ebook img

Polymer-Based Solid-State Batteries PDF

172 Pages·2021·75.114 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polymer-Based Solid-State Batteries

DanielBrandell,JonasMindemark,GuiomarHernández Polymer-BasedSolid-StateBatteries Also of interest ProcessingofPolymers ChrisDefonseka, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- Electrochemistry. AGuideforNewcomers HelmutBaumgärtel, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- ElectrochemicalEnergyStorage. PhysicsandChemistryofBatteries ReinhartJob, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- WearableEnergyStorageDevices AllibaiMohananVinuMohan, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- SuperabsorbentPolymers. ChemicalDesign,ProcessingandApplications EditedbySandraVanVlierberghe,ArnMignon, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- Daniel Brandell, Jonas Mindemark, Guiomar Hernández Polymer-Based Solid-State Batteries Authors Prof.DanielBrandell DepartmentofChemistry–ÅngströmLaboratory UppsalaUniversity Box538 SE-75121Uppsala Sweden [email protected] Dr.JonasMindemark DepartmentofChemistry–ÅngströmLaboratory UppsalaUniversity Box538 SE-75121Uppsala Sweden [email protected] Dr.GuiomarHernández DepartmentofChemistry–ÅngströmLaboratory UppsalaUniversity Box538 SE-75121Uppsala Sweden [email protected] ISBN978-1-5015-2113-3 e-ISBN(PDF)978-1-5015-2114-0 e-ISBN(EPUB)978-1-5015-1490-6 LibraryofCongressControlNumber:2021936238 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2021WalterdeGruyterGmbH,Berlin/Boston Coverimage:MuhammadAbdelhamid. Typesetting:IntegraSoftwareServicesPvt.Ltd. Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Theambitionofthisbookistogiveabriefintroductiontotherapidlygrowingfieldof solid-statebatteries,wheretheliquidcomponentsinconventionallithium-ionbatter- iesarereplacedwithpolymeric,andtherebysolid-state,materials.Solvent-freepoly- merelectrolytesarethusatthefocalpoint,anditisdiscussedtowhatextentthesecan substitutetheotherwisewidelyusedliquidandgelsystems.Incomparisontomuchof theclassicalliteratureonpolymerelectrolytes,thisbooktriestokeepastrongfocus on battery applications. In this sense, not only the structure and dynamics of the salt–polymerinteractions are of interest but also theinteraction with electrodesand otherbatterycomponents.Whilepolymerelectrolyteisaresearchareathatstretches backalmost50years,itisprimarilythelastdecadethathasseenanexplosioninpoly- merelectrolyte-basedbatterydevices–bothinscientificliteratureandascommercial applicationsinindustry.Alsoincomparisontoclassicalliteratureinthefield,wehere try to broaden the perspectives and include a wider polymer host platformthan the standardpoly(ethyleneoxide),which has beenthe main target of scientific develop- menteversincetheinceptionoftheresearchfield.Aswewillargue,stretchingbeyond thepolyetherparadigmwillbenecessaryforfutureadvancementintheareaandfor betterfunctionalsolid-statebatteries.Thebatteriestargetedareprimarilyhigh-energy- densitydevices,resultinginanaturalfocusonLi-basedchemistries. We wouldliketo thank a few people thatindifferentways havecontributed to theaccomplishmentofthisbook:MuhammadAbdelhamid,TimNordh,AlexisRucci, MarkRosenwinkel, Monika Schönhoffand Michel Armand.Matthew Lacey and Tim BowdencoauthoredareviewarticleinProgressinPolymerSciencewithsomeofusa coupleofyearsago,whichsparkedourambitionstomoveforwardtowardthisbook. Wewould also like tothank all people atthe Ångström AdvancedBattery Centreof UppsalaUniversity,andespeciallymembersofthePolymerUsedinBatteriesgroup– bothpastandpresent.Itisindeedaveryrewardingcommunitytobeapartof. Uppsala,March2021 DanielBrandell JonasMindemark GuiomarHernández https://doi.org/10.1515/9781501521140-202 Contents Preface V 1 Polymerelectrolytematerialsandtheirroleinbatteries 1 1.1 Batterygrowth 1 1.2 TheLi-ionbatteryanditselectrolyte 3 1.3 Towardsolid-statebatteries 8 1.4 Solidpolymerelectrolytes 11 1.5 Polymer-basedsolid-statebatteries 12 References 14 2 Iontransportinpolymerelectrolytes 16 2.1 Ionsolvationbypolymerchains 16 2.2 Fundamentalsofiontransport 21 2.3 Mechanismofiontransportinpolymerelectrolytes 24 2.3.1 Couplediontransport 24 2.3.2 Decouplediontransport 31 References 34 3 Keymetricsandhowtodeterminethem 37 3.1 Totalionicconductivity 37 3.2 Transferenceandtransportnumbers 40 3.3 Thermalproperties 44 3.4 Mechanicalproperties 45 3.5 Electrochemicalstability 46 3.6 Modelingofpolymerelectrolyteproperties 50 References 53 4 Batteriesbasedonsolidpolymerelectrolytes 57 4.1 Batterytesting 57 4.2 Compatibilitywithmetalelectrodes 61 4.3 Compatibilitywithporouselectrodes 64 4.4 Processinganduseoflarge-scaleSPE-basedbatteries 70 References 74 5 Hostmaterials 78 5.1 Polyethers 79 5.1.1 Synthesisandstructureofpolyethers 79 5.1.2 PEOandoxyethylene-basedpolyethers 82 5.1.3 Otherpolyethers 87 5.1.4 Applicationofpolyethersinbatteries 88 VIII Contents 5.2 Carbonyl-coordinatingpolymers 92 5.2.1 Synthesisofcarbonyl-coordinatingpolymers 93 5.2.2 Polycarbonates 95 5.2.3 Polyesters 104 5.2.4 Polyketones 106 5.2.5 Applicationofcarbonyl-coordinatingpolymersinbatteries 107 5.3 Polynitriles 108 5.3.1 Polyacrylonitrilederivativesandcopolymers 113 5.3.2 Othernitrile-functionalpolymers 114 5.4 Polyamines 116 5.5 Polyalcohols 120 5.6 Polymerizedionicliquidsandionomerconcepts 124 5.6.1 ChemicalstructureofPILsandionomers 125 5.6.2 SynthesisofPILs,ionomersandsingle-ionpolymer electrolytes 127 5.6.3 PropertiesofPILs,ionomersandsingle-ionpolymer electrolytes 129 5.6.4 Applicationinbatteries 134 5.7 Alternativehostmaterialstrategies 138 References 142 6 Outlook 154 References 158 Index 159 1 Polymer electrolyte materials and their role in batteries 1.1 Batterygrowth Thiscurrenteraisexperiencingatremendousgrowthintheinterestandapplication ofbatteries.Frombeinghouseholditemsboughtinsupermarkets,batteriesarerap- idlybecominglargerandlargerinsize,andtherebyalsomoreandmorecostlyand complextomanage.Thisisconnectedtotheworldclearlyenteringaperiodofelec- trification.Electromobilityofvehiclesfromscooterstoelectricflightsrequireshigh- performanceenergystorage,andintermittentenergysourcesfromsolarpanelsand windparksneedhigh-qualitystoragewithahighenergyefficiency.Withashortage inenergysupply,energystorageunitswithpoorconversionefficiencywillhavedif- ficultytocompetewithbatteries,wheretheenergyoutputislargelyequivalenttothe energyinput.Whilelarge-scalestorageinthegridandsmall-scalestorageinInternet- of-thingsdevicesare rapidly growing indemand, today’s exponentialgrowthinthe demandofbatteriesisprimarilydrivenbythetransportsector,andespeciallydueto the similarly exponential growth in electric vehicles (EV). This trend is foreseen to dominateduringthenextdecade[1]. For a high versatility of batteries, that is, to have the ability to use them in a wide range of products and applications, they need to be able to supply a vast amountofenergypergravimetricandvolumetricunit.Theseconceptsareknownas specificenergy(Whkg–1)orenergydensity(WhL–1).Thesameistrueforthepower density of batteries, equivalent to the energy delivered per unit of time and either weight or volume (W kg–1 or W L–1). Since batteries can be connected in series or parallelinanelectriccircuit,itisnotdifficulttoobtainahighenergyorpowerstor- age capability irrespective of battery chemistry, but if the energy density is low it will result in very big or bulky battery packs. Therefore, it is vital to maximize the energycontentpergravimetricandvolumetricunit,inparticularformobileapplica- tionwherethepenaltyisstrongforextraweightandvolume. The specific energy E of a battery is determined by two factors: the specific sp capacityQ/m(Ahkg–1)andthevoltageU(V): U×Q E = (1:1) sp m In a battery, where the released energy is determined by redox reactions taking place in the battery electrodes, the voltage describes the potential difference be- tweenthebatteryelectrodes–thedrivingforceforthebatteryreaction–whilethe specificcapacityisequivalenttohowmanytimesthiselectrochemicalreactioncan occur.Onecanmakeananalogywithdrivinginanailwithahammer:thevoltage https://doi.org/10.1515/9781501521140-001 2 1 Polymerelectrolytematerialsandtheirroleinbatteries correspondsto theforce of hittingthe nail, while the capacitycorresponds to how manytimesthenailishit. ThispartlyexplainswhytheLi-ionbattery(LIB)technologyhasbecomedominant amongsecondary(rechargeable)batteries.ItisrelativelysimpletofindLIBelectrode materialswithalargevoltagedifference,whilethesematerialscanalsostorealotof lithium,therebyprovidinghighvoltage–infact,thehighesttheoreticalvoltageofall elementsduetothelowreductionpotentialofLi–atthesametimeasprovidinghigh capacity.Moreover,thesmallsizeandlightweightofLi+ionleadstohigh-energy-den- sityelectrodematerialswhereitisrelativelyeasytofindhoststructureswheretheLi+ ionscanjumpinandoutduringbatterychargeanddischarge.This,inturn,leadsto batteries that can cycle for an extensive amount of cycles. Other commercial (lead– acid, nickel–cadmium, and nickel–metal hydride; see Fig. 1.1) and largely noncom- mercial (Na-ion, Mg-ion, Ca-ion, and Al-ion) battery chemistries often fail in one or several of these categories: compared to LIBs, they do not provide the same energy density or the same cycle life. LIBs therefore have, despite shortcomings interms of costandsafety,growntobecomeaveryusefulandversatilebatterytype. Fig.1.1:Gravimetricandvolumetricenergydensitiesforcommercialandnoncommercialbattery chemistries.IllustrationtakenfromtheBattery2030+roadmap“InventingtheSustainable BatteriesoftheFuture.ResearchNeedsandFutureActions.”

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.