ebook img

polarization in proton-proton collisions with the ALICE detector at the LHC PDF

199 Pages·2017·14.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview polarization in proton-proton collisions with the ALICE detector at the LHC

Study of J/ψ polarization in proton-proton collisions with the ALICE detector at the LHC Arianna Batista Camejo To cite this version: Arianna Batista Camejo. Study of J/ψ polarization in proton-proton collisions with the ALICE detector at the LHC. Accelerator Physics[physics.acc-ph]. Université Clermont Auvergne [2017-2020], 2017. English. ￿NNT: 2017CLFAC004￿. ￿tel-01610078￿ HAL Id: tel-01610078 https://theses.hal.science/tel-01610078 Submitted on 4 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N0 d’ordre : D. U. 2790 PCCF T 1701 ´ UNIVERSITE CLERMONT AUVERGNE U.F.R. Sciences et Technologies ´ ECOLE DOCTORALE DES SCIENCES FONDAMENTALES N0 d’ordre : 904 ` THESE pr´esent´ee pour obtenir le grade de ´ DOCTEUR D’UNIVERSITE Sp´ecialit´e : Physique des particules par : Arianna Batista Camejo Master on Nuclear Physics Study of J/ψ polarization in proton-proton collisions with the ALICE detector at the LHC Th`ese soutenue le 20 janvier 2017, devant le jury d’examen : Pr´esident M. P. Dupieux LPC (Clermont-Ferrand) Rapporteurs Mme R. Arnaldi INFN (Turin, Italie) M. I. Laktineh IPNL (Lyon) Examinateurs M. J. E. Castillo Castellanos CEA/Irfu (Saclay) Mme K. Shtejer Diaz CEADEN (La Havane, Cuba) Directeurs de th`ese Mme V. Ramillien LPC (Clermont-Ferrand) M. P. Rosnet LPC (Clermont-Ferrand) Contents Abstract 1 1 Introduction to quarkonia 3 1.1 Standard Model and the strong interaction . . . . . . . . . . . . . . . . . . 3 1.1.1 Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . 3 1.1.2 Characteristics of the strong interaction . . . . . . . . . . . . . . . 5 1.2 Heavy quarkonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Discovery of quarkonium states . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Charmonium spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 J/ψ yields and decays . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Theoretical description of quarkonium production . . . . . . . . . . . . . . 10 1.3.1 Nonrelativistic QCD factorization . . . . . . . . . . . . . . . . . . . 12 1.3.2 The Color-Singlet model . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.3 CDF results: ψ(2S) anomaly and polarization puzzle . . . . . . . . 13 1.4 Quarkonia in heavy ions collisions . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Quarkonium polarization in a quark-gluon plasma . . . . . . . . . . 17 2 Polarization concepts 19 2.1 Decay distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 One-dimensional method . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 Asymmetry of angular distribution method . . . . . . . . . . . . . . 23 2.2 Reference systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Classical reference axis . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Frame invariant formalism . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Experimental review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Quarkonium polarization measurements at collider experiments . . 27 2.3.2 Results from fixed-target experiments . . . . . . . . . . . . . . . . . 34 2.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Experimental facility 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ALICE detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The ALICE coordinate system . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 The ALICE trigger system . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Central Barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 i 3.3.1 Inner Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.2 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.3 Transition Radiation Detector . . . . . . . . . . . . . . . . . . . . . 45 3.3.4 Time Of Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.5 High Momentum Particle Identification . . . . . . . . . . . . . . . . 48 3.3.6 Photon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.7 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . 50 3.4 Global Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.1 Zero Degree Calorimeters . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.2 V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.3 T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.4 Forward Multiplicity Detector . . . . . . . . . . . . . . . . . . . . . 53 3.4.5 Photon Multiplicity Detector . . . . . . . . . . . . . . . . . . . . . 53 3.5 Forward muon spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Absorbers and shielding . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.3 Trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 ALICE Upgrade project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Performance of a new Front-End Electronics (FEERIC) for the Muon Trigger RPCs 67 4.1 RPCs original working conditions . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Perspectives for the LHC Run 3 . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 RPC performance monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2 Cluster size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.3 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.4 Charge per hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.5 Summary of RPC performance during Run 1 . . . . . . . . . . . . . 72 4.4 FEERIC performance study in cavern . . . . . . . . . . . . . . . . . . . . . 74 4.4.1 Setting the RPC working conditions . . . . . . . . . . . . . . . . . 74 4.4.2 Charge per hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.3 Recent performance results . . . . . . . . . . . . . . . . . . . . . . . 81 5 Polarization Analysis 83 5.1 Data selection and analysis cuts . . . . . . . . . . . . . . . . . . . . . . . . 84 5.1.1 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.1.2 Single muon track cuts . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Data sample and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.1 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.3 Acceptance efficiency maps . . . . . . . . . . . . . . . . . . . . . 90 × 5.3 Study of polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.1 Signal extraction and raw angular distributions . . . . . . . . . . . 91 5.3.2 Corrected angular distributions . . . . . . . . . . . . . . . . . . . . 98 ii 5.3.3 Polarization parameters as a function of p . . . . . . . . . . . . . . 100 T 5.4 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.1 Systematics associated to the input MC . . . . . . . . . . . . . . . 102 5.4.2 Trigger response function . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4.3 J/ψ from b-hadron decays . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.4 Combination of systematics . . . . . . . . . . . . . . . . . . . . . . 113 6 Results and discussion 115 6.1 J/ψ polarization in pp collisions at √s = 8 TeV . . . . . . . . . . . . . . . 115 6.1.1 Inclusive J/ψ results . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.2 Prompt J/ψ results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 Comparison with previous experimental results . . . . . . . . . . . . . . . . 123 6.3 Comparison with theoretical predictions . . . . . . . . . . . . . . . . . . . 124 Conclusions 129 A Angular distributions 131 B Checks on the signal extraction and A ε correction 139 × C Systematic uncertainties 140 C.1 Systematic uncertainties associated to the signal extraction . . . . . . . . . 140 C.2 Systematic uncertainties associated to the MC input . . . . . . . . . . . . 143 C.3 Summary of all systematic uncertainties . . . . . . . . . . . . . . . . . . . 145 Acknowledgements 148 iii iv Abstract The main purpose of the ALICE experiment is the study and characterization of the Quark Gluon Plasma (QGP), a state of nuclear matter in which quarks and gluons are ¯ deconfined. Quarkonia (bound states of a heavy quark Q and its anti-quark Q) consti- tute one of the most interesting probes of the QGP. Besides this motivation, the study of quarkonium production is very interesting since it can contribute to our understanding of Quantum Chromodynamics, the theory of strong interactions. The formation of quarkonium states in hadronic collisions is not yet completely under- stood. The two main theoretical approaches to describe the production of quarkonium states, theColorSingletModelandtheNon-RelativisticQCDframework(NRQCD),have historically presented problems to simultaneously describe the production cross section and polarization of such states. On the experimental side, quarkonium polarization mea- surements have not always been complete and consistent between them. So, neither from the theoretical nor from the experimental point of view the situation was clear. Improved methods for the measurement of quarkonium polarization have been recently proposed, highlighting the necessity to perform the measurements of all polarization pa- rameterswithrespecttodifferentreferenceaxes. Inthiscontext, newmeasurementscould help to improve and set new constraints to the calculations. ALICE has measured the J/ψ polarization in pp collisions at √s= 7 TeV. The higher statistics of the 8 TeV data with respect to the 7 TeV data allows to extend the p range of the measurements. This T thesis presents a complete measurement of J/ψ polarization, i.e. the three polarization parameters, in two polarization frames: the Collins-Soper and Helicity frames. The results show no significant J/ψ polarization in the kinematic domain studied: 2.5 < ˜ y < 4.0 and 2 < p < 15 GeV/c. The measurement of a frame invariant parameter λ, T was also performed to ensure that no bias was present in the analysis procedure. The comparison with different theoretical predictions shows that there is not yet a satisfactory description of quarkonium production. None of the present theoretical approaches is able to describe both, the cross section and polarization measurements. 1 2 Chapter 1 Introduction to quarkonia In this chapter a general introduction to heavy quarkonium systems is given, with em- phasis on charmonia (and specifically J/ψ). The main characteristics of such systems, the theoretical considerations in the description of their production, and the motivations for their study in hadron and heavy ions collisions will be covered. 1.1 Standard Model and the strong interaction 1.1.1 Standard Model of Particle Physics The Standard Model (SM) is the theory that describes the properties of elementary par- ticles and their electromagnetic, weak and strong interactions. It was established in the 1960s and it has been confirmed by a large number of experimental results (historical and recent results are highlighted in [1]). In the SM, particles are of two kind: fermions, which are the matter particles and bosons, responsible of interactions. According to their mass hierarchy, the matter particles are grouped in three generations, their properties are summarized in Table 1.1 for quarks (left) and leptons (right). Table 1.1: Quarks and leptons of the Standard Model. From [2]. Flavour Mass Charge (e) Flavour Mass (MeV/c2) Charge (e) u 2.2+0.6 MeV/c2 2/3 e 0.51 0.31 -1 0.4 ± − d 4.7+0.5 MeV/c2 -1/3 ν < 2 10 3 0 0.4 e − × − c 1.27 0.03 GeV/c2 2/3 µ 105.7 2.4 -1 ± ± s 96+8 MeV/c2 -1/3 ν < 2 10 3 0 4 µ − × − t 173.5 0.6 GeV/c2 2/3 τ 1776.86 0.12 -1 ± ± b 4.18+0.04 GeV/c2 -1/3 ν < 2 10 3 0 0.03 τ − × − The force carriers (vector bosons) are: the photon which mediates the electromagnetic interactions, the W and Z0 bosons responsible for the weak interaction and gluons which ± 3

Description:
recherche français ou étrangers, des laboratoires N0 d'ordre : 904. TH`ESE présentée pour obtenir le grade de. DOCTEUR D'UNIVERSITÉ. Spécialité : Physique des particules par : Arianna Batista Camejo .. The discovery of J/ψ, followed by the shortly after announcement, by the SLAC group,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.