ebook img

Pollutant-Solid Phase Interactions.. Mechanisms, Chemistry, and Modeling Part E PDF

424 Pages·3.269 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pollutant-Solid Phase Interactions.. Mechanisms, Chemistry, and Modeling Part E

CHAPTER 1 Organic Pollutants in Aqueous-Solid Phase Environments: Types, Analyses and Characterizations Tarek A.T.Aboul-Kassim1,Bernd R.T.Simoneit2 1 Department ofCivil,Construction and Environmental Engineering, College ofEngineering,Oregon State University,202 Apperson Hall,Corvallis, OR 97331,USA e-mail:[email protected] 2 Environmental and Petroleum Geochemistry Group,College ofOceanic and Atmospheric Sciences,Oregon State University,Corvallis,OR 97331,USA e-mail:[email protected] In order to study the chemodynamic behavior (i.e.,fate and transport) oforganic pollutants in the environment and their interactions with various solid phase systems,our goals in this chapter are to address these aspects.The first is to present a review ofthe most toxic organic pollutant types which are present in both aqueous and solid phase environments.These pol- lutants include petroleum hydrocarbons, pesticides, phthalates, phenols, PCBs, organotin compounds, and surfactants as well as complex organic mixtures (COMs) of pollutants leached from solid waste materials (SWMs) in landfills and disposal sites.The term solid phasesystem is used here to indicate soil-particulate matter,sediment,suspended,and bio- logical materials.The second goal is to provide a comprehensive review ofthe different ana- lytical techniques used for the determination ofthese organic compounds.The third objec- tive is to discuss and evaluate the current instrumental developments and advances for the identification and characterization ofthese organic compounds.This chapter serves as the backbone for the subsequent chapters in the present volume,and aids in understanding the various interaction mechanisms between organic pollutants and diverse solid phase sur- faces,their chemistry,and applicable modeling techniques. Keywords.Organic pollutants,Hydrocarbons,Pesticides,Phthalates,Phenols,PCBs,Surfac- tants,Instrumentation,Identification,Characterization,Aqueous-solid phase systems 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Types ofOrganic Pollutants . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Petroleum Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Aliphatic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Polycytic Aromatic Compounds . . . . . . . . . . . . . . . . . . . . 13 2.2 Pesticides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 Pesticide Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.1 Cationic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.2 Basic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.3 Acidic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1.4 Nonionic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.2 Priority Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Phthalates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Phenols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Organotin Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 42 The Handbook ofEnvironmental Chemistry Vol.5 Part E Pollutant-Solid Phase Interactions:Mechanism,Chemistry and Modeling (by T.A.T.Aboul-Kassim,B.R.T.Simoneit) © Springer-Verlag Berlin Heidelberg 2001 2 T.A.T.Aboul-Kassim and B.R.T.Simoneit 2.7 Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Anionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.2 Cationic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.3 Nonionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 Amphoteric (Zwitterionic) . . . . . . . . . . . . . . . . . . . . . . . 51 3 Analysis ofEnvironmental Organic Pollutants . . . . . . . . . . . 52 3.1 Recovery Measurements . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 Pre-Extraction and Preservation Treatments . . . . . . . . . . . . . 54 3.3 Extraction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Supercritical Fluid Extraction . . . . . . . . . . . . . . . . . . . . . 55 3.3.2 Soxhlet Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.3 Blending and Ultrasonic Extraction . . . . . . . . . . . . . . . . . 56 3.3.4 Liquid-Liquid Extraction . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.4.1 Concentration Procedures . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.4.2 Advantages and Drawbacks . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 Solid-Phase Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.5.1 Off-Line Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.5.2 On-Line Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.6 Column Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.7 Comparative Extraction Studies . . . . . . . . . . . . . . . . . . . . 61 3.3.8 Micro-Extraction Methods . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Clean-Up Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.1 Measurement ofExtractable Lipids/Bitumen . . . . . . . . . . . . 64 3.4.2 Removal ofLipids/Bitumen . . . . . . . . . . . . . . . . . . . . . . 64 3.4.2.1 Saponification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2.2 Sulfuric Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2.3 Solid Phase Clean-Up . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2.4 Gel Permeation Chromatography . . . . . . . . . . . . . . . . . . . 66 3.4.2.5 Supercritical Fluid Clean-Up . . . . . . . . . . . . . . . . . . . . . 67 3.4.2.6 Sulfur Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.1 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.2 On-Line Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6 Multi-Residue Schemes . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Identification and Characterization ofOrganic Pollutants . . . . . 71 4.1 Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Gas Chromatography-Mass Spectrometry . . . . . . . . . . . . . . 72 4.2.1 Mass Spectrometry Ionization Methods . . . . . . . . . . . . . . . 73 4.2.1.1 Electron Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1.2 Chemical Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1.3 Electrospray Ionization . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1.4 Fast-Atom Bombardment . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1.5 Plasma and Glow Discharge . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1.6 Field Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 3 4.2.1.7 Laser Ionization Mass Spectrometry . . . . . . . . . . . . . . . . . 74 4.2.1.8 Matrix-Assisted Laser Desorption Ionization . . . . . . . . . . . . 74 4.2.2 Types ofMass Spectrometers . . . . . . . . . . . . . . . . . . . . . 75 4.2.2.1 Quadrupole Mass Spectrometry . . . . . . . . . . . . . . . . . . . . 75 4.2.2.2 Magnetic-Sector Mass Spectrometry . . . . . . . . . . . . . . . . . 75 4.2.2.3 Ion-Trap Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . 75 4.2.2.4 Time-of-Flight Mass Spectrometry . . . . . . . . . . . . . . . . . . 76 4.2.2.5 Fourier-Transform Mass Spectrometry . . . . . . . . . . . . . . . . 76 4.2.3 Fragmentation Pattern and Environmental Applications . . . . . . 76 4.3 Liquid Chromatography-MS . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Isotope Ratio Mass Spectrometry . . . . . . . . . . . . . . . . . . . 79 4.4.1 Environmental Reviews . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.3 Sample Preparation and Handling . . . . . . . . . . . . . . . . . . 80 4.4.4 On-Line Coupling ofIRMS . . . . . . . . . . . . . . . . . . . . . . 81 4.4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.5.1 Carbon Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.5.2 Nitrogen Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.5.3 Hydrogen Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . 83 4.4.5.4 Oxygen Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.5.5 Chlorine Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.6 Modern Application Examples . . . . . . . . . . . . . . . . . . . . 85 4.5 Future Developments in Organic Pollutant Identification and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 List of Abbreviations BSTFA Bis(trimethylsilyl)trifluoroacetamide CI Chemical ionization COMs Complex organic mixtures CSIA Compound specific isotope analysis DEHP Diethyl phthalate DOP Dioctyl phthalate ECD Electron capture detector EI Electron impact EPA Environmental Protection Agency ESI Electrospray ionization FAB Fast-atom bombardment FI Field ionization GC Gas chromatography GC-AED Gas chromatography with atomic emission detection 4 T.A.T.Aboul-Kassim and B.R.T.Simoneit GC-FPD Gas chromatograph with flame photometric detection GC-MS Gas chromatography-mass spectrometry GPC Gel permeation chromatography HCs Hydrocarbons HPLC High performance liquid chromatography HTGC-MS High temperature gas chromatography-mass spectrometry IDMS Isotope dilution mass spectrometry IRMS Isotope ratio mass spectrometry ITD Ion trap detector LC Liquid chromatography LIMS Laser ionization mass spectrometry LLE Liquid-liquid extraction MALDI Matrix-assisted laser desorption ionization MS Mass spectrometry OCPs Organochlorine pesticides PAEs Phthalic acid esters PAHs Polycyclic aromatic hydrocarbons PCBs Polychlorinated biphenyls PD Plasma desorption PGD Plasma and glow discharge RIMS Resonance ionization mass spectrometry SFC Supercritical fluid chromatography SFE Supercritical fluid extraction SIMS Secondary ionization mass spectrometry SPE Solid phase extraction SPME Solid phase microextraction SSJ/LIF Supersonic jet laser-induced fluorescence SWMs Solid waste materials TOC Total organic carbon TOF-MS Time offlight-mass spectrometry TPs Transformation products 1 Introduction The twenty-first century can properly be called the age oforganic chemistry due to the huge worldwide increase in organic chemical production (more than 70,000 compounds) and utilization.Many ofthese organic compounds have pro- ven to be toxic,carcinogenic,and mutagenic to various aquatic organisms and, directly and/or indirectly, to humans [1]. The dramatic increase in the production oforganic chemicals has completely altered our immediate human environment and provided a wealth of new compounds which,in many cases, were more toxic and carcinogenic than the parent compounds. With environmental protection high on the agenda of many industrial countries,new rules and regulations are currently being set up for monitoring 1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 5 greater numbers ofhazardous organic pollutants.Organic pollutants present in the various environmental multimedia may occur naturally [2] and/or derive from anthropogenic sources [3–13]. Anthropogenic input may derive from industrial sources [14–20],urban wastes [21–35],agricultural activity [36–44], and from degradation products [45–52]. Organic pollutants have different polarities and chemical properties;hence,low detection limits are necessary for studying the fate and transport ofthese organic compounds in and/or within the different environmental multimedia,as well as their interactive behavior with other solid phase surfaces. Accordingly,environmental organic analysis has expanded dramatically in the last 25 years.With the development of commercially available gas chroma- tography-mass spectrometer (GC-MS) systems, there has been a significant increase in the number of organic pollutant fingerprints that have been dis- covered and identified [53–73]. Identities of individual compounds or com- positional fingerprints can be determined by highly sophisticated and advanced instruments [5,64,74–88] and are used to provide information about the type [62,64,82,89–92],amount [89,93–96],and source confirmation [1,53–55,97] ofthese pollutants. Different terms have been used in the literature to describe various environ- mental organic pollutants/contaminants that are characterized in terms oftheir molecular structures [1, 53–55]. The term chemical fossil was first used by Eglinton and Calvin [98] to describe organic compounds in the geosphere whose carbon skeleton suggested an unambiguous link with a known natural product. In addition,other terms such as biological markers,organic tracers,biomarkers, or molecular fossils,have also been used to describe such organic compounds [1,53–56,60,61,63,66,68–73].In line with the current trends in environmental organic chemistry and for the sake of consistency,the term molecular marker (MM) suggested by Aboul-Kassim [1] will be used in this book to describe both naturally occurring (i.e., biological and hence biomarker) and/or anthropo- genically-derived organic (i.e.,non-biomarker) compounds that are present in both aqueous and solid phase environments. The main objectives of this chapter are: (1) to review the different toxic organic pollutants present in both liquid and solid (i.e., sediment, soil, sus- pended matter and biosolids as bacteria,plankton,etc.) phase environments as well as complex organic mixture (COM) leachates from solid waste materials of landfills and disposal sites;(2) to summarize the most recent analyses ofthese MM pollutants; and (3) to discuss the optimum instrumental analytical methods for organic pollutant characterization. It is intended that the review of the different aspects and goals in this chap- ter provides an up-to-date background for the succeeding chapters in this volume. This will clarify the discussions about the different interaction mechanisms between organic pollutants and various solid phases,their chem- istry,and applicable modeling techniques that are presented in the subsequent chapters. 6 T.A.T.Aboul-Kassim and B.R.T.Simoneit 2 Types of Organic Pollutants Approximately one-half of the industrially produced organic chemicals reach the global environment via direct and/or indirect routes,for example agricul- tural practices, municipal and industrial wastes, and landfill effluents. These products include a variety of pesticides and their metabolites, aliphatic and aromatic organic derivatives of petroleum hydrocarbons and plastics,organic solvents and detergents,phenols,PCBs,and organotin compounds.When these substances reach the natural environment, various degradation and transfer processes are initiated. The chemical properties of each organic compound (such as molecular structure,volatility,ionic charge and ionizability,polarizabil- ity, and water-solubility) determine which processes predominate. Currently the prevalent opinion is that interaction processes, leading to activation in- activation, physical sorption, and/or chemical binding or partitioning are among the most widespread and important phenomena affecting toxic organic pollutants in the global environment. Some general considerations and pro- perties ofmajor organic pollutant groups,ofrelevance to the environment and of importance to human health, will be summarized briefly in the following subsections. 2.1 Petroleum Hydrocarbons Hydrocarbons (HCs) ofpetroleum origin are widespread organic pollutants that are found in both aquatic and solid phase environments [1,53–56,99,100].The most common groups of compounds are aliphatic and polycyclic aromatic hydrocarbons (PAHs).Ofthese the PAHs are toxic,carcinogenic,and sometimes mutagenic to both aquatic organisms and ultimately humans [1].The following is a briefdescription ofeach group. 2.1.1 Aliphatic Compounds Aliphatic hydrocarbons,a diverse suite of compounds,are an important lipid fraction which is either natural (i.e.,from photosynthesis by marine biota in- habiting the surface waters or by terrestrial vascular plants) or anthropogenic (i.e.,ofpetroleum origin from land runoff,and/or industrial inputs).Aliphatic hydrocarbons have been studied and characterized from various environmental multimedia [1,53–56,99–109]. Aliphatic hydrocarbons of petroleum origin (Fig.1) (also coal) in the en- vironment are usually composed of: 1. Homologous long chainn-alkane series ranging from <C to >C with no 15 38 carbon number predominance [1,53–55,73,109–114] 2. Unresolved complex mixture (UCM) ofbranched and cyclic hydrocarbons [1, 53–56,68,70,113,115–119] 1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 7 Fig.1. Chemical structures ofsome aliphatic hydrocarbon molecular markers as cited in the text 3. Isoprenoid hydrocarbons such as norpristane (2,6,10-trimethylpentade- cane),pristane (2,6,10,14-tetramethylpentadecane),and phytane (2,6,10,14- tetramethylhexadecane) (Structures I–III,Fig.1) [1,53–56,68,70,120–123] 4. Tricyclic terpanes (Structure IV, Fig. 1), usually ranging from C H to 19 34 C H ,and in some cases to C H [68,124–126] 30 56 45 86 5. Tetracyclic terpanes such as 17,21- and 8,14-seco-hopanes (Structures V–VI, Fig.1) [125–127] 6. Pentacyclic triterpanes, such as the 17a(H),21b(H)-hopane series (Struc- tures VII–VIII, Fig.1), consisting of 17a(H)-22,29,30-trisnorhopane (T ), m 8 T.A.T.Aboul-Kassim and B.R.T.Simoneit 17a(H),21b(H)-29-norhopane, and the extended 17a(H),21b(H)-hopanes (>C ) with subordinate amounts of the 17b(H),21a(H)-hopane series and 31 18a(H)-22,29,30-trisnorneohopane (T ),[1,53–55,114] s 7. Steranes and diasteranes with the 5a(H),14a(H),17a(H)-configuration (IX), 5a(H),14b(H),17b(H)-configuration (X),and the 13a(H),17b(H)-diastera- nes (Structure XI,Fig.1) (e.g.,[1,53–55,101,103,105–107,117]). Typical GC-MS traces of aliphatic hydrocarbon patterns representative of dif- ferent environmental samples are shown in Fig.2.The aliphatic hydrocarbons of petroleum contaminated sediment and water are present from C to C with no 16 38 carbon number predominance and a C at C and C or C (Figs.2a,b).The max 21 30 32 source ofthese hydrocarbons as well as the UCM can be confirmed to be due to petroleum input by the presence of the biomarkers discussed below.Crude oil has a high concentration ofalkanes compared to UCM (Fig.2c) and typically a smooth decreasing concentration from low carbon numbers to high [63, 66, 111]. The alkanes <C are initially lost by evaporation and subsequent bio- 20 degradation (see Chap.5) removes additional amounts ofthe same compounds, leaving an enhancement ofthe isoprenoids (cf.,Figs.2a,b) [53–55,111,116].In contrast,an example ofprimarily natural background alkanes from higher plant waxes is shown in Fig.2d.This is a terrigenous component brought into marine environments by river washout and atmospheric fallout and is sedimented with minerals.Suchn-alkanes have a strong odd carbon number predominance and a C at C ,C ,or C [56].A minor component from petroleum is also present max 27 29 31 as UCM andn-alkanes from C to C .An example ofhydrothermal petroleum 20 26 is shown in Fig.2e,where then-alkanes range from C to C with significant 13 25 amounts ofisoprenoids.There have been numerous compositions reported for petroleums formed from the hydrothermal alteration ofimmature organic mat- ter in sediment covered marine rift areas as for example in the GulfofCalifornia and the northeastern Pacific Ocean [128–130].Runofffrom roads,especially in urban areas,contains significant amounts ofpetroleum residues.These consist of lubrication oils,particles from vehicle emissions and fuel residues [1].An example is shown in Fig.2f, where the dominant components are n-alkanes ranging from C to C ,with a C at C and no carbon number predominance. 22 38 max 29 In other cases,the washout contains mainly a UCM with minor alkanes. Characteristic examples of biomarker distributions typical for petroleum consisting of tricyclic terpanes (key ion m/z 191),hopanes (key ion m/z 191), and steranes/diasteranes (key ions 217, 218, 259) are shown in Fig.3. The tertacyclic terpanes are not major components in the m/z 191 plots,because their key ion is at m/z123.The tricyclic terpanes range from C to C ,with a 21 29 C at C and no C and C .The mature hopanes range from C to C ,with max 23 22 27 27 35 the 17a(H),21b(H) configuration and the homologs >C are resolved into the 31 C-22SandRdiastereomers [68,73,68,114].The steranes range from C to C 27 29 and are generally less concentrated than the hopanes.The mature sterane series have the 5a(H),14a(H),17a(H)- and 5a(H),14b(H),17b(H)-configurations with all homologs also resolved into the respective C-21SandRdiastereomers (Figs.3b,c).The diastereomers also range from C to C and in part coelute 27 29 with the steranes (Fig.3b). A summary of the identifications of the various aliphatic hydrocarbons just discussed is given in Table1. 1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 9 Fig.2a–c. GC-MS traces (m/z 99 key ion) ofvarious aliphatic hydrocarbon fractions from dif- ferent environmental matrices:asediment – Red Sea;bwater – Red Sea;cKuwait crude oil spill

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.