ebook img

Polycyclic aromatic hydrocarbon processing in a hot gas PDF

0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polycyclic aromatic hydrocarbon processing in a hot gas

Astronomy&Astrophysicsmanuscriptno.11683˙v2 c ESO2011 (cid:13) January12,2011 Polycyclic aromatic hydrocarbon processing in a hot gas E.R.Micelotta1,2,A.P.Jones2,A.G.G.M.Tielens1,3 1 SterrewachtLeiden,LeidenUniversity,P.O.Box9513,2300RALeiden,TheNetherlands e-mail:[email protected] 2 Institutd’AstrophysiqueSpatiale,Universite´ParisSudandCNRS(UMR8617),91405Orsay,France 3 NASAAmesResearchCenter,MS245-3,MoffettField,CA94035,USA Received20January2009;accepted16October2009 1 1 ABSTRACT 0 2 Context.PAHsarethoughttobeaubiquitousandimportantdustcomponentoftheinterstellarmedium.However,theeffectsoftheir n immersioninahot(post-shock)gashaveneverbeforebeenfullyinvestigated. a Aims.WestudytheeffectsofenergeticionandelectroncollisionsonPAHsinthehotpost-shockgasbehindinterstellarshockwaves. J Methods.Wecalculatetheion-PAHandelectron-PAHnuclearandelectronicinteractions,abovethecarbonatomlossthreshold,in 0 Hiiregionsandinthehotpost-shockgasfortemperaturesrangingfrom103 108K. 1 Results.PAH destruction isdominated by Hecollisions at low temperature−s (T <3 104 K), and by electron collisionsat higher temperatures.SmallerPAHsaredestroyedfasterforT <106K,butthedestructionrate×sareroughlythesameforallPAHsathigher A] fteomunpdertaotubreesa.bTouhtetPhAouHsalnifdetyimeaersi,noardteernsuoofusmhaogtngitausde(nsHho≈rt0e.r0t1hacnmt−h3e,tTyp≈ic1a0l7lifKe)ti,mtyepoicfasluocfhtohbejceocrtso.nalgasingalacticoutflows,is G Conclusions.Inahotgas,PAHsareprincipallydestroyedbyelectroncollisionsandnotbytheabsorptionofX-rayphotonsfromthe hotgas.TheresultingerosionofPAHsoccursviaC lossfromtheperipheryofthemolecule,thuspreservingthearomaticstructure. 2 h. TheobservationofPAHemissionfromamilliondegree,ormore,gasisonlypossibleiftheemittingPAHsareablatedfromdense, p entrainedclumpsthathavenotyetbeenexposedtothefulleffectofthehotgas. - o Keywords.shockwaves–dust,extinction–ISM:jetsandoutflows r t s a 1. Introduction in the lifecycle of such species (Dweketal. 1996; Jonesetal. [ 1996). Themid-infraredspectralenergydistributionofthe generalin- 2 Observationally, there is little direct evidence for PAH v terstellarmediumofgalaxiesisdominatedbystrongandbroad emission unequivocally connected to the hot gas in super- 5 emission features at 3.3, 6.2, 7.7 and 11.3 µm. These fea- nova remnants. Reachetal. (2006) have identified four super- 9 tures are now univocally attributed to vibrational fluorescence nova remnants with IR colors that may indicate PAH emis- 5 of UV pumped, large ( 50 C-atoms) Polycyclic Aromatic 1 Hydrocarbon(PAHs)mol≃ecules.Theselargemoleculesarevery sion. Tappeetal. (2006) have detected spectral structure in the 2. abundant(3 10−7 bynumberrelativetoH-nuclei)andubiqui- emissioncharacteristicsofthesupernovaremnantN132Dinthe × Large Magellanic Cloud that they attribute to spectral features 1 tousintheISM(forarecentreviewseeTielens2008).Besides of PAHs with sizes of 4000 C-atoms. Bright 8 µm emission 9 largePAH molecules,thespectraalso revealevidenceforclus- ≃ has been observed by IRAC/Spitzer associated with the X-ray 0 tersofPAHs–containingsomehundredsofcarbonatoms–and : verysmallgrains( 30Å).Indeed,PAHsseemtorepresentthe emission from the stellar winds of the ionizing stars in the M v ≃ 17Hii region(Povichetal.2007).Likely,thisemissionisdue i extensionoftheinterstellardustsizedistributionintothemolec- X to PAHs – probably,in entrainedgasablated fromthe molecu- ulardomain(e.g.De´sertetal.1990;Draine&Li2001). lar clouds to the North and West of the stellar cluster. Finally, ar PAHmoleculesareanimportantcomponentoftheISM,for brightPAH emission hasbeen detectedassociated with the hot example,dominatingthephotoelectricheatingofneutralatomic gas of the galactic wind driven by the starburst in the nucleus gasand the ionizationbalance of molecularclouds. Small dust of the nearby irregular galaxy, M 82 (Engelbrachtetal. 2006; grainsand PAHs can also be importantagentsin cooling a hot Beira˜oetal.2008;Gallianoetal.2008). gas,at temperaturesabove 106 K (e.g.Dwek1987), through their interactions with therm∼al electrons and ions. The energy Electronandioninteractionswithdustandtheimplications transferredinelectronandioncollisionswiththedustisradiated of those interactions for the dust evolution and emission have asinfraredphotons.Theevolutionofdustinsuchhotgas(T > already been discussed in the literature (e.g. Draine&Salpeter 106K),e.g.,withinsupernovaremnantsandgalacticoutflows,i∼s 1979; Dwek 1987; Jonesetal. 1994; Dweketal. 1996; criticalindeterminingthedustemissionfromtheseregionsand Jonesetal.1996).Inthisworkweextendthisearlierworktothe thereforethecoolingofthehotgas.ThedestructionofPAHsand caseforPAHs,usingourstudyofPAHevolutionduetoionand smalldustgrainsinahotgasmayalsobeanimportantprocess electroninteractionsinshockwavesintheISM(Micelottaetal. 2009, hereafter MJT). Here we consider the fate of PAHs in thehotgasbehindfastnon-radiativeshocksandina hotgasin Sendoffprintrequeststo:E.R.Micelotta general. 2 E.R.Micelottaetal.:PAHprocessinginahotgas The aim of this paper is to study the PAH stability against ϑ electronandioncollisions(H,HeandC)inathermalgaswith α temperatureT intherange103–108K. The paper is organized as follows: Sect. 2 and Sect. 3 de- scribethetreatmentofionandelectroninteractionswithPAHs, R Sect.4illustratestheapplicationtoPAHprocessinginahotgas andSect.5presentsourresultsonPAHdestructionandlifetime. Theastrophysicalimplicationsarediscussedin Sect. 6 andour d conclusionssummarizedinSect.7. 2. IoninteractionwithPAHs 2.1.Electronicinteraction The ion – PAH collision can be described in terms of two simultaneous processes which can be treated separately (Lindhardetal. 1963): nuclear stopping or elastic energy loss Fig.1. The coordinate system adopted to calculate the energy andelectronicstoppingorinelasticenergyloss. transferredto a PAH via electronic excitation by ion collisions Thenuclearstoppingconsistsofa binarycollisionbetween andbyimpactingelectrons.Themoleculeismodeledasa disk theincomingion(projectile)andasingleatominthetargetma- with radius R and thickness d. The trajectory of the incoming terial.Acertainamountofenergywillbetransferreddirectlyto particle is identified by the angle ϑ, while the angle α corre- the targetatom, which will be ejected if the energytransferred spondstothediagonalofthedisk. is sufficient to overcome the threshold for atom removal. The physicsofthenuclearinteractionforaPAHtargetwaspresented inthecompanionpaper(MJT).Asummaryofthetheoryispro- is assumedto be thesphericallysymmetricjelliumshell calcu- videdinSect.2.2andweherepresenttheresultsofourcalcula- latedbyPuska&Nieminen(1993),whichcanbeapproximated tion. bythefollowingexpression(Hadjaretal.2001): In this paper we focuse on the electronic stopping, which consists of the interaction between the projectile and the elec- n =0.15 exp[ (r 6.6)2/2.7] (3) tronsofthetargetPAH,withasubsequentenergytransfertothe 0 − − wholemolecule.Theresultingelectronicexcitationenergywill wherer(inatomicunits,a.u.1)isthedistancefromthefullerene betransferredtothemolecularvibrationsofthePAHthroughra- center.Theelectrondensitydecaysoutsidetheshellandtoward diationlessprocesses(eg.,interconversion& intramolecularvi- thecenterinsuchawaythatthemajorcontributioncomesfrom brationalredistribution).Thevibrationallyexcitedmoleculewill theregionwith4<r<9. decaythrougheither(IR)photonemissionorthroughfragmen- Thesimilarityinπelectronicstructureandbondingallowsus tation(i.e.,H-atomorC H loss,wheren=0,1,2). 2 n toapplythisjelliummodelalsotoPAHs.However,thespherical NospecifictheorydescribestheenergytransfertoaPAHvia geometryis clearlynotappropriateforPAHs, which we model electronicexcitation,soweadoptthesameapproachdeveloped insteadasathickdiskanalogouslytothedistributionfromEq.3 by e.g. Schlatho¨lteretal. (1999) and Hadjaretal. (2001) who modelled electronic interactions in fullerene, C60. To calculate n =0.15 exp[ (x)2/2.7] (4) the energy transferred to a PAH, we treat the large number of 0 − delocalizedvalenceelectronsinthemoleculeasanelectrongas, where x is the coordinate along the thickness of the disk. This where the inelastic energy loss of traveling ions is due to long electrondensitypeaksatthecenterofthemoleculeandvanishes rangecouplingtoelectron-holepairs(Ferrell1979). outside,leadingtoathicknessd 4.31Å.TheradiusRofthe In the energy range we consider for this study, the energy ∼ disk is given by the usual expression for the radius of a PAH: transferredscaleslinearlywiththevelocityvoftheincidention a = R = 0.9 √(N ) Å, where N is the number of carbon andcanbedescribedintermofthestoppingpowerS,whichis PAH C C atoms in the molecule (Omont 1986). For a 50 C-atoms PAH, widelyusedinthetreatmentofion-solidcollisions.Thestopping R=6.36Å. powerrepresentstheenergylossperunitlengthandisdefinedas TocalculatetheenergytransferredfromEq.2,weadoptthe dT coordinatesystemshowninFig.1,wherethepathlengththrough S = = γ(rs)v (1) thePAH sisexpressedasafunctionofthecoordinate xandof ds − the angleϑ betweentheaxesofthe moleculeand thedirection where dT is the energy loss over the pathlength ds (Sigmund of the incomingion.In thisway foreach trajectorygivenby ϑ 1981). The total energy loss can then be obtained integrating thecorrespondingenergytransferredcanbecomputed.Wehave Eq.1 dx=ds cos ϑandtheelectrondensityisthengivenby n (s,ϑ)=0.15 exp[ (s cos ϑ)2/2.7] (5) Te = γ(rs)vds (2) 0 − Z The density parameter can be rewritten as r (s,ϑ) = s Thefrictioncoefficientγ(Puska&Nieminen1983)dependson 4πn (s,ϑ) −1/3 The friction coefficient γ has been calculated 1/3 3 0 thedensityparameterrs = 43πn0 − whichisafunctionofthe (cid:16) (cid:17) valenceelectron density n0(cid:16). The(cid:17)choice of the valence electron 1 Length(a.u.)=a0=0.529Å,Velocity(a.u.)=0.2√E(keV/amu), densityisadelicateissueforPAHs.Inthecaseoffullerene,this Energy(a.u.)=27.2116eV E.R.Micelottaetal.:PAHprocessinginahotgas 3 by Puska&Nieminen (1983) for variousprojectile ions and r Table 1. Analytical fit to the electron stopping power in solid s values.Itcanbeinterpolatedbytheexponentialfunction carbon. (r (s,ϑ) 1.5) γ(r )=Γ exp − s − (6) s 0 " R # S(E)=h log(1+aE)/f Eg + bEd + cEe 2 a b c d where Γ is the value of γ when r = 1.5. For hydrogen, he- 0 s liumandcarbonthefitparameterR2equals2.28,0.88and0.90, -0.000423375 -3.57429×10−11 -3.37861×10−7 -3.18688 respectively. e f g h Theenergytransferredisthengivenbythefollowingequa- tion -0.587928 -0.000232675 1.53851 1.41476 R/sinϑ T (ϑ)=27.2116 vγ(r )ds (7) e s Z R/sinϑ thermal electron energy of 10 keV, well below the relativis- − ∼ withγ(r )fromEq.6.Theconstant27.2116convertsthedimen- tic limitof 500keV. Undertheselow-energyconditions,with s ∼ sionsofT fromatomicunitstoeV.Foragivenvelocityofthe respecttotherelativisticregime,elasticcollisionsbetweenelec- e incidentparticle,thevalueofT willbemaximumforϑ = π/2 tronsandtargetnucleiarenoteffective.Theenergytransferoc- e (s = 2R, the longest pathlength) and minimum for ϑ = 0,π curs through inelastic interactions with target electrons (as for (s = d, the shortest pathlength).The deposited energyalso in- electronicexcitationbyimpactingions),whichleadtoacollec- creases with the pathlength across the molecule, and then will tiveexcitationofthemolecule,followedeventuallybydissocia- behigherforlargerPAHsimpactedunderaglancingcollision. tionorrelaxationthroughIRemission. The energy transferred determines the PAH dissociation Thecalculationoftheenergytransferredbysuch‘slow’elec- probabilityuponelectronicexcitation,whichisrequiredtoquan- tronsisinfactadelicatematter.Thetheorydevelopedunderthe tifythedestructioninducedbyinelasticenergylossinthehotgas firstBornapproximation(Bethe1930)canbeappliedonlytothe (seeSect.4). mostenergeticelectrons(aroundfewkeV)butisunsuitablefor therestofourrange.Atlowenergies(<10keV),wherethefirst Born approximation is no longer valid, the Mott elastic cross 2.2.Nuclearinteractionabovethreshold section must be used instead of the conventional Rutherford Inthepresentstudywehavetoconsidernotonlytheelectronic cross section (Mott&Massey 1949; Czyzewskietal. 1990). interactiondescribedabove,butthenuclearpartoftheioniccol- The Monte Carlo program CASINO (Hovingtonetal. 1997) lisionaswell.Thetheoryofnuclearinteractionabovethreshold computes the Mott cross sections in the simulation of electron hasbeendescribedindetailinMJT.Wesummarizehereforclar- interactions with various materials. Unfortunately the stopping ity the essential conceptsandthe equationswhichwill be used power dE/dx is not included in the program output. An em- inthefollowing. pirical expression for dE/dx has been proposed by Joy&Luo Forthenuclearinteractionweconsideronlycollisionsabove (1989),whichneverthelessisreliableonlydownto50eV,while threshold,i.e.collisionsabletotransfermorethantheminimum weareinterestedintheregionbetween10and50eVaswell. energyT requiredtoremoveaC-atomfromthePAH.Tocalcu- Wedecidedthustoderivetheelectronstoppingpowerfrom 0 late the PAH destructiondue to nuclearinteraction,we use the experimentalresults. Measurementsof the electronenergyloss rate of collisions above threshold between PAHs and ions in a inPAHsarenotavailableinourenergyrangeofinterest,sowe thermalgas,asgivenbyEq.30inMJT: usethemeasurementofdE/dxinsolidcarbonforelectronswith energybetween10eVand2keV(Joy1995).Thedatapointsare R = N 0.5χ n ∞F vσ(v) f(v,T)dv (8) wellfitted(towithinfew%)bythefollowingfunction: n,T C i H C Z v0 h log(1+aE) where f(v,T) is the Maxwellian velocity distribution function S(E)= (9) f Eg + bEd + cEe forion,i,inthegas,F istheCoulombiancorrectionfactor,σ(v) C isthenuclearinteractioncrosssectionperatomabovethreshold whereEistheelectronenergy(inkeV).Thevaluesofthefitting (Eq.22inMJT where E isthekineticenergycorrespondingto parametersarereportedinTable1.S(E)hasthesamefunctional v),andthefactor1/2takestheaveragingovertheorientationof formastheZBLreducedstoppingcrosssectionfornuclearin- thediskintoaccount. teraction (cf. Sect. 2.1 in MJT). The datapoints and the fitting For T0 we adopt a value of 7.5 eV (see discussion in MJT, functionareshowninthetoppanelofFig.2. Sect. 2.2.1). The kinetic energy required for the incoming ion The stoppingpower increases sharply at low electron ener- to transfer T0 is the critical energy E0. The lower integration gies,reachesitsmaximumat 0.1keV,anddecreasessmoothly limit v0 in Eq. 8 is the critical velocity corresponding to E0n, afterwards. Between 0.01 and∼0.1 keV a small variation of the which is the minimumkinetic energyfor the projectile to have energyoftheincidentelectronwilltranslateintoalargechange thenuclearinteractioncrosssectiondifferentfromzero(cf.Sect. inthetransferredenergyperunitlength.TheshapeofS(E)im- 2.2inMJT). plies that only those electrons with energies that fall in a well definedwindowwillefficientlytransferenergy,while electrons below 0.02 keV and above 2 keV are not expected to con- 3. ElectroncollisionswithPAHs ∼ ∼ tributesignificantlytoPAHexcitation. Fast electrons are abundant in a hot gas. Because of their low OncethestoppingpowerdE/dxisknown,wecancalculate mass, they can reach very high velocities with respect to the theenergytransferredbyanelectronofgivenenergywhentrav- ions, and hence high rates of potentially destructive collisions. elling throughthe PAH. We adoptthe same configurationused We consider gas temperaturesup to 108 K, correspondingto a forelectronicinteraction,showninFig.1.Thetrajectoryofthe 4 E.R.Micelottaetal.:PAHprocessinginahotgas 9 concernedwiththosecollisionsforwhichtheenergydeposition Joy 1995 isinexcessofthethresholdenergy(> 10eV)overapathlength 8 Fit of 10 20 Å. Or to phrase it diff∼erently, at low energies a ev / Å) 67 Carbon: S(E) mPAuH≃chs)lairng−eorrdpearthtolentrgatnhsfhearsstuoffibceietrnatveenrseerdgy(tthoancaiussreelfervaagnmtefonr- er ( 5 tation. Then, since we know E0, we can calculate F(E0), and w F(E ) isthengivenby F(E ) l(ϑ).We alsocalculated E asa g po 4 func1tion of F(E). We can t0he−n determine E1 from F(E1) and, pin 3 finally,TelecfromEq.11. p o 2 St 1 4. PAHdestruction 0 0.01 0.1 1 10 4.1.Dissociationprobability Electron energy (keV) Ion or electronic collisions (or UV photon absorption) can 90 leavethemoleculeinternally(electronically)excitedwithanen- ergyT .Internalconversiontransfersthisenergytovibrational 80 F(E) = integral of dE/S(E) E modes,andthemoleculecanthenrelaxthroughdissociationor 70 IRemission.Thesetwo processesarein competitionwitheach 60 other. To quantifythe PAH destructiondue to ion and electron Å) 50 collisions we need to determine the probability of dissociation F(E) ( 40 rathIenrtthhaenmIiRcreomcaisnsoinoinc.aldescriptionofaPAH,theinternalen- 30 ergy,T ,is(approximately)relatedtotheeffectivetemperature E ofthesystem,T ,bythefollowingequation 20 eff 10 T (eV) 0.4 E (eV) T 2000 e 1 0.2 0 (12) 0 eff ≃ N ! − T (eV)! 0 50 100 150 200 C e where E isthebindingenergyofthefragment(Tielens2005). Electron energy (eV) 0 This effective temperature includes a correction for the finite Fig.2.Toppanel-ExperimentalmeasurementofdE/dxinsolid size of the heat bath in the PAH. The temperature T is de- eff carbonforelectronswithenergybetween10eVand2keV,from finedthroughtheunimoleculardissociationrate,k ,writtenin diss Joy (1995), overlaid with the fitting function S(E) (solid line). Arrheniusform Bottom panel- Integral F calculated numericallyas a function oftheenergyoftheincidentelectron,E. k =k (T ) exp[ E /kT ] (13) diss 0 eff 0 eff − where k = 8.617 10 5 eV/K is the Boltzmann’s constant (cf. − incoming electron is defined by its impact angle ϑ and by the × Tielens2005). geometryofthemolecule. Considerthecompetitionbetweenphotonemissionatarate BecausethethicknessofthePAHisnon-negligiblewithre- k (photons s 1) and dissociation at a rate of k (fragments IR − diss specttoitsradius,thestoppingpowerisnotconstantalongthe s 1). For simplicity, we will assume that all photons have the − electron path. To calculate the energy loss we thus follow the same energy, ∆ε. The probability that the PAH will fragment proceduredescribedbelow.WehavedE/dx= S(E),then betweenthenthand(n+1)thphotonemissionisgivenby − dE dx= = F(E) (10) n Z −Z S(E) ϕ = p (1 p) (14) n n+1 i − Thus, x x = [F(E ) F(E )] where x x = l(ϑ) is Yi=0 1 0 1 0 1 o − − − − the maximumpathlengththroughthe PAH. Frominspectionof The (un-normalized) probability per step p is given by p = i i Fig. 1, one can see that, if tan(ϑ) < tan(α), l(ϑ) = d/ cosϑ, k (E)/k (E)andE =(T i ∆ε),withT theinitialinternal | | | | diss i IR i i E E otherwise l(ϑ) = 2R/ sinϑ. E is the initial energy of the im- − × 0 energy,coincidentwiththeenergytransferredintothePAH.The | | pactingelectron,E istheelectronenergyafterhavingtravelled 1 totaldissociationprobabilityisthengivenby the distance l(ϑ), which needs to be calculated so we can then determinetheenergytransferredtothePAH nmax P(n )= ϕ (15) max n T (ϑ)= E E (11) elec 0− 1 Xn=0 The integral F, calculated numerically as a function of E, is If we ignore the dependence of k on E, the temperatures IR i showninthebottompanelofFig.2.Werecognizethatforlow (Eq.12)dropapproximatelybyT/T = (1 0.4∆ε/T ).The i i 1 E energies, F rises sharply, reflecting the small energy stopping probabilityratioisapproximately: − − powerinthisenergyrange(cf.,toppanelinFig.2).Forhigher energies,F(E)risesslowly(andlinearly)withincreasingenergy p E ∆ε i =exp 0 0.4 (16) overthe relevantenergyrange. We note that the initialrise de- p " kT ! ε # i 1 i 1 pendsstronglyonthe (uncertain)details ofthe stoppingpower − − at low energies.However,it is of no consequencein ourdeter- These equationsbecome very difficult to solve in closed form. mination of the amount of energy deposited since we are only However, let us just assume that p does not vary and is given i E.R.Micelottaetal.:PAHprocessinginahotgas 5 by p .Thenwehavethetotalun-normalizeddissociationprob- av ability k exp[ E /kT ] P(n )=(n +1)p = 0 − 0 av (17) max max av k /(n +1) IR max whereweadoptk =100photonss 1(Jochimsetal.1994),and IR − theaveragetemperatureischosenasthegeometricmean T = T T (18) av 0× nmax p whereT andT aretheeffectivetemperaturescorresponding 0 nmax toT (initialinternalenergyequaltotheenergytransferred)and E (T n ∆ε)(internalenergyaftertheemissionofn pho- E max max − × tons).FortheenergyoftheemittedIRphotonweadoptthevalue ∆ε=0.16eV,correspondingtoatypicalCCmode. If the p’s were truly constant, then n would be n = i max max (T E )/∆ε.However,theydodecrease.So,ratherwetakeit E 0 − tobewhentheprobabilityperstephasdroppedbyafactor10. Adirectcomparisonbetweenthefullevaluationandthissimple Fig.3.TheappearanceenergyasafunctionofthenumberofC- approximationyieldsnmax=10,20and40forNC=50,100and atomsinthePAH.Theredlineprovidesafittotheexperimental 200respectively.The quantitynmax scales with NC because for data using Eq. 13 for an assumed pre-exponential factor k0 = a constant temperature (eg., required to get the dissociation to 1.4 1016 and a (fitted) Arrhenius energy, E = 3.65 eV. The 0 occur),theinternalenergyhastoscalewithNC.Asaresult,the data×pointsaretheexperimentalresultsofJochimsetal.(1994). numberofphotonstobeemittedalsohastoscalewithNC. ThebluelineistheappearanceenergyforISMconditions(eg., The choice of the values to adopt for k0 and E0 is a deli- atarateof1s−1). cate matter. In the laboratory the dissociation of highly vibra- tionallyexcitedPAHsistypicallymeasuredontimescalesof1- 100µsbecauseeitherthemoleculesarecollisionallyde-excited apparent.Indeed,thiskineticshiftcanamounttotensofeVfor byambientgasorthemoleculeshaveleftthemeasurementzone relevantPAHs. of the apparatus. In contrast, in the ISM, the competing relax- The derived Arrhenius energy of 3.65 eV is small com- ation channelis throughIR emission and occurstypicallyon a paredtothebindingenergyofaC H groupinaPAH (4.2eV, timescaleof1s.Asisalwaysthecaseforreactionscharacterized 2 2 Ling&Lifshitz 1998). This is a well known problem in statis- byanArrheniuslaw,alongertimescaleimpliesthattheinternal tical unimolecular dissociation theories (cf. Tielens 2008). We excitationenergycan be lower. This kinetic shiftis well estab- emphasizethattheseresultsshowthatatypicalinterstellarPAH lished experimentally and can amount to many eV. Moreover, with a size of 50 C-atoms would have a dissociation probabil- only small PAHs (up to 24 C-atoms) have been measured in ity of 1/2afterabsorptionofanFUV photonof 12eV(cf. the laboratory and the derived rates have to be extrapolated to ∼ ∼ Fig.3).Hence,PAHswouldberapidlylostintheISMthrough muchlarger( 50C-atoms)PAHsthatareastrophysicallyrele- ∼ photolysis. It seems that the experiments on small PAHs can- vant.Inan astrophysicalcontext,theunimoleculardissociation not be readily extrapolated to larger, astrophysically relevant ofhighlyvibrationallyexcitedPAHs–pumpedbyFUVphotons PAHs. Possibly, this is because experimentally C H loss has –hasbeenstudiedexperimentallybyJochimsetal.(1994)and 2 2 only been observedfor verysmall catacondensedPAHs with a furtheranalyzedbyLePageetal.(2001).Here,wewillmodify very open carbon skeleton (e.g., naphthalene, anthracene, and theanalysisofTielens(2005)forH-lossbyUVpumpedPAHsto phenanthrene) which are likely much more prone to dissocia- determinetheparametersforcarbonloss.Thedissociationrate– tionthantheastrophysicallymorerelevantpericondensedPAHs. givenbyEq.13–isgovernedbytwofactors,thepre-exponential Indeed, the small pericondensed PAHs, pyrene and coronene factork andtheenergyE .Thepre-exponentialfactorisgiven 0 0 did not show any dissociation on the experimental timescales by (Jochimsetal.1994;Ling&Lifshitz1998). kT ∆S Turningtheproblemaround,wecandeterminetheArrhenius k = eff exp 1 + (19) 0 energy,E ,asafunctionofthedissociationprobabilitybyadopt- h " R # 0 ingan IRrelaxationrate of1 s 1 andaninternalexcitationen- − where ∆S is the entropy change which we set equal to 10 cal ergyequaltoatypicalFUVphotonenergy(12eV).Theresults mole 1 (Ling&Lifshitz 1998). We will ignore the weak tem- fora50C-atomPAHareshowninFig4.Ifweadoptalifetime, − peraturedependenceofk inthefollowingandadopt1.4 1016 τ , of 100millionyears,a PAH in thediffuseISM will have 0 PAH s 1. The parameter E can now be determinedfroma fit×to the typicallysurvivedsomeσ N τ = 2 106N UVphoton − 0 uv uv PAH C experimentsbyJochimsetal.(1994)onsmallPAHs.Theseex- absorptions(withσ =7 10 18cm2,N ×=108photonscm 2 uv − uv − perimentsmeasuredtheappearanceenergyE –theinternalen- s 1inaHabingfield).Henc×e,ifthelifetimeofthesmallestPAHs ap − ergy at which noticable dissociation of the PAH first occurred. intheISM(eg.,with N 50C-atom)issetbyphotodissocia- C The rate at which this happened was assumed to be 104 s 1. tionoftheC-skeleton,the≃probabilityfordissociationhastobe − Adopting this value, the appearance energy can be estimated 5 10 7 correspondingto an Arrheniusenergyof 4.6eV (Fig. − fromEq.13.TheresultsofouranalysisareshowninFig.3.The 4)×.We notethatinaPDRthephotonfluxishigher(G 105) 0 internalenergyrequiredtodissociateaPAHdependsstronglyon whilethelifetime (ofthePDR) issmaller (τ 3 1∼04 yr), PDR thePAHsize.Likewisethekineticshiftassociatedwiththerel- resultingin6 107UVphotonsabsorbedoverthe≃PDR×lifetime. × evanttimescaleatwhichtheexperimentwasperformedisquite SurvivalofPAHsinaPDRenvironmentwouldthereforerequire 6 E.R.Micelottaetal.:PAHprocessinginahotgas both target and projectiles are charged, and thus the collision crosssectioncouldbeenhancedordiminisheddependingonthe chargesign. The electron coulombianfactor is always equalto 1 (to within 1%) because electrons have low mass. For a fixed temperaturetheyreachhighervelocities,withrespecttotheions, andarethuslesssensitivetotheeffectsoftheCoulombianfield. ThequantityϑistheanglebetweentheverticalaxesofthePAH andthedirectionoftheprojectile.Thetermσ isthegeometrical g crosssectionseenbyanincidentparticlewithdirectiondefined by ϑ. The PAH is modelled as a thick disk with radius R and thicknessd.Thecrosssectionisthengivenby σ =πR2 cosϑ + 2Rd sinϑ (22) g which reduces to σ = πR2 for ϑ = 0 (face-on impact) and to g σ = 2Rd forϑ = π/2(edge-onimpact).Theterm P(v,ϑ)rep- g resentsthetotalprobabilityfordissociationuponelectroncolli- sionsandelectronicexcitation,foraparticlewithvelocityv PAH and incoming direction ϑ. It was calculated from Eq. 17 using Fig.4.Theprobabilityfordissociationofa50C-atomPAHex- the appropriatedvalue of the energytransferred:T for elec- citedby10eVasafunctionoftheArrheniusenergy,E . elec 0 trons(Eq.11)andT forelectronicexcitation(Eq.7) e Weareconsideringahotgasandthereforeweareinterested inthethermalcollisionrate,givenby asomewhatlargerE (oralternatively,onlyslightlylargerPAHs 0 couldsurviveinsuchanenvironment). We note that the binding energy of a C2H2 group to small Re,T = ∞Re(v) f(v,T)dv (23) Z PAHsisestimatedtobe4.2eVandisprobablysomewhatlarger v0,e for a 50 C-atom condensed PAH. Loss of pure carbon, on the wherev istheelectron/ionvelocitycorrespondingtotheelec- 0,e other hand, requires an energy of 7.5 eV, close to the bind- tronicdissociationenergyE .ThetemperatureT isthesamefor 0 ing energy of C to graphite. Loss of C2 from fullerenes has a both ions and electrons, but these latter will reach much larger measuredE0 of9.5 0.1eV(Tomitaetal.2001).Theselatter velocities. From Eq. 21 we then expect to find a significantly ± twounimoleculardissociationchannelsareforallpracticalpur- highercollisionratewithrespecttotheioncase. posesclosedunderinterstellarconditions.Finally,likely,H-loss will be the dominant destruction loss channel for large PAHs (E = 3.3 eV), leading to rapid loss of all H’s (LePageetal. 5. Results 0 2001; Tielens 2005). The resulting pure C-skeleton may then 5.1.PAHdestructioninahotgas isomerize to much more stable carbon clusters, in particular fullerenes,andthismaybethedominant‘loss’channelforinter- To describe the destructive effects on PAHs of collisions with stellarPAHs(cf.Tielens2008, andreferencestherein).Itisclear ionsi(i= H,He, C) andelectronsin a thermalgaswe haveto that there are many uncertainties in the chemical destruction evaluatetherateconstantforcarbonatomloss. routesofinterstellarPAHsandthatthesecanonlybeaddressed For all processes the rate constant J is defined by the ratio by dedicated experimental studies. For now, in our analysis of J = R /n , where R is the thermal collision rate appropriate T H T the unimoleculardissociationof PAHs –excitedbyelectronor fornuclearandelectronicexcitationandelectroncollisions(cf. ioncollisions–wewilladoptE0 = 4.6eVasastandardvalue. Eq. 8 and 23), and nH is the density of hydrogen nuclei. For WewillhoweveralsoexaminetheeffectsofadoptingE0 =3.65 electronicandelectroninteractionstheratemustbemultiplyied eV(eg., p=1/2)andE0 =5.6eV(eg., p=3 10−12). byafactorof2,totakeintoaccountthefactthateachcollision × leadstothelossoftwocarbonatoms. Theelectron,nuclearandelectronicrateconstantsforthree 4.2.Collisionrate PAH sizes (Nc = 50, 100 and 200 C-atom) are shown in Fig. Once the dissociation probability is determined, we can calcu- 5 as a function of the gas temperature. We assume for the nu- late the destructionratethroughelectronicexcitationfollowing clearthresholdenergyT thevalueof7.5eV(MJT),andforthe 0 electron or ion collision. Adopting the configuration shown in electronicdissociationenergythevalue4.58eV(Sect.4.1). Fig.1,thedestructionrateisgivenby Forthenuclearinteraction,thethresholdenergyT isinde- 0 pendentfromthePAHsize,sothethreecurvesstartatthesame 1 R =vχn F dΩσ (ϑ)P(v,ϑ) (20) temperature (not shown in the plot). The small separation be- e H C 2πZ g tweenthecurvesisduetothefactthatthePAH‘surfacearea’– andhencetherateconstant–scaleslinearlywith N , therefore with Ω = sinϑdϑdϕ, ϕ running from 0 to 2π and ϑ from 0 to C J ishigherforbiggerPAHs. π/2.Eq.20canbere-writtenas For nuclear (and electronic) interactions, the rate constants π/2 decrease from hydrogen to carbon because of the lower abun- R =vχn F σ (ϑ)P(v,ϑ) sinϑdϑ (21) danceoftheheavierprojectileswithrespecttohydrogen(H:He e H C g Zϑ=0 :C=1:0.1:10 4).Ontheotherhand,thenuclearcurvesshift − The term v is the velocity of the incident particle, χ is the toward lower temperatures from lighter to heavier projectiles. ion/electron relative abundance in the gas, and F is the This is the reflection of the fact that the critical energy of the C Coulombian correction factor, taking into account the fact that particle,requiredtotransferthethresholdenergyT0,decreases E.R.Micelottaetal.:PAHprocessinginahotgas 7 10−2 10−4 Nc = 50 Electronic ) Nc = 100 −1s 10−6 NNcc == 2 0500 Nuclear 3m 10−8 Nc = 100 Nc = 200 c Nc = 50 ( 10−10 Nc = 100 nt Nc = 200 a 10−12 st ELECTRONS on 10−14 C e 10−16 Electrons −−> PAH t a R 10−18 Hydrogen −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) 10−2 10−4 Nc = 50 Electronic ) Nc = 100 −1s 10−6 NNcc == 2 0500 Nuclear 3m 10−8 NNcc == 120000 c Nc = 50 ( 10−10 Nc = 100 nt Nc = 200 a 10−12 st ELECTRONS on 10−14 C e 10−16 Electrons −−> PAH t a R 10−18 Helium −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) 10−2 10−4 Nc = 50 Electronic ) Nc = 100 −1s 10−6 NNcc == 2 0500 Nuclear 3m 10−8 NNcc == 120000 c Nc = 50 ( 10−10 Nc = 100 nt Nc = 200 a 10−12 st ELECTRONS on 10−14 C e 10−16 Electrons −−> PAH t a R 10−18 Carbon −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) Fig.5.Nuclear(dashedlines),electronic(solidlines)andelectron(dashed-dottedlines)rateconstantforPAHcarbonatomlossdue to collisions with H, He, C andelectronsin a thermalgas. The rate constantsare calculated as a functionof the gastemperature forthreePAHsizesN =50,100,200C-atoms,assumingthenuclearthresholdenergyT =7.5eVandtheelectronicdissociation C 0 energyE =4.58eV. 0 8 E.R.Micelottaetal.:PAHprocessinginahotgas 10−2 10−4 Nc = 50 Ionic ) Nc = 100 −1 10−6 Nc = 200 s Nc = 50 ELECTRONS 3m 10−8 Nc = 100 Nc = 200 c ( 10−10 t n a 10−12 t s on 10−14 C e 10−16 Electrons −−> PAH t a R 10−18 Hydrogen −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) 10−2 10−4 Nc = 50 Ionic ) Nc = 100 −1 10−6 Nc = 200 s Nc = 50 ELECTRONS 3m 10−8 NNcc == 120000 c ( 10−10 t n a 10−12 t s on 10−14 C e 10−16 Electrons −−> PAH t a R 10−18 Helium −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) 10−2 10−4 Nc = 50 Ionic ) Nc = 100 −1 10−6 Nc = 200 s Nc = 50 ELECTRONS 3m 10−8 NNcc == 120000 c ( 10−10 t n a 10−12 t s on 10−14 C e 10−16 Electrons −−> PAH t a R 10−18 Carbon −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) Fig.6. Analytical fits to the calculated rate constants shown in Fig. 5. The ‘Ionic’ curve is the fit to the sum of the nuclear and electronicrateconstants,thusrepresentsthetotalcontributionfromioncollisionstoPAHdestruction. E.R.Micelottaetal.:PAHprocessinginahotgas 9 withincreasingmassoftheprojectileitself.Then,acarbonatom thefittingparametersarereportedinTable2.Toprovideanex- withatemperatureof 4 103Kishotenoughtotransfertheen- ampleoftheaccuracyofourfittingprocedure,Fig.7showsthe ∼ × ergyrequiredforatomremovalvianuclearinteraction,whereas comparisonbetweenthe calculatedrate constantandthecorre- for hydrogena temperatureof at least 104 K is necessary. The spondinganalyticalfit,forelectronsandheliumimpactingona almost-constantbehaviouraftertheinitialrisereflectsthelarge 50 C-atom PAH. The He fit is overthe sum of the nuclear and maximum observed in the nuclear cross section (cf. Fig. 2 in electronicrateconstants.Theaveragefittingdiscrepancyis 15 ∼ MJT). %andthefitsarethereforewellwithinanyuncertaintiesinthe ThedissociationprobabilityP(n )(Eq.17)dependsonthe method. max bindingenergyofthefragmentE ,onthePAHsize N andon Fig. 8 shows the comparison between the carbon loss rate 0 C theenergytransferred(throughT ),whichinturnsdependson constants for a very big PAH, N = 1000, and a 50 C-atom av C theinitialenergy(velocity)ofthe projectile.Forathermaldis- molecule.WeassumeT =7.5eVandE =4.6eV.Becauseof 0 0 tribution,thislatterwillbedeterminedbythegastemperatureT. the decrease of the dissociationprobabilitywhen the PAH size The electronic rate constant curves for the different PAH increases,asexpected,theelectronandelectronicrateconstants sizesarewellseparatedatthelowesttemperatures.Thisreflects arestronglysuppressed,andbothcurvesshifttowardhighertem- the fact that, for a fixed value of the transferred energy and of peratures.Indeed,forsuchabigPAH,amuchhigherinternalen- theelectronicdissociationenergyE ,thedissociationprobabil- ergyisrequiredtoreachtheinternaltemperaturewheredissocia- 0 ity decreases for increasing N because either more energy is tionsetsin.Ontheotherhand,thenuclearrateconstantincreases C requiredinthebondthathastobebrokenorbecausetheenergy linearlywiththePAHsize.Asaresult,fora1000carbonatoms is spread over more vibrational modes and hence the internal PAH, the nuclearinteractionisthe dominant(andefficient)de- excitationtemperatureislower.Ontheotherhand,themoreen- struction mechanism up to T 2 107 K. In conclusion, elec- ∼ × ergythatisdepositedintothePAH,thehigheristhedissociation trons are responsible for the destruction of small/medium size probability.Theenergytransferredviaelectronicexcitation(and PAH,whileforbigmoleculesthisroleistakenbyions. thenT )increaseswiththeenergyoftheprojectileuptoamax- AsmentionedattheendofSect.4.1,weexaminedtheeffects av imumvalue,correspondingtoanincidentenergyof 100keVfor ofadoptingdifferentvaluesfortheArrheniusenergy,E =3.65 0 H(andhigherformoremassiveparticles),anddecreasesbeyond and 5.6 eV, lower and higher, respectively, than our canonical thatforhigherenergies.Theenergycontentofathermalgasat value 4.6 eV. The results are shown in Fig. 9. The dissociation T =108 Kis 9keV,thus,inthetemperaturerangeconsidered probabilitydecreasesforincreasingE ,becausemoreenergyis 0 ∼ in this study,the energytransferredincreaseswith temperature requiredinthebondthathastobebroken.Hence,asexpected, (energy)andhencethedissociationprobabilityincreasesaswell. both the electron and electronic rate constants decrease in ab- Thisisthebasisforthemonotonicriseoftheelectronicratecon- solutevalueandshifttowardhighesttemperatures.Inparticular stant.Aftertheinitialseparation,thethreecurvesconverge,be- the electronicthermalshiftis verypronounced,indicatinghow causetheriseinthetransferredenergycompensatestheeffectof sensitivethisprocessiswithrespecttotheassumedE .Avaria- 0 increasingN . tionintheadoptedelectronicexcitationenergytranslatesintoa C AsdiscussedinSect.3,theenergytransferredbyimpacting significantvariationoftherateconstant,reemphasizingtheim- electronsrisessharplyforenergiesinexcessof10eV,peaksat portanceofexperimentalstudiesofthiscriticalenergy. ∼ 100eVanddecreasesmoreslowlydownto10keV.Thisresults inadissociationprobabilityshapedasastepfunction:for10eV < v < 4 keV, P(n ) jumpsfromvaluesclose to zero up to 1. 5.2.PAHlifetime max ∼Thes∼elimitingenergiesapplytoa50C-atomPAH;forNC=200 Underthe effectof electronand ion collisionsin a hotgas, the thewidthofthestepissmaller(100eV<v<1keV),duetothe number of carbon atoms in a PAH molecule varies with time. factthatforabiggerPAHmoreenergy∼has∼tobetransferredfor Afteratimet,thisnumberis dissociation.Thisbehaviourisreflectedintheshapeoftheelec- tronrateconstant,whereasteepriseisfollowedbyamaximum, NC(t)= NC(0)exp[ t/τ0] (25) − whichisemphasisedbythelogarithmicscale usedfortheplot. andthenumberofcarbonatomsejectedfromthisPAHis Asexpected,theelectronrateconstantovercomestheelectronic one, exceptfor the highestgas temperatures.This results from F (t)= 1 exp[ t/τ ] (26) L 0 thefactthat,foragiventemperature,electronscanreachhigher − − (cid:0) (cid:1) velocitieswithrespecttotheions(cf.Eq.21and23). Thequantityτ0isthetimeconstantappropriateforelectron,nu- Tosummarize,fromFig.5wecaninferthat,accordingtoour clearandelectronicinteraction,givenby model,thedestructionprocessisdominatedbynuclearinterac- N N tionwithheliumatlowtemperatures(below 3 104K),andby τ = C = C (27) 0 electron collisions abovethis value. Small P∼AH×s are easier de- (2)RT JnH/e stroyedthanbigonesfortemperaturesbelow 106K,whilethe whereR and J are thethermalcollision rate andthe rate con- ∼ T differenceinthedestructionlevelreducessignificantlyforhotter stant for electrons, nuclear and electronic interactions respec- gas. tively, and n is the hydrogen/electrondensity. For electrons H/e Thecalculatedrateconstants,showninFig.5,arewellfitted andelectronicexcitation,theratemustbemultipliyedbyafactor bythefunctiong(T)=10f(log(T)),where f(T)isapolynomialof of 2, because each interaction leads to the removalof two car- order5 bon atomsfrom the PAH. The nuclearrate scales linearly with f(T)=a+bT +cT2+dT3+eT4+ f T5 (24) NC, hence the correspondingfractionalcarbon atom loss FL is independentofPAHsize. ForeachPAHsizeweprovidethefittotheelectronrateconstant; For any given incoming ion and fixed PAH size N , F is C L fortheions,thefitisoverthesumofthenuclearandelectronic univocallydeterminedbythehydrogen/electrondensityn and H/e rateconstants,inordertoprovideanestimateoftheglobalcon- thegastemperatureT.WeassumethataPAHisdestroyedafter tributionfromioniccollisions.ThefitsareshowninFig.6,and the ejection of 2/3 of the carbon atoms initially present in the 10 E.R.Micelottaetal.:PAHprocessinginahotgas 10−2 10−4 He (Data, Nuclear) ) He (Data, Electronic) −1 10−6 He (Fit) s ELECTRONS (Data) 3m 10−8 ELECTRONS (Fit) c ( 10−10 t n a 10−12 t s on 10−14 Nc = 50 C e 10−16 Electrons −−> PAH t a R 10−18 Helium −−> PAH 10−20 103 104 105 106 107 108 Temperature (K) Fig.7.Calculatedrateconstantsforelectronsandheliumimpactingona50C-atomPAH,overlaidarethecorrespondinganalytical fits.TheHefitisforthesumofthenuclearandelectronicrateconstants.Theaveragediscrepancyis 15%. ∼ Table2.AnalyticalfitparametersforthePAHcarbonatomlossrateconstant,calculatedforelectronandioncollisions. Fittingfunction f(T)=a+bT +cT2+dT3+eT4+ fT5 a b c d e f Electrons 2136.83 1632.17 -499.822 76.4347 -5.82964 0.177174 H -1896.69 1480.8 -462.733 71.8957 -5.54719 0.169996 N =50 He -971.448 770.259 -245.561 38.8995 -3.05787 0.0954303 C C -704.392 551.313 -175.063 27.6506 -2.16871 0.0675643 Electrons -2255.38 1681.45 -503.451 75.4339 -5.64956 0.168959 H -1645.64 1257.06 -384.309 58.4103 -4.41007 0.132356 N =100 He -945.901 747.921 -237.984 37.6808 -2.96613 0.0928852 C C -711.244 558.48 -177.983 28.2547 -2.23145 0.0701374 Electrons -2234.37 1597.71 -459.647 66.332 -4.79841 0.139019 H -1473.64 1109.01 -334.292 50.1417 -3.74133 0.111164 N =200 He -963.188 765.639 -245.054 39.0745 -3.10123 0.0980047 C C -738.791 584.928 -187.884 30.0819 -2.39748 0.0760639 molecule.Thisoccursafterthetimeτ (Eq.27)whichweadopt InM82,PAHsarecompletelydestroyedbyelectrons,even 0 asthePAH lifetimeagainstelectronandionbombardmentina for the largerPAH, before electronic and nuclear contributions gaswithgivendensityandtemperature. starttoberelevant.Theelectronandelectronicfractionallosses Table 3 summarizesrelevantdata andPAH lifetime, τ , for decrease with PAH size, thus bigger molecules can survive 0 fourobjectscharacterizedbywarm-to-hotgas,X-rayemission, longer,whilethenuclearlossisindependentofNC.Thedestruc- and(bright)IRemission features.The lifetime hasbeen calcu- tiontimescale isveryshort:afteronethousandyearsthe PAHs latedforPAHswithN =200.τ (ref)hasbeenevaluatedadopt- shouldhavecompletelydisappeared. C 0 ingourreferencevaluesfortheinteractionparameters,E =4.6 In Orion the situation is reversed. At the temperature con- 0 eVandT =7.5eV,τ (min)correspondstotheminimumvalues sideredforthisobject,electronsandelectronicexcitationdonot 0 0 E = 3.65 eV and T = 4.6 eV, and τ (max) to the maximum contributetoPAHerosion(cf.Fig.5).Thedamageiscausedby 0 0 0 valuesE =5.6eVandT =15eV.τ isthelifetimeofthe nuclearinteractionduetoHecollisions,withamarginalcontri- 0 0 object object. butionfromcarbonbecauseoflowabundance,andthetimescale Clearly, PAHs or relatedlargerspeciescan survivein these ismuchlarger:onlyafter10millionyearsthePAHdestruction environments.Fig. 10 showsthe fractionalC-atom loss, due to becomesrelevant.Ofcourse,wehavenotevaluatedthedestruc- electronandion(H+He+C)collisions,fortwowidelydiffer- tion of PAHs by H-ionizing photons in the Orion Hii region, entobjects:the OrionNebula (M 42)andthe M 82 galaxy(cf. whichisexpectedtobeveryimportant. Table 3). The famousOrion Nebula is an Hii region with high The young ( 2500 yr) supernova remnant, N132D, in density(n =104cm 3)andlowtemperature(T =7000K)gas, the Large Magel≃lanic Clouds has been studied in detail at H − whileM82isastarburstgalaxy,whichshowsoutsidethegalac- IR, optical, UV, and X-ray wavelengths (Morseetal. 1995; tic plane, a spectacular bipolar outflow of hot and tenuous gas Tappeetal.2006).ASpitzer/IRSspectrumoftheSouthernrim (n =0.013cm 3,T =5.8 106K). shows evidence for the 15-20 µm plateau – often attributed H − ×

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.