POLITECNICO DI MILANO Scuola di Ingegneria Industriale e dell’Informazione Corso di Laurea Magistrale in Ingegneria Energetica Estimating Load Profile for Off-Grid Power System Design: Model Improvement and Applications Relatore: Prof. Emanuela Colombo Correlatore: Ing. Stefano Mandelli Tesi di Laurea Magistrale di: Simone Losa Matr. 801574 Anno Accademico 2013-2014 Ringraziamenti Molte persone hanno accompagnato questo mio percorso universitario. Un ringraziamento dal profondo del cuore è però per le anime pazienti che mi sono sempre state vicine nella buona e nella cattiva sorte. Ai miei genitori, che mi hanno permesso di intraprendere questo percorso, e dai quali ho sempre ricevuto appoggio incondizionato e serenità nel momento delle scelte. A Sara, per essere sempre stata al mio fianco, motivandomi e sostenendomi nei momenti di difficoltà. Un ringraziamento doveroso alla prof.ssa Emanuela Colombo, per avermi dato la possibilità di concludere il mio percorso di studi come avrei desiderato ed aver costituito il punto di riferimento per lo sviluppo di tutto l’elaborato. Un ringraziamento particolare a Stefano, per tutto il tempo che mi ha saputo dedicare nello sviluppare e valorizzare al meglio quanto racchiuso in queste pagine. Ringrazio i miei colleghi ed amici Alessandro, Gianluca, Lorenzo, Luca, Matteo, Michele e Walter che mi hanno accompagnato in questi 5 anni e che hanno reso più leggero il cammino. Ringrazio tutti i miei amici e famigliari che, fuori dal Politecnico, mi hanno formato e fatto crescere con mille esperienze diverse. Index Abstract ............................................................................................................................ ix Sommario ........................................................................................................................ xii 1 Introduction, motivations and problem formulation ................................................ 1 1.1 Rural electrification and off-grid systems ......................................................... 1 1.2 Motivation: estimating load profiles ................................................................. 5 1.3 Problem formulation: the LoadProGen tool ..................................................... 8 1.4 Thesis objective and structure .......................................................................... 9 2 Characteristics of consumer loads .......................................................................... 11 2.1 Electrical loads ................................................................................................. 11 2.2 Load profiles: fundamental concepts and definitions ..................................... 12 2.3 Measuring load profile data ............................................................................ 21 2.4 Coincidence factor relationships ..................................................................... 25 3 Approaches for load profile estimate in off-grid systems: state of the art ............. 33 3.1 Load Forecasting ............................................................................................. 33 3.2 Residential Energy Consumption Modeling .................................................... 36 3.3 Load estimation for off-grid power design ..................................................... 39 4 LoadProGen: a tool to perform load profile estimates for off-grid systems .......... 47 4.1 General features .............................................................................................. 47 4.2 Input data ........................................................................................................ 48 4.3 Mathematical formulation .............................................................................. 50 5 LoadProGen improvement: developments and implementation ........................... 53 5.1 Improvements identification ........................................................................... 53 5.2 Development of the improvements ................................................................ 58 5.3 Computational framework .............................................................................. 64 5.4 LoadProGen Vs state-of-the art approaches ................................................... 71 6 Applications of the software tool ............................................................................ 75 6.1 Application for sizing of an off-grid PV system ............................................... 75 6.2 Load profile forecast application ..................................................................... 81 7 Conclusions and future work .................................................................................. 89 7.1 Conclusions...................................................................................................... 89 7.2 Future works ................................................................................................... 91 Appendix A ......................................................................................................................... Appendix B ......................................................................................................................... Appendix C.......................................................................................................................... References .......................................................................................................................... Abstract The problem of access to energy, in recent years, has become increasingly important in the eyes of the international community. The link between access to energy, particularly electricity, and human development is clear, but the problem is far to be solved. This is especially true for the poorest countries, where the lack of access to electricity is often one of the main obstacles to development. The rate of electrification in developing countries is even lower when looking at rural areas: in sub-Saharan Africa, for example, only 14.1% of the rural population have access to electricity. For this reason, the electrification of rural areas in developing countries is an actual issue for NGOs. There are two main possible solutions to provide access to electric energy in rural areas: (i) the traditional approach is to extend the national electricity grid to the rural areas, nevertheless large parts of these areas have low accessibility, low values of load demand and load factor. For these reasons, grid extension often results to be economically unfeasible; (ii) the alternative solution is to rely on decentralized and distributed generation, which often results to be the most appropriate technology option since power plants are installed close to the load, they can be sized in order to best fit with local load demand, and they can be fuelled by local resources (i.e. renewables sources). In recent years, for a variety of reasons, the second solution has been often preferred for rural electrification. In order to dimension these off-grid systems, there are many advanced software based on numerical and analytical methods; however, all require as input the electrical load to be met, in the form of load profile (usually daily load profiles). A research on articles about projects on system sizing for off-grid electrification of rural areas has shown that often it is not given enough importance to the estimation phase of the load, and that there is not a clear and definite procedure to be followed for this phase. At the light of the issue about lack of appropriate methods to estimate load profiles for supporting the off-grid system design process, in my thesis I worked for the improvement and application of an existing model, coded in MATLAB, for the estimation of load profiles. The aim of this model is to provide an appropriate method of estimation of the load to support the optimization and sizing process of off-grid systems for rural electrification. The algorithm is designed to work with few input data commonly required by even the simplest approaches for the estimation of energy requirements in rural areas currently used (installed equipment, times ix of use, etc.). The main features of the model are: (i) the bottom-up approach; (ii) stochastic sampling of switching-on instants of electrical appliances; (iii) the implementation of parameters related to the load profiles, and of empirical correlations between these parameters; (iv) the possibility of considering the uncertainty of the input data by introducing randomization parameters. The model has been finally applied in two cases. In the first application, it has been used to estimate load profiles of a un-electrified peripheral-urban area of Uganda; the estimated load profiles has been used as input data for a specific software which carried out the sizing of a photovoltaic system associated with batteries. In the second application, it has been possible to test the model, comparing the metered load profiles of an electrical load of a college in Bali, Cameroon, and the load profiles estimated by the algorithm for the same context. Keywords: Access to energy, Rural electrification, Off-grid power systems, Rural power systems, Electrical Load profiles, Load profile estimation, Stochastic Model for Load profile estimation, Bottom-up Model for Load profile estimation, Power systems sizing x
Description: