ebook img

Polychaetes of Antarctic sublittoral in the proglacial zone PDF

30 Pages·2004·0.29 MB·English
by  SicinskiJ.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polychaetes of Antarctic sublittoral in the proglacial zone

vol. 25, no. 1, pp. 67–96, 2004 Polychaetes of Antarctic sublittoral in the proglacial zone (King George Island, South Shetland Islands) Jacek SICIŃSKI Zakład Biologii Polarnej i Oceanobiologii, Uniwersytet Łódzki ul. Banacha 12/16, 90−237 Łódź, Poland <[email protected]> ABSTRACT:NinetyeightpolychaetespecieswerefoundintheshallowsublittoralofAd− miralty Bay. The most abundant were Leitoscoloplos kerguelensis, Tauberia gracilis, Ophelinasyringopyge,Rhodineintermedia,Tharyxcincinnatus,Aricidea(Acesta)strel− zovi, Apistobranchus sp.,Cirrophorusbrevicirratusand Microspio moorei. Meanabun− danceofpolychaeteswasestimatedat120ind./0.1m2.Asaresultofclusteranalysisseveral polychaeteassemblagesweredistinguished.Thehighlyspecificassemblagewithtwochar− acteristicspecies,ScoloplosmarginatusandTravisiakerguelensis,fromshallowareaswith sandy bottom situated far from glaciers; a distincly specific assemblage with Apisto− branchussp.frompoorlysortedsedimentsinthebottomareassituatedontheslopesatthe baseofsteeprubbleshores;therichestandmostdiverse,highlyspecificpolychaeteassem− blagefromthecentralbasinofthebaywithTauberiagracilisasthemostcharacteristicspe− cies,aswellastwoassemblagesfromthebottomareasneighbouringglaciersandinflu− enced by the intensive enrichment of very small grain−sized sediments with Ophelina cylindricaudata and Tharyx cincinnatus. Clear assemblages’ arrangement was observed alongthegradient:sand,siltysand,silttowardsclaysilt.Otherimportantfactors,support− ingtheproposedclassificationofassemblagesandtheircharacter,includethesortingcoef− ficientofthesediment(So)aswellastheslopeofthebottom.Thebetween−habitatdiversity of polychaete fauna is strongly connected with the phenomena occurring in the neighbouring terrestrial coastal areas. Key words: Antarctica, Polychaeta, sublittoral, bottom sediments. Introduction TheecosystemoftheAntarcticshelfandcoastalzonehasrecentlybecomethe object of research recommended by the Scientific Committee of Antarctic Re− search.Thequestionconcerningthenatureandimportanceofmutualimpactsbe− tweenlandandseaisoneofthemostessentialissues.Sedimentationanditseffects seemtobethemostimportantfactors.Thetypeofsedimentistheparameterwhich Pol. Polar Res.25 (1): 67–96, 2004 68 Jacek Siciński of e e r f s a e ar al st a o c ( s n o ati st g n pli m a s of n o ati c o l e h t h wit ) y a Bd). ye altad rh mis Adare ofers nci asigla b al r nt e c of art p e h t d n a et nl I a r ur c z E ( a e ar d e at g sti e v n I 1. g. Fi Polychaetes of Antarctic sublittoral in the proglacial zone 69 Fig.2.Investigatedarea(HerveCove),withthelocationofsamplingstations(coastalareasfreeof glaciers are shaded). essentiallydeterminesthecharacterofsoftbottombenthiccommunities(Thorson 1957,Gray1974).Rhoads(1974)stressedthattherelationshipbetweensediment and fauna is crucial in explaining the benthic ecology. Bottomsedimentsaremostdiverseinthecoastalzone,whichisrelatedtothe diversityofconditionsinwhichsedimentationoccurs.Hence,studiesonthedistri− butionofzoobenthosinthatpartofAntarcticshelf,takingintoaccountthedyna− mismofprocesseswhicharedifferentfromthoseoftheopenocean,deservesat− tention.ThiswaspointedoutbyDayton(1990)andArntzandGallardo(1994).So far very scarce initial information on the distribution and structure of the of soft bottom Antarctic zoobenthos assemblages analysed against a background of the character of sediments originate from Hardy (1972), Richardson and Hedgpeth (1977)andPlatt(1979).Thedescriptionofpolychaeteassemblagesintheshallow sandyandsiltybottomsublittoralofMorbihanBay(KerguelenIslands)waspre− sentedbyDuchêne(1984).IntheBransfieldStraitMühlenhardt−Siegel(1989)dis− tinguished some assemblages of mollusks and ostracods connected with the character of bottom sediments. Itseemsthatincreasingknowledgeofthespatialdistributionofsedimenttypes maybeakeyforunderstanding localphenomena inthecommunities oftheAnt− arctic benthic sublittoral. This problem was highligted by pilot studies on zoo− benthos distribution in Admiralty Bay (Jażdżewski et al. 1986, Siciński 1986). Amorecomprehensiveanalysisofthisproblem,aswellasanattempttoelaborate a synthesis, constitute the main aims of the present study. 70 Jacek Siciński Study area, material and methods Thematerialwasgathered in1979–1988 inthecourseofseveralPolishAnt− arcticExpeditionsofthePolishAcademyofSciencestotheH.ArctowskiAntarc− ticStation.Thevastmajorityofthematerialwascollectedin1985.Investigations coveredEzcurraInletandapartofthecentralbasinofAdmiraltyBay(Fig.1).Ma− terialwascollectedintheshallowsublittoraldowntothedepthof165m,thusto themaximalrecordeddepthintheinner,westernpartofEzcurraInlet.Thisisthe part of the bottom with the highest diversity and variability of environmental factors in the Admiralty Bay coastal zone. Several authors have described the environment of Admiralty Bay. Detailed informationonitshydrology andhydrography isgivenbyPruszak(1980),Samp (1980),Marsz(1983),Lipski(1987)andothers.IntensiveresearchactivityofBel− gian,Brazilian,GermanandPolishbiologistsinthebayareahasbeenrecentlytar− getedbyitsdesignationasthekeysitefortheSCARProgramEcologyoftheAnt− arctic Sea−Ice Zone 1994–2004. Suspended matter and sediments Amongthemostimportantabioticfactorsthatdetermineconditionsoccurring attheseabottomisthecharacterandsuspendedmattercontentandtheprocessof itssedimentation.ThemeansuspendedmattercontentinthewatersoftheSouth− ernOceanrangesfrom1to2mg/dm3.Theamountofsuspendedmatterinthewa− ters of Admiralty Bay exceeds several times those from open Antarctic waters (Pęcherzewski1980). InAdmiralty Bay,inparticular initscoastalzone,surpris− inglyhighfluctuationsarerecordedinthecontentofinorganicsuspendedmatter, dependent on the season, region and distance from glacier. The lowest values, about2.8mg/dm3,wereobservedinwinterinthecentralpartofthebay.Veryhigh amountsofmineralsuspendedmatter,usuallyabove100mg/dm3,wereobserved in summer in the front of glacier cliffs (Pęcherzewski 1980). Maximal values, amounting to almost 270 mg/dm3 were recorded in summer in a small lagoon, HerveCove,closetotheinflowingglacialstream(Figs1and2).Itisworthnoting thatthewatersofEzcurraInlet,especiallyinitswesternpart,aretherichestinin− organicsuspendedmatter.MovingfromthewesternpartoftheEzcurraInlettothe centralareaofAdmiraltyBayasharpdecreaseininorganicsuspendedmattercon− tentwasobserved(Fig.3).Itwascalculatedthatabout2000tonsofmineralsus− pended matter is transfered daily from land to the bay in summer (Pęcherzewski 1980). Part of this amount is carried by surface current to the Bransfield Strait. Another part is spread very unevenly on the bottom of the bay. According to the data by Lipski (1987) water transparency related to sus− pendedmattercontentrangesfrom2minthefjordsinsummerto32minthecen− Polychaetes of Antarctic sublittoral in the proglacial zone 71 Fig.3.GradientofsuspendedmattercontentinthewatersofAdmiraltyBay(isolinesdenoteamount of suspended matter in mg/dm3in the subsurface layer, according to Pęcherzewski, 1980). tralareaofthebayinwinter.Thelattervalueisequivalentto2.5mgofsuspended matter per 1 dm3of water. There are very scarce data of the Admiralty Bay bottom sediments distribu− tion.RudowskiandMarsz(1996)claimthatthethicknessofthesedimentedlayer ranges from over a dozen to several dozen meters. Samplesofsedimenttogetherwithitsfauna,usuallyweighingfromseveralto about a dozen kilograms, were collected with a Van Veen grab with a sampling areaof0.1m2.Partofeachsample,400–600cm3,wasseparatedforgranulometric analysisanddesiccated.Therestofthesamplewassievedona0.5mmmesh.Ani− malswerethenpreservedin7%neutralizedsolutionofformaldehyde.86samples werecollectedinthisway.Intheshallowsublittoral, downto30m,withacom− 72 Jacek Siciński pactsandybottomwhichwasdifficulttopenetratewiththeVanVeensampler,8 further samples were collected by divers with a “Tvärminne” bottom sampler (Kangas1972) withasamplingsurfaceof565cm2.Stationdistribution andtheir numbers is presented in Fig. 1 and Fig. 2. The Canberra Metric was employed to classify assemblages of Polychaeta. C(cid:1)(cid:4)n xi (cid:2)xj (x (cid:3)x ) k=1 i j where: C – Canberra Metric, x – density of individuals of a given species in station “i”, i x – density of individuals of a given species in station “j”, j | | – absolute value, n – total number of species. Calculationswerecarriedoutusingraw,nontransformeddata–thedensities of90polychaetespeciesin94stations(=samples)(Siciński1998).Objectgroup− ingwasdonewitha“flexiblesorting”methodusingthecoefficientofgroupingef− ficiency “(cid:5)” = –0.25. Innamingeachdistinguished Polychaetaassemblage,thenameofitsleading species(i.e.thatonewhichobtainedthehighestresultfrommultiplyingitsdomi− nationvaluebythevalueofdegreeofassociationindex,DAI)waslocatedbesides itsliteralsymbol.TheDAindex(Salzwedeletal.1985)expressesthepercentage ofindividualsofagivenspeciesrecordedinagivenstationgroup(=assemblage) within the total number of specimens of that species in the overall study area. Not all species recorded in the study area were considered in the analysis. Some species of the Cirratulidae family and Euclymeniinae subfamily were ig− nored. The specimens of these species are extremely delicate and only a small partofthemwerepreservedwellenoughtoenableidentification,sotheycannot becounted.AlsothefamilySpirorbidae,abundantlyrepresentedincertainbot− tom areas, particularly in the shallows of the central bay area, were excluded from analysis, owing to the difficulties in precise determination of the whole spirorbidcollection. InsomecasesthePrincipalComponentAnalysiswasemployedinthepresent study.Itservedtoordinate47bottomsedimentsamplesagainsttheirtexturalchar− acters (Fig. 7) as well as to ordinate 9 distinguished polychaete assemblages againstabackground ofsomebottomcharacters(Fig.8).Thepossibility toordi− nate objects while simultaneously estimating their dependence on variables was also exploited (Digby and Kempton 1987, “biplot” option). Thefollowing termsdenoting species’domination inassemblageswereused throughoutthestudy:dominantsarespecieswhosenumberconstitutedmorethan 5% of all specimens of all species composing an assemblage, subdominants are species with 2–5% of specimens, while influents are those which constituted Polychaetes of Antarctic sublittoral in the proglacial zone 73 Fig.4.Bottomsedimentsin47stationsbasedontheproportionofsand,siltandclay.Stationsare specifiedbytheletterofthestationsgroup(orpolychaeteassemblage)accordingtothedendrogram classification in Fig. 6. 1–2%.Remainingspecies,representinglessthan1%ofspecimens,areconsidered accessory ones (Trojan 1975). Thepresenceandnumberofcharacteristicspecies,theirfrequencyaswellas the value of degree of association index (DAI) of dominants and subdominants (Table1)wereconsideredascriteriaforspecificcharacterofdistinguishedassem− blages.So,fourcategoriesofassemblagescanbedistinguished.Anarbitrarilyse− lected scale comprises nonspecific assemblages, weakly specific assemblages, fairly specific assemblages and highly specific assemblages. In 47 of all 94 zoobenthos samples sediment was also collected for granulo− metric analysis carried out by the araeometric method. Sediment was sieved out throughasievewith1mmmeshsize.Whatremainedonthesievewastheskeletal fraction.Theotherpart,withgraindiameterbelow1mm,wasfurthersortedout. On the basis of obtained results cumulative curves of granulation were con− structed,inwhichthecontentsofsand,siltandclayfractionsweremeasured.The 74 Jacek Siciński Fig.5.Therelationshipbetween(cid:6)unitsandsortingcoefficient(So)ofbottomdepositsin47stations. respectiveresultsarepresentedinatriangulardiagram(Fig.4).Theclassification andnomenclatureofsedimentsproposedbyShepard(1954)wasacceptedaspar− ticularlyusefulforweaklysortedsediments.Fromthecumulativecurvestheval− uesofquartiles Q1(25%), Q2(50%)andQ3(75%)werealsoreadandthenem− ployedtocalculatethesortingcoefficient(So)andmedianofgraindiameter(Q2), expressedsubsequentlyintheunitsof(cid:6)=–log d(Krumbein1934),where“d”is 2 themediangrainsizeexpressedinmilimeters.Thesortingcoefficientwascalcu− latedaccordingtotheformula:So=Q3/Q1.Valuescalculatedinthiswayserved tolocatethe47sedimentsamplesinthecoordinatesystemrepresentedbythesort− ing coefficient and (cid:6)coefficient (Fig. 5). Polychaetes of Antarctic sublittoral in the proglacial zone 75 Results Sediments.—BottomsedimentsofAdmiraltyBayarecomposedofrandomlyal− locatedclusticmaterialsofvariousfractionstransportedtothebaymostlybygla− cialandsubglacialstreamsandoriginatingbothfromtheabrasionofshoresaswell asfromthemelting ofdrifting icebergs. Intermsofgrain−size structure thesedi− mentsaresands,silty−sands,silty−clay−sands, sandy−clay−siltsandclay−silts(Fig. 4).Intermsofmedianparticlediameterexpressedbyphi((cid:6))units,thesediments representthewholerangeofpossibilities,startingfrommediumsandandending withveryfinesilt(Fig.5).Sedimentsarepoorlyandverypoorlysorted;theyusu− ally contain a considerable amount of very coarse sand, gravel and stones. Classification of assemblages.—The most general division of the dendrogram distinguishes two clusters of stations (Fig. 6). Cluster “X”’, large and internally verydiversified,comprisesvariousareasofEzcurraInletinthewholedepthrange ofthisbasinaswellasshallower(4–40m)stationsofthecentralbaybasin.Cluster “Y” is almost exclusively composed of stations located in the central part of the bay,atdepthsfrom45to150m.Thismostgeneralclassificationofthe94stations indicates some distinctions of polychaete fauna in the Ezcurra Inlet as compared withpolychaeteassemblagesofthecentralbayarea.Thisalsoindicatesageneral biocenotic difference betweentheshallow coastalzoneascompared withdeeper sublittoral areas. In70stationsofthecluster“X”therewererecorded72specieswhereasinonly 24stationsofthecluster“Y”asmanyas81specieshavebeenfound.Meanspecies number per 1 m2 of bottom area was 34 in cluster “Y”, while only 10 in cluster “X”’.Anothernoticeabledifferenceisthetwicehighermeanpolychaetedensityin cluster“Y”thanincluster“X”:203(±92SD)and92(±84SD)specimen/0.1m2, respectively(bothmeansdifferatasignificancelevel(cid:7)=0.001).Bothclustersdif− feralsointheirlistsofdominantspecies(ifweignoreeurytopicspecies,whichare commonforbothareas).Indeeperpartsofthecentralbayarea(cluster“Y”)these dominantspecieswereAricideastrelzovi,CirrophorusbrevicirratusandAsychis amphiglypta, whereas in the area of Ezcurra Inlet and in shallow stations of the central part of the bay (cluster “X”) the characteristic group of dominants con− sisted ofTharyx cincinnatus, Microspio moorei andApistobranchussp. A more detailed division of the dendrogram (Fig. 6) distinguishes 9 station groups.Suchadivisionseemstobethemostsuitabletakingintoaccountthepossi− bilitiesofitsplausibleinterpretationagainstabackgroundofthepatternofthebot− tom deposits distribution. The differences in polychaete density in given assemblages was estimated at thesignificancelevel(cid:7)=0.05.Lowdensitiesofpolychaetesinassemblages“C”, “E”and “D”(60 ±46SD, 30 ±26SD and 28 ±18SD ind./0.1m2respectively) do notdiffersignificantly.Thehighmeandensitiesinassemblages“F”and“I”(136± 97SDand133±90SDind./0.1m2respectively)arealsonotsomuchdifferent.Fi− 76 Jacek Siciński Fig.6.Dendrogramofstationsde− rivedfromtheabundancedistribu− tionof90polychaetespecies(ex− 43-11m planations in text). 36-13m A 44-44m 35-10m 45- 6m 33-10m 46- 6m D 42-12m 34-14m 40-14m 26-72m 41-16m B 62- 4m 63- 4m 65-10m 66-15m 68-25m C 71-38m 67-20m 70-30m 69-27m 64- 7m 22-33m 23-33m 24-34m 21-18m 30-17m 32-10m 17-26m 19-34m F 20-15m 58-69m 29-32m 54-52m 27-40m 18-33m 28-40m 56-15m 31-12m 16-20m 72-41m 57-35m 39- 6m G 37- 6m 38- 6m 1-65m 7-55m 12-146m 47-70m 2-65m E 8-60m 25-68m 9-55m 10-152m 11-132m 3-62m 4-48m 6-45m 5-45m 51-90m 49-73m 52-90m I 13-127m 48-72m 14-127m 15-129m 50-81m 59-86m 60-126m 61-165m 91-120m 92-126m 89-115m 90-119m 83-88m 85-97m 84-88m 86-100m 87- m 88-112m 93-145m 94-147m H 73-46m 74-46m 75-50m 76-53m 77-55m 81-66m 78-55m 82-72m 79-59m 80-60m 55-56m 53-52m

Description:
Polychaetes of Antarctic sublittoral in the proglacial zone (King George Island, South Shetland Islands) Jacek SICIŃSKI Zakład Biologii Polarnej i Oceanobiologii
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.