmiZa¨ıri Micromechanical Modeling of the Biaxial Deformation-Induced Phase Transformation in PolyethyleneTerephthalate Reprintedfrom: Polymers2022,14,3028,doi:10.3390/polym14153028 . . . . . . . . . . . . . . . . 43 LaszloRaczandMirceaCristianDudescu NumericalInvestigationoftheInfillRateuponMechanicalProprietiesof3D-PrintedMaterials Reprintedfrom: Polymers2022,14,2022,doi:10.3390/polym14102022 . . . . . . . . . . . . . . . . 57 SyedHammadMian,KhajaMoiduddin,SherifMohammedElseufyandHishamAlkhalefah AdaptiveMechanismforDesigningaPersonalizedCranialImplantandIts3DPrintingUsing PEEK Reprintedfrom: Polymers2022,14,1266,doi:10.3390/polym14061266 . . . . . . . . . . . . . . . . 75 SedighehFarzanehandMohammadaliShirinbayan ProcessingandQualityControlofMasks: AReview Reprintedfrom: Polymers2022,14,291,doi:10.3390/polym14020291 . . . . . . . . . . . . . . . . . 93 NaderZirak,MohammadaliShirinbayan,MichaelDeligantandAbbasTcharkhtchi TowardPolymericandPolymerCompositesImpellerFabrication Reprintedfrom: Polymers2021,14,97,doi:10.3390/polym14010097 . . . . . . . . . . . . . . . . . 115 Toma´sˇ Tichy´,OndrˇejSˇefl,PetrVesely´,KarelDusˇekandDavidBusˇek MathematicalModellingofTemperatureDistributioninSelectedPartsofFFFPrinterduring3D PrintingProcess Reprintedfrom: Polymers2021,13,4213,doi:10.3390/polym13234213 . . . . . . . . . . . . . . . . 141 Chil-ChyuanKuo,Ding-YangLi,Zhe-ChiLinandZhong-FuKang Characterizations of Polymer Gears Fabricated by Differential Pressure Vacuum Casting and FusedDepositionModeling Reprintedfrom: Polymers2021,13,4126,doi:10.3390/polym13234126 . . . . . . . . . . . . . . . . 151 ZohrehShakeri,KhaledBenfriha,MohammadaliShirinbayan,MohammadAhmadifarand AbbasTcharkhtchi Mathematical Modeling and Optimization of Fused Filament Fabrication (FFF) Process ParametersforShapeDeviationControlofPolyamide6UsingTaguchiMethod Reprintedfrom: Polymers2021,13,3697,doi:10.3390/polym13213697 . . . . . . . . . . . . . . . . 173 ZhongqiuDing,BenWang,HongXiaoandYugangDuan HybridBio-InspiredStructureBasedonNacreandWoodpeckerBeakforEnhancedMechanical Performance Reprintedfrom: Polymers2021,13,3681,doi:10.3390/polym13213681 . . . . . . . . . . . . . . . . 191 v polymers Article Thermal, Tensile and Fatigue Behaviors of the PA6, Short Carbon Fiber-Reinforced PA6, and Continuous Glass Fiber-Reinforced PA6 Materials in Fused Filament Fabrication (FFF) MohammadAhmadifar1,2,*,KhaledBenfriha1 andMohammadaliShirinbayan2,* 1 ArtsetMetiersInstituteofTechnology,CNAM,LCPI,HESAMUniversity,F-75013Paris,France 2 ArtsetMetiersInstituteofTechnology,CNAM,PIMM,HESAMUniversity,F-75013Paris,France * Correspondence:[email protected](M.A.);[email protected](M.S.) Abstract:Utilizationofadditivemanufacturing(AM)iswidespreadinmanyindustriesduetoits uniquecapabilities.Thesematerialextrusionmethodshavebeendevelopedextensivelyformanufac- turingpolymerandpolymercompositematerials.Therawmaterialinfilamentformareliquefied intheliquefiersectionandareconsequentlyextrudedanddepositedontothebedplatform. The designedpartsaremanufacturedlayerbylayer.Therefore,thereisagradientoftemperaturedue totheexistenceofthecyclicreheatingrelatedtoeachdepositedlayerbythenewerdepositedones. Thus,thestatedtemperatureevolutionwillhaveasignificantroleontherheologicalbehaviorofthe materialsduringthismanufacturingprocess.Furthermore,eachprocessingparametercanaffectthis cyclictemperatureprofile.Inthisstudy,differentprocessingparametersconcerningthemanufactur- ingprocessofpolymerandpolymercompositesampleshavebeenevaluatedaccordingtotheircyclic temperatureprofiles. Inaddition,themanufacturedpartsbytheadditivemanufacturingprocess (theextrusionmethod)canbehavedifferencescomparedtothemanufacturedpartsbyconventional methods.Accordingly,weattemptedtoexperimentallyinvestigatetherheologicalbehaviorofthe manufacturedpartsafterthemanufacturingprocess.Thusthethree-pointbendingfatigueandthe Citation:Ahmadifar,M.;Benfriha,K.; tensilebehaviorofthemanufacturedsampleswerestudied.Accordingly,theeffectofthereinforce- Shirinbayan,M.Thermal,Tensileand mentexistenceanditsdirectionanddensityonthetensilebehaviorofthemanufacturedsampleswere FatigueBehaviorsofthePA6,Short studied.Therefore,thisstudyishelpfulformanufacturersanddesignerstounderstandthebehaviors CarbonFiber-ReinforcedPA6,and ofthematerialsduringtheFFFprocessandsubsequentlythebehaviorsofthemanufacturedpartsas ContinuousGlassFiber-Reinforced PA6MaterialsinFusedFilament afunctionofthedifferentprocessingparameters. Fabrication(FFF).Polymers2023,15, 507. https://doi.org/10.3390/ Keywords:materialextrusion;rheologicalbehavior;mechanicalproperties;temperatureprofile polym15030507 AcademicEditor:CarolaEsposito Corcione 1. Introduction Received:4October2022 Additive manufacturing (AM) is growing due to the low amount of wasted mate- Revised:2January2023 rial in the manufacturing process and the ability to manufacture complex shapes [1–3]. Accepted:5January2023 Therearedifferenttechniquesconcerningtheadditivemanufacturingprocess,whilefused Published:18January2023 filamentfabrication(FFF)isthemostcommonlyutilizedtechnique[4]. Mechanicalprop- erties and dimensional accuracy of the FFF-processed parts are affected by the utilized processing parameters during the manufacturing process [5]. The importance and the influenceoftheassortmentofprocessingparametershavebeenstudied,suchastheeffect Copyright: © 2023 by the authors. ofprintspeed[6,7],bedplatformtemperature[8–10],liquefiertemperature[11],andlayer Licensee MDPI, Basel, Switzerland. height[12,13]. Theevolutionofthetemperatureofthedepositedlayersisconsiderably This article is an open access article affected by the aforementioned processing parameters during the FFF process [5]. The distributed under the terms and temperatureevolutioncausedagradientofthetemperatureinthestructure,whichsignifi- conditionsoftheCreativeCommons cantlyaffectedtheadhesionandthebondingofthedepositedlayersandconsequentlythe Attribution(CCBY)license(https:// strengthofthemanufacturedparts. Severalstudiesrelatedtothetemperatureevolution creativecommons.org/licenses/by/ duringtheFFFprocesshavebeenconducted[5,14,15]. 4.0/). 1 Polymers2023,15,507 Christiyan et al. [16] investigated the flexural and tensile strength of the printed ABScompositematerialsunderthedifferentprintspeedvaluesof50,40,and30mm/s andthelayerheightvaluesof0.3,0.25,and0.2mm. Asfortheresults,itwasobserved thatthelowerlayerheightandprintspeedvalues(0.2mmand30mm/s)increasedthe flexuralandtensilestrengths. Moreover,severalstudieshavebeencarriedoutregarding theFFFprocessofpolymercompositematerials[17–19]. Durgaetal.[20]evaluatedthe influenceoftheliquefiertemperatureandlayerheightofthedepositedlayersonthetensile strengthoftheprintedCF-PLAspecimens. ThemanufacturedCF-PLAspecimensunder thelowestselectedlayerheightvalueandthehighestselectedliquefiertemperaturehad thehighertensilestrength. AninvestigationwasconductedbyDingetal.[21]todetermine theinfluenceofliquefiertemperatureonthemechanicalpropertiesoftheFFF-processed PEEKandPEI.Theydiscoveredthattheflexuralstrengthwasgraduallyimprovedasthe temperature increased. Berretta et al. [22] manufactured the reinforced PEEK with 1% and5%carbonnanotubes(CNTs). TheyreportedthattheCNTsdidnothaveasignificant effectonthemechanicalbehaviorsofthePEEK-processedspecimens. Theyintroduced the nozzle temperature as one of the most crucial parameters in the FFF process, due to its direct contact with the polymer. Yang et al. [23] studied the effect of the thermal PoPlyomlyemrse r2s0 22032, 135, 1, 5x, FxO FRO PRE PEERE RRE RVEIVEWIEW 3 o3 f o2f4 2 4 processingconditiononmechanicalbehaviorsandcrystallinityofthePEEKmaterial.Based ontherelatedresults,crystallinityincreasedfrom17%to31%inresponsetotheincreasein ambienttemperaturefrom25to200 C. ◦ 2.21..1 M. Mataerteiarilas ls Fewstudieshavebeenperformedtoinvestigatetheeffectoftheutilizedfiberrein- forcementsontherheologicalbehaviorofthematerialsduringandafterthemanufacturing process. Thisstudytriedtoinvestigatetherheologicalbehaviorofthematerialsduringand ThTeh see sleecletecdte dm matearteiarlisa lfso fro trh tihs isst ustduyd yw ewreer pe oploylaymamidied 6e 6(P (AP6A)6 a)n adn dsh sohrot rcta crabrobno nfi bfiebre-rre-rineifnofrocrecde dp oploylaymamidied 6e 6(O (nOynxy x aftertheFFFprocessbyconsideringtheroleofthefiberreinforcements. Theselectedmate- oro Cr FC-FP-AP6A)6 p) rpordoudcuecde db yb yM MarakrFkoFrogregde®d.® T. hTeh ceh cohpoppepde dca crabrobno nfi bfiebres rhs ahda da ma masass cso cnotnentetn ot fo 6f .65.%5% in i nth teh Ce FC-FP-AP6A 6 rialsforthisstudywerePA6,shortcarbonfiber-reinforcedPA6(CF-PA6),andcontinuous filfaimlamenetn bt absaegsdlea dos nso finth bteeh rpe- yrperyoinrloyfolsyriscs eipsd rpoCrcoFec-sPesAs. sT6. hTceoh mceh pcahoraasirctateecrmteisratitisectrsici aosl fso .tfh teh ue tuiltiizleizde dfi lfaimlamenetns tass a tsh teh rea rwa wm matearteiarlias lasr aer e prperseesnetnedte din i nT aTbalbe l1e .1 . 2. MaterialsandMethods 2.1. Materials Theselectedmaterialsforthisstudywerepolyamide6(PA6)andshortcarbonfiber- TaTbalbe l1e .1 T. hTeh ceh cahraarcatecrteizraiztiaotinosn os fo tfh teh ue tuiltiizleizde dra rwa wm mataetreiarlisa.l s. reinforcedpolyamide6(OnyxorCF-PA6)producedbyMarkForged®. Thechoppedcarbon RfiaRbwear wsM hMaatdaetreiaarmlias lass scontentof6.5%intheCF-PA6filamentbasedonthepyrolysisprocess. ThecharacteristicsoftheutilizedfilamentsastherawmaterialsarepresentedinTable1. PhPyhsyicsaicl aaln adn dC hCehmemicaicl al PAP6A 6 CFC-FP-AP6A 6 TablPerP1o.rpoTephreetircethsiea sra cterizationsoftheutilizedrawmaterials. DeDnesnitsyit y 1.11. 1g /gcm/cm3 3 1.12. 2g /gcm/cm3 3 RawMaterials GlGaslass tsr atrnasnitsiiotino nte mtempepreartuatruer e PA6 CF-PA6 PhysicalandChemicalProperties 454 5°C ° C 474 7°C ° C Density(T(gT) g) 1.1g/cm3 1.2g/cm3 CrCyrsytasltlailzlaiztiaotino nte mtempepreartuatruer e Glasstransitiontemperature(Tg) 17137 3°C ° C 45◦C 16126 2°C ° C 47◦C (T(T) ) Crystallizationtcemcperature (TMc)Melteilntign gte mtempepreartuatruer e 173◦C 162◦C 20250 5°C ° C 19189 8°C ° C Meltingtemperature (T(mT()mT)m ) 205◦C 198◦C SpoolSIpmSopaogoleo Ilm Imagaeg e AsA fso fro trh teh ien ivnevsetisgtiagtiaotino no fo tfh teh fei bfiebre-rre-rineifnofrocrecmemenetn itm impapcat catn adn dth teh pe rporcoecsessinsign gp apraarmameteerte erf efeffcetcs tos no nth teh reh rehoeloolgoigcaicl al bebheahvaivoiro or fo tfh teh me matearteiarlias lds udruinrign gth teh Fe FFFF Fp rporcoecsess, sa, sai nsignlge lwe awlla llla ylaeyre srp sepceicmimene n(F (iFgiugruer 1e )1 w) awsa ds edseigsingende.d T. hTihs is 2 spsepceimcimene nle tl eut su sst ustduyd yth teh eef efeffcet cot fo tfh teh see sleecletecdte dp rporcoecsessinsign gp apraarmameteertes ros no nth teh aed ahdehseiosino nan adn dth teh be obnodnidnign go fo tfh teh e dedpeopsoitseidte dla ylaeyres.r sI.n I nad addidtiiotino,n t,h teh leo lcoactiaotino no fo tfh teh ree rqeuqiureirde dsp sepceimcimenesn fso fro trh teh seu sbusbesqeuqeunetn cth cahraarcatecrteizraiztiaotinosn asr aer e dedteertemrminiende din i nF iFgiugruer 1e .1 T. wTow od idffieffreernetn pt rpinritnertes rws ewreer ue tuiltiizleizde dd udruinrign go uoru srt ustduidesie. sT. oT ost ustduyd yth teh eef efeffcetsc tos fo tfh teh e prporcoecsessinsign gp apraarmameteetres,r sF, lFaslahsfhofrogreg Ae DAVDEVNETNUTRUERRE-R3- 3(f r(ofrmom C hCihnian)a w) awsa us tuiltiizleizde.d M. Moroeroevoevre, ra,s a fso fro srt ustduydiynign gth teh e inifnilfli lpl eprecrecnetnagtaeg, ei,n ifnilfli lpl apttaetrtenr nef efeffcetsc,t sa,n adn dfa ftiagtiugeu be ebheahvaivoiros,r sa, Ma Marakrfkofrogregde-dM-Marakr kT wTow o(f r(ofrmom th teh Ue SUAS)A p) rpinritnerte wr awsa s utuiltiizleizde.d T. hTihs iiss ibs ebceacuasues Me Marakrfkofrogregde-dM-Marakr kT wTow op rpinritnertes rcsa cna np rporvoivdied teh teh pe opsossibsiibliitlyit yo fo mf manaunfuafcatuctruinrign gco cmompopsoitsei te obojbecjetsc tws iwthit hco cnotnintiunouuosu rse rineifnofrocrecmemenetn. t. Polymers 2023, 15, x FOR PEER REVIEW 3 of 21 Spool Image Polymers2023,15,507 As for the investigation of the fiber-reinforcement impact and the processing param- eter effects on the rheological behavior of the materials during the FFF process, a single Asfortheinvestigationofthefiber-reinforcementimpactandtheprocessingparameter wall layer specimen (Figure 1) was designed. This specimen let us study the effect of the effectsontherheologicalbehaviorofthematerialsduringtheFFFprocess,asinglewall selected processlainyger psapreacmimeetenrs(F oignu trhee1 a)dwhaessidoens iagnnded t.heT hbiosnsdpiencgim oefn thleet duespsotusidteydt hlaeyeefrfesc. t of the In addition, thes eloleccatetidonp roofc etshsein rgepqauriarmede tseprseocinmtheensa dfoher stihone asnudbstehqeubeonntd icnhgaorafcthteerdizeaptoiosintesd layers. are determinedI nina dFdigituiorne, 1th. eTlwocoa tdioinffoefrethnet rpeqriunitreedrss pweecrime euntsilfiozretdh edsuurbinsegq uoeunrt cshtuadraicetse.r iTzaot ionsare study the effectsd eotfe trhmei nperdocinesFsiignugr ep1a.rTawmoetdeirffse,r Fenlatsphrfionrtegres AwDerVeEutNiliTzUedRdEuRr-in3g (foruorms tCudhiiensa.)T ostudy theeffectsoftheprocessingparameters,FlashforgeADVENTURER-3(fromChina)was was utilized. Moreover, as for studying the infill percentage, infill pattern effects, and fa- utilized. Moreover,asforstudyingtheinfillpercentage,infillpatterneffects,andfatigue tigue behaviors, a Markforged-Mark Two (from the USA) printer was utilized. This is be- behaviors,aMarkforged-MarkTwo(fromtheUSA)printerwasutilized. Thisisbecause cause Markforged-Mark Two printers can provide the possibility of manufacturing com- Markforged-MarkTwoprinterscanprovidethepossibilityofmanufacturingcomposite posite objects with continuous reinforcement. objectswithcontinuousreinforcement. Figure 1. The prinFtiegdu rsein1.gTleh-ewparliln stepdecsiinmgelen-sw aanllds pperceimpaernastiaonnd opfr etphaer taetinosniloef ttehset tsepnesciliemteesntss p[5e]c.i mens[5]. 2.2. Methods 2.2. Methods 2.2.1. InSituMonitoringofTemperatureEvolution 2.2.1. In Situ Monitoring of Temperature Evolution AnOptrisPI450infraredcamerawasappliedintheconductedstudyoftheprocessing An Optris pPaIr4a5m0e tienrfirmarpeadc tscaomntehrea thwearms aalpapnldiemde icnh atnhieca clopnrodpuecrttieeds osftuthdeyp oolfy mtheer apnrdo-polymer- cessing paramebtears eimdcpoamctpso osnit etshues tihnegrtmheaFl FaFndp rmoceecshs.aTnhiceaslt aptreodpienrftriaerse dofc athmee praowlyamsepro saintido nedata polymer-based scpoemcipficospirteeds eutesrimngin tehde dFisFtFa npcreofcreosms. thTeheex sttrautseiodn inlofcraatrieodn ocfamtheerpar iwntaesr. pTohsiis-attempt tioned at a speciafiimc epdretdoemteornmitoinreadnd doisbtsaenrvcee afrcoomns tishtee netxptrlauisniofinel dloocfavtiioenw o(Ff OthVe) parcirnostesra.l Tlchoins secutive layers. Thetemperatureriseduringtheperformedfatiguetestwasmonitoredandmea- attempt aimed to monitor and observe a consistent plain field of view (FOV) across all suredbythestatedinfraredcameraaswell. Regardingsometechnicalspecificationsofthe consecutive layers. The temperature rise during the performed fatigue test was monitored infraredcamerausedinthisexperiment,frequency,accuracyvalues,wavelengthrange, and measured by the stated infrared camera as well. Regarding some technical specifica- opticalresolution,andtherateoftheframeswere32Hz,2%,8–14µm,382 288pixels, × and80Hz,respectively. 2.2.2. MicrostructuralObservations Usingascanningelectronicmicroscope(HITACHI4800SEM,manufacturedinJapan), observationsandimageanalyseswereperformedtoqualitativelyanalyzethecomposite microstructure, especially in relation to damage assessment. In this study, an optical microscope(OLYMPUSBH2,manufacturedinJapan)wasusedtoassessthequalityofthe 3 Polymers2023,15,507 manufacturedsamplesatthevariousselectedprocessingparameterswithmagnifications from100to500mm. 2.2.3. DifferentialScanningCalorimetric(DSC) Bymeansofdifferentialscanningcalorimetry(Q1000),bothrawfilamentmaterialsand printedspecimenscouldbeassessedfortheirrespectiveglasstransition(T ),crystallization g temperatures(T ),andtheirheatcapacitiesbasedontheselectedprocessingparameters. c DSCcharacterizationwasperformedontherawfilamentmaterials(CF-PA6andPA6)over threetemperatureramps: rangeof20to220 Cunderarateof10 C/min. Thisattempt ◦ ◦ causedaneliminationofthethermalhistoryofthefilamentsconcerningtheirproduction process. Furthermore,theprintedandfabricatedspecimenswereanalyzedbyDSCintwo ramps(heatingandcooling). 2.2.4. Thermo-MechanicalBehaviorAnalysis(DMTA) Underthemulti-frequencycondition, DMTAflexuraltestswereperformedonthe printed samples using the DMA Q800 instrument from the TA Company, in order to determinethemajortransitiontemperaturesandviscoelasticcharacteristics. Thischaracter- izationwasutilizedtostudytheviscoelasticbehaviorofthematerialduringthefatigue testandthesubsequenttemperaturerise. DMTAcharacterizationwasperformedinthe temperaturerangeof30to80 C,frequenciesof1,2,5,10,and30Hz,andtemperaturerate ◦ of2 C/min. ◦ 2.2.5. Quasi-StaticTensileTest Aswasstated,twodifferentconditionsforstudyingthetensilebehaviorwerecon- ducted. Thefirstconditionwasconsideredtostudytheeffectoftheprocessingparameters on the manufacturing of the polymer and composite specimens (Figure 1). Therefore, basedonISO527-2,tensiletestspecimensweresliced/cutfromtheprintedsingle-wall layersample(Figure1),inordertoconducttherelatedstudyofthefirstcondition. The requiredtensilespecimenswerecutfromtheprintedsingle-wallsamplesutilizingatensile sample-cuttingdieandapplyingthehomogenousforce. Inaddition,thehomogeneityof theprintedsingle-walllayerswasensuredbyusingthecaliperforthicknessmeasurement. Followingthecuttingofthetensiletestspecimensfromthesingle-walllayers,acaliperwas usedtoensurethatgaugelengthdimensionswereuniform. Inaddition,theobservationof thesamplesundertheopticalmicroscope(OM)tocontrolthequalityofthespecimensafter themanufacturingandcuttingprocesswastakenintoaccount. Thesecondconditionwas appliedtostudytheimpactoffillpercentageofthepolymerandthedifferentdetermined densitiesanddirectionsoftheutilizedcontinuousreinforcements. Moreover,inorderto investigatetherheologicalbehavioroftheadditivemanufacturedspecimensafterthepro- ductionprocess,therelatedtensiletestspecimenswereprintedbasedonthestandardISO 527-1. Thequasi-statictensileexperimentwasconductedbymeansoftheINSTRON5966 machinewithadisplacementrateof5mm/minandaloadingcellof10kN.Aminimum ofthreespecimenswerepreparedforeachconditioninordertoconductthequasi-static tensiletests. 2.2.6. ThreePointsBendingFatigueTests Asforthefatiguetestofthefabricatedspecimensconcerningthestudyoftherheolog- icalbehavioroftheFFF-processedcompositematerials(afterthemanufacturingprocess),a three-pointsbendingfatiguetestwasconductedatvariousappliedmaximumstrains(ε ). max Theconsideredstrainratiowas0.1(Rσ=0.1);moreover,therelatedmeanstrainlevelwas 0.55ε . Thistestwasconductedontheshortcarbonfiber-reinforcedpolyamide6(Onyx max orCF-PA6)andthecontinuousglassfiber-reinforcedpolyamide6(Onyx+GF)composite specimenstobeabletostudytheeffectofthecontinuousglassfiberreinforcementandits subsequentimpactontherheologicalbehavioroftheFFF-processedspecimens. During thethree-pointbendingfatiguetest,thetemperatureofthespecimenswasraised,which 4 Polymers2023,15,507 wasmeasuredbytheinfraredcameratodeterminetheimportanceandinfluenceofthe utilizedcontinuousglassfiberreinforcementinthisphenomenon. Thedimensionsofthe preparedrectangularcompositespecimenswere120 10 4mm3. Inordertoperforma × × fatiguetest,atleastthreespecimenswerepreparedforeachcondition. 3. ResultsandDiscussions 3.1. StudyoftheRheologicalBehaviorofthePolymerandPolymerCompositeMaterialsduringthe FFFProcess Therheologicalbehavior ofthepolymer andpolymer compositematerialsduring theFFFprocessareinvestigatedinthissection. Inaddition,themodificationsintherhe- ologicalbehaviorofthematerialsastheconsequenceoftheshortcarbonfiberexistence are discussed. As part ofthis effort, fourmain processing parameters were considered to investigate their impacts on the tensile behavior of the manufactured specimens. In addition,theinsitutemperatureevolutionduringthemanufacturingprocesswasmoni- tored. Theselectedprocessingparameterswereprintspeed(13,15,and17mm/s),liquefier temperature(220,230,and240 C),layerheight(0.1,0.2,and0.3mm),andbedplatform ◦ temperature(25,50,60,and80 C).Theaforementionedprocessingparameterswerestud- ◦ ied individually by considering the rest of the processing parameters as constant. The referencevaluesconcerningeachoftheselectedparameterswere15mm/sasprintspeed, 240 Casliquefiertemperature,0.1mmaslayerheight,and25 Casbedtemperature. The ◦ ◦ selectedmaterialsforthissectionwerePA6andCF-PA6[5]. 3.1.1. EffectofthePrintSpeed Inlightoftheimportanceoftheprintspeedparameterinproductiontime,itwasstud- iedtohowitimpactstherheologicalbehaviors. Tostudytheimpactofthismanufacturing processingparameter,13,15,and17mm/sasthedifferentprintspeedvaluesweretaken intoconsideration. AccordingtoFigure2,thetensilestrengthandthecrystallinitypercent- agepertainingtothemanufacturedspecimenswiththeabove-selectedprintspeedvalues wereevaluated. Thetensilestrengthvaluesof57.78 0.84,68.92 0.9,and69 0.05MPa ± ± ± Polymers 2023, 15, x FOR PEER REVIEcWon cerningthemanufacturedPA6specimensand65 0.5, 55 0.6, and63 1.3MPa6 of 21 ± ± ± concerningthemanufacturedCF-PA6specimenspertainingto theselectedprintspeed valuesof13,15,and17mm/swereobtained,respectively. Figure2.Obtainedtensilestrengthandcrystallinitypercentagevaluesconcerningtheprintspeed Figure 2. Obtained tensile strength and crystallinity percentage values concerning the print speed eeffffeecctt iinnvveesstitgigaatitoionn. . Figure3depictsthetemperatureprofile,obtainedfromtheinsitumonitoringofthe Figure 3 depicts the temperature profile, obtained from the in situ monitoring of the temperatureevolutionconcerningthePA6andCF-PA6specimensproducedbytheabove- temperature evolution concerning the PA6 and CF-PA6 specimens produced by the above-stated print speed values. As printing speed was increased, the measured temper- ature of the first printed layer stayed above the related crystallization temperature values 5 in all examined PA6 and CF-PA6 specimens. The print speed affected the cooling time and polymer arrangement and the resultant crystallinity degree. All selected print speeds yielded higher crystallinity degree values for CF-PA6 specimens than PA6 specimens. Figure 3. The obtained temperature evolution from the in situ temperature monitoring (a) PA6 and (b) CF-PA6 [5] under different print speeds. 3.1.2. Effect of the Liquefier Temperature The impact of the liquefier temperature on the rheological behavior of the PA6 and CF-PA6 specimens were investigated. The decided liquefier temperature values for this study were 240, 230, and 220 °C. Figure 4 depicts the crystallinity percentage and tensile strength concerning the manufactured specimens with the above-selected liquefier tem- perature values. The tensile strength values of 55.48 ± 0.78 and 68.92 ± 0.9 MPa concerning the manufactured PA6 specimens by the liquefier temperature values of 230 and 240 °C were achieved, respectively. One can note that the lowest strength was observed in the printed specimens by the liquefier temperature values of 220 °C. This liquefier tempera- ture value could not provide a suitable fluidity of the material during the FFF process, which caused low and inappropriate adhesion between the deposited layers. This low

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.