POLITECNICO DI MILANO Facoltá di ingegneria dei sistemi Corso di Laurea Specialistica in Ingegneria Biomedica Generation of a patient specific predictor for osteoporotic risk of fracture of the femoral neck Relatore: Tomaso Villa Maria Tobia Correlatore: Marco Viceconti Relazione della prova finale di: Anna Caimi 770324 Gloria Casaroli 765186 Anno Accademico 2011/2012 Ringraziamenti Desideriamo porgere il primo sentito ringraziamento al Prof. Marco Viceconti per l’estrema disponibilitá e cortesia dimostrateci in questi mesi, per le grandi opportunitá che ci ha offerto, per la realtá che ci ha fatto conoscere e nella quale ci ha introdotto; un forte ringraziamento va al Prof. Tomaso Villa, che ci ha offerto la possibilitá di compiere un’esperienza di tesi all’estero che è stata la migliore della nostra carriera, sostenuto durante tutto il suo corso e ci ha sempre mostrato grande disponibilitá. Un ringraziamento speciale va a Giovanna Farinella, che ci ha seguito passo a passo nello svolgimento del nostro lavoro, fornendoci sempre grande aiuto e competenza, oltre che aver stretto con noi un forte legame di amicizia. Un grazie particolare va a tutti coloro che hanno condiviso con noi l’esperienza a Sheffield rendendola davvero speciale, e in particolare alle nostre colleghe Sandra e Francesca che sono state due perfette compagne d’avventura. Grazie anche a tutti i nostri compagni di corso per gli anni di studio, per i progetti di gruppo, per le risate e per tutti i momenti belli passati qui al Politecnico e durante la vita normale di tutti i giorni. Grazie anche a tutti gli amici di sempre ed alle persone noi care, per le serate, i week-end, per averci parlato di tutto fuorché dello studio, per averci capito, distratto e consolato con la loro simpatia e il loro affetto; in particolare grazie a Massimo e a Riccardo, che ci sono stati accanto piú di ogni altro e ci hanno sostenuto nonostante la grande distanza. Un ringraziamento particolare va infine alle nostre famiglie, per averci incoraggiato nelle scelte, sostenuto nei 5 anni, aver condiviso con noi i momenti di soddisfazione e consolato in quelli piú difficili e per averci regalato la possibilitá di compiere questa esperienza all’estero. Grazie, senza di voi, per noi, oggi sarebbe un giorno qualunque. Anna e Gloria iii Contents Contents v List of Figures vii List of Tables xi Abstract xiii Sommario xix 1 Introduction 1 1.1 Osteoporosis: social and economic burden . . . . . . . . . . . . . . . . . 1 1.2 The Clinical State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The VPHOP project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 The aim of our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Anatomy and Mechanics 13 2.1 Body’s reference system and planes . . . . . . . . . . . . . . . . . . . . . 13 2.2 Relative position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Musculoskeletal anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Anatomy and physiology of bone . . . . . . . . . . . . . . . . . . 15 2.3.2 The pelvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 The femur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.4 The hip joint and angle . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Bone tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Composition of bone . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Bone Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 v vi CONTENTS 2.4.3 Bone mechanobiology . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Effects of underloading and overloading . . . . . . . . . . . . . . 31 2.5 Hip Biomechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.1 Hip muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.2 Hip kinematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Definition and basic information . . . . . . . . . . . . . . . . . . . . . . 35 2.6.1 The importance of Gait analysis for this study . . . . . . . . . . 37 2.6.2 Effect of sub-optimal neuromotor control . . . . . . . . . . . . . 41 2.6.3 Hypothesis of our model . . . . . . . . . . . . . . . . . . . . . . . 43 3 Material and methods 45 3.1 Patients’ cohort and CT scanning . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Segmentation and morphing . . . . . . . . . . . . . . . . . . . . . 48 3.2.2 BoneMat software . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.3 Structure of msf file . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 The mechanical load scenarios . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.1 Strength loading scenario . . . . . . . . . . . . . . . . . . . . . . 64 3.3.2 Femur-fall Charité database . . . . . . . . . . . . . . . . . . . . . 68 4 Results 71 5 Conclusion 87 6 Future development 91 Appendix 93 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 The Mann-Whitney test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Bibliography 107 List of Figures 1.1 Image of the DXA of a femur. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 FRAX interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The graph shows fracture rates per 100 person-years by phenotypic and T- scoreaccordingtotheNationalOsteoporosisRiskAssessmentStudy. Across all phenotypic groups, low BMD is a consistent risk factor for fracture. . . . 6 1.4 Image representation of the VPHOP project. . . . . . . . . . . . . . . . . . 7 1.5 Biomed Town interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Physiomspace interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 OpenClinica interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 VOP Hypermodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Body planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Structure of long bone: external structure, epiphysis and diaphysis and a section of bone with a view of internal structure and component. . . . . . . 16 2.3 Distribution of compact and cancellous bone in the upper part of the femur. 17 2.4 Structureofthecancellousandcorticalbone: arepresentationoftrabeculae and of osteons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Maximum strength with minimum weight. . . . . . . . . . . . . . . . . . . . 20 2.6 Structure of the pelvis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Arepresentationofforcesthatactonthepelvisfromfemurandfrompelvis to femur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Anterior and posterior view of the femur. . . . . . . . . . . . . . . . . . . . 22 2.9 The coxofemoral joint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.10 CCD-angle in three configuration: coxa norma, coxa vara and coxa valga. . 25 vii viii List of Figures 2.11 Lightmicrographofosteoclasts(arrows). Typicalmultinucleatedosteoclast nestled in its Howship’s lacuna. Bone (B), calcified cartilage (CC). Decal- cified, methylene blue, and azure II stained section; original magnitude X 800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.12 Light micrograph of osteoblasts. Spicule of calcified core line with os- teoblasts (Ob) and thin osteoid (arrows). Osteoprogenitor cells (Opc) are located between osteoblasts and blood vessel. Original magnification X600. 28 2.13 Diagrammatic representation of working hypothesis of bone resorption. A typical resting bone surface is lined by a thin demineralized layer (OO), a lamina lamitans (LL), and a flat bone-lining cells (BLC). . . . . . . . . . . 30 2.14 Hip joint lateral view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.15 Representation of the main hip muscles. . . . . . . . . . . . . . . . . . . . . 34 2.16 Principal movements’ angles . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.17 Representationofanatomicalsegmentsofhumanbodyandglobalandlocal coordinate systems.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.18 Coordinate system for measured hip contact forces. The hip contact force vector –F and its components –F , (cid:0)F , (cid:0)F acts from the pelvis to the x y z implant head and is measured in the femur coordinate system x;y;z. . . . . 38 2.19 Joint centres, reference points and coordinate system for gait analysis. . . . 39 2.20 ContactforceFoftypicalpatientNPAduringnineactivities. Contactforce F and its components –F , (cid:0)F , (cid:0)F . F and –F are nearly identical. . . . 40 x y z z 2.21 Contact force vector F of typical patient NPA during nine activities. The z-scales go up to 300% BW. Upper diagrams: Force vector F and direction Ay of F in the frontal plane. Lower diagrams: Force vector F and direction Az of F in the transverse plane. . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.22 Comparison of the predicted pattern of the hip load (solid black line) with thevariabilityofthehiploadmagnitude(greyband)measuredon4subjects through an hip prosthesis instrumented with a telemetric force sensor. . . . 42 3.1 Phantom and patient set-up during CT-scan. . . . . . . . . . . . . . . . . . 47 3.2 Pointsofmorphing:head,greatertrochanter,underbelowgreatertrochanter, and lesser trochanter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 Points of morphing:the four points on the basis of the femur: anterior, posterior, medial and lateral. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 List of Figures ix 3.4 Steps of morphing algorithm: (a) original template mesh, (b) original STL mesh, (c) result from morphing the template mesh on the STL using RBF method,(d)resultsafterprojection(c)on(b),(e)resultfromtheLaplacian smoothing, (f) final result represented in a high quality mesh of the STL geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 Representation of the regression line between experimental and predicted strain [STM+07]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6 BoneMatofthefemur,withtherangeofYoung’smodulusbetween18000MPa and the maximum value obtained from the software (19832 MPa). . . . . . 59 3.7 final structure of VME data tree (final structure of msf file).. . . . . . . . . 60 3.8 TF_IF_CH reference system. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.9 CHA reference system; blue line is z-axis, red line is x-axis and green line is y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.10 Disposition of the Ansys key-points on CHA reference system. . . . . . . . 62 3.11 Frontal plane and transversal plane. . . . . . . . . . . . . . . . . . . . . . . 63 3.12 Femur’s local coordinate system and keypoints. . . . . . . . . . . . . . . . . 66 3.13 Representetion of the nominal direction of load. . . . . . . . . . . . . . . . . 67 3.14 Representetion of all direction of load. . . . . . . . . . . . . . . . . . . . . . 67 4.1 Visualization of the distribution of principal deformation on the femur (an- terior view). The highest deformation is located on the top of the neck. . . 72 4.2 Visualization of the maximum strain point in posterior view of the femur. . 73 4.3 Box plot of BMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 Box plot of FRAX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Box plot of Strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6 Box plot of WorkFlow 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.7 ROC curve of BMD. AUC is of 0:73. . . . . . . . . . . . . . . . . . . . . . . 79 4.8 ROC curve of FRAX. AUC is of 0:64. . . . . . . . . . . . . . . . . . . . . . 79 4.9 ROC curve of strength. AUC is of 0:72. . . . . . . . . . . . . . . . . . . . . 80 4.10 ROC curve of WF2. AUC is of 0:75. . . . . . . . . . . . . . . . . . . . . . . 80 4.11 ROC curve of strength, WF2, N_BMD, TH_BMD and FRAX. AUC is of 0:84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.12 ROC curve of strength and FRAX. AUC is of 0:74. . . . . . . . . . . . . . . 83 4.13 ROC curve of WF2 and FRAX. AUC is of 0:76.. . . . . . . . . . . . . . . . 83 x List of Figures 4.14 ROC curve of strength, WF2, and FRAX. AUC is of 0:80. . . . . . . . . . . 84 4.15 ROC curve of strength and WF2. AUC is of 0:80. . . . . . . . . . . . . . . 84 4.16 ROC curve of strength, WF2, N_BMD and TH_BMD. AUC is of 0:83. . . 85 1 Representation of a box plot. The dots indicate the outliers.. . . . . . . . . 96 2 Representation of Mann-Whitney method. In (a) the different treatment cause different effects, while in (b) they don’t produce any differences. . . . 97 3 Gaussian distribution of two population completely separated. . . . . . . . 101 4 Gaussian distribution of two population with overlapping area. . . . . . . . 101 5 Contingency table.TP represents the true positive results, TN represents the true negative results, FP represents the false positive results and FN represents the false negative results. . . . . . . . . . . . . . . . . . . . . . . 102 6 Representation of the ROC curve as a function of specificity (Sp) and sen- sitivity (Se). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7 Representation of the AUC, the area under ROC curve. . . . . . . . . . . . 104 8 Logistic function with (cid:12) =(cid:0)1 and (cid:12) =2. . . . . . . . . . . . . . . . . . . 105 0 1
Description: