ebook img

Polarization and structure of relativistic parsec-scale AGN jets PDF

23 Pages·2005·0.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polarization and structure of relativistic parsec-scale AGN jets

Mon.Not.R.Astron.Soc.360,869–891(2005) doi:10.1111/j.1365-2966.2005.08954.x Polarization and structure of relativistic parsec-scale AGN jets (cid:1) M. Lyutikov,1,2,3 V. I. Pariev4,5† and D. C. Gabuzda6 1PhysicsDepartment,McGillUniversity,3600rueUniversity,Montreal,QC,CanadaH3A2T8 2CanadianInstituteforTheoreticalAstrophysics,60StGeorge,Toronto,Ont,M5S3H8,Canada 3KavliInstituteforParticleAstrophysicsandCosmology,2575SandhillRoad,MenloPark,CA94305,USA 4DepartmentofPhysicsandAstronomy,UniversityofRochester,Rochester,NY14627,USA 5LebedevPhysicalInstitute,LeninskyProspect53,Moscow119991,Russia 6DepartmentofPhysics,UniversityCollegeCork,Cork,Ireland D o w Accepted2005February22.Received2005February11;inoriginalform2004June6 n lo a d e d ABSTRACT fro m We consider the polarization properties of optically thin synchrotron radiation emitted by h relativistically moving electron–positron jets carrying large-scale helical magnetic fields. In ttp s our model, the jet is cylindrical and the emitting plasma moves parallel to the jet axis with ://a c a characteristic Lorentz factor (cid:2). Wedraw attention to the strong influence that the bulk ad e relativisticmotionoftheemittingrelativisticparticleshasontheobservedpolarization. m ic Ourcomputationspredictandexplainthefollowingbehaviour.(i)Forjetsunresolvedin .o u thedirectionperpendiculartotheirdirectionofpropagation,thepositionangleoftheelectric p.c o vector of the linear polarization has a bimodal distribution, being oriented either parallel or m perpendiculartothejet.(ii)Ifanultra-relativisticjetwith(cid:2) (cid:1)1whoseaxismakesasmall /m n angletothelineofsight,θ ∼1/(cid:2),experiencesarelativelysmallchangeinthedirectionof ras /a propagation,velocityorpitchangleofthemagneticfields,thepolarizationislikelytoremain rtic parallelorperpendicular;ontheotherhand,insomecases,thedegreeofpolarizationcanexhibit le largevariationsandthepolarizationpositionanglecanexperienceabrupt90◦ changes.This -ab s changeismorelikelytooccurinjetswithflatterspectra.(iii)Inorderforthejetpolarization tra c tobeorientedalongthejetaxis,theintrinsictoroidalmagneticfield(intheframeofthejet) t/3 6 shouldbeoftheorderoforstrongerthantheintrinsicpoloidalfield;inthiscase,thehighly 0/3 relativisticmotionofthejetimpliesthat,intheobserver’sframe,thejetisstronglydominated /8 6 by the toroidal magnetic field Bφ/Bz (cid:1) (cid:2). (iv) The emission-weighted average pitch angle 9/99 oftheintrinsichelicalfieldinthejetmustnotbetoosmalltoproducepolarizationalongthe 96 2 jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be 4 b generatedinalimitedrangeofradiinottooclosetothejetcore.(v)Formildlyrelativisticjets, y g u whenacounter-jetcanbeseen,thepolarizationofthecounter-jetispreferentiallyorthogonal e s totheaxis,unlessthejetisstronglydominatedbythetoroidalmagneticfieldinitsrestframe. t o n (vi)Forresolvedjets,thepolarizationpatternisnotsymmetricwithrespecttojetaxis.Under 0 4 certain conditions, this can be used to deduce the direction of the spin of the central object A p (black hole or disc), whether it is aligned or anti-aligned with the jet axis. (vii) In resolved ril 2 0 ‘cylindricalshell’typejets,thecentralpartsofthejetarepolarizedalongtheaxis,whilethe 1 9 outerpartsarepolarizedorthogonaltoit,inaccordancewithobservations. Weconcludethatlarge-scalemagneticfieldscanexplainthesalientpolarizationproperties of parsec-scale AGN jets. Since the typical degrees of polarization are (cid:2)15 per cent, the emittingpartsofthejetsmusthavecomparablerest-frametoroidalandpoloidalfields.Inthis case, most relativistic jets are strongly dominated by the toroidal magnetic field component intheobserver’sframe, Bφ/Bz∼(cid:2).WealsodiscussthepossibilitythatrelativisticAGNjets (cid:1) E-mail:[email protected] †Currentlyat:PhysicsDepartment,UniversityofWisconsin-Madison,1150UniversityAve.,Madison,WI53706,USA. (cid:4)C 2005RAS 870 M.Lyutikov,V.I.ParievandD.C.Gabuzda maybeelectromagnetically(Poyntingflux)dominated.Inthiscase,dissipationofthetoroidal magneticfield(andnotfluidshocks)mayberesponsibleforparticleacceleration. Keywords: MHD–radiationmechanisms:non-thermal–galaxies:active–galaxies:jets– galaxies:nuclei. 1 INTRODUCTION VLBIlinearpolarizationstudiesofcompactparsec-scalejetsinradio-loudAGNshaverevealedanumberofgeneraltendencies(e.g.Cawthorne etal.1993;Gabuzda,Pushkarev&Cawthorne2000;Gabuzda2003,andreferencestherein).Thesetendenciesinclude:(i)aroughlybimodal distributionoftheelectricvectorpositionangles(EVPAs)forthejetlinearpolarizationwithrespecttojetdirection,withquasarstendingto havepolarizationorthogonaltothejetandBLLacobjectstendingtohavepolarizationalongthejet(Marscheretal.2002);(ii)theEVPAs D sometimes ‘follow’ the jet as it bends, keeping its relative orientation with respect to the jet direction (Fig. 1; see also Owen, Hardee & ow n Cornwell1989forthekiloparsecjetinM87);(iii)thejetEVPAssometimesexperienceorthogonaljumpsalongthejet,changingfromaligned lo a toorthogonalorviceversa(Gabuzda&Go´mez2001;Pushkarevetal.2005;Fig.2);(iv)insomeresolvedjets,theEVPAinthecentralpart d e d ofthejetliesalongthejet,whiletheedgesarepolarizedorthogonallytothejetdirection(Attridge,Roberts&Wardle1999;Moellenbrock, fro Roberts&Wardle2000;Pushkarevetal.2005);(v)Faraday-rotationgradientsarefrequentlyobservedacrossthejetsofBLLacobjects m (Gabuzda,Murray&Cronin2004).Allofthesepropertiesarestatistical,eachhavinganumberofknownexceptions. http 1977T),haecclaerlgeera-sticoanle(em.ga.gnBeltaincdfifoelrdds&arePaaylmneos1t9u8n2i;veCrosanltloypaocucloepst&edLtoovpelalaycean19im94p;orCtaanmternozleinidn1th9e95p)roadnudc,tieosnpe(cei.agl.lyB,lcaonldlfimoradti&onZonfajtehke s://ac a jets(e.g.Heyvaerts&Norman1989;Sauty,Tsinganos&Trussoni2002;Heyvaerts&Norman2003);seealsothereviewbyBegelman, de m Blandford&Rees(1984).Yettheirimportanceforjetpropagationandemissiongenerationisunderestimated.Mostcommonly,polarization ic structureisattributedtotransverseorobliquerelativisticshockspropagatinginthejetandcompressingtheupstreamturbulentmagneticfield, .ou p sothatthecompresseddownstreammagneticfieldbecomesanisotropicallydistributed(e.g.Laing1980;Hughes,Aller&Aller1989a,b). .c o Thismechanismproducesfieldscompressedintheplaneoftheshockandisexpectedtoproducepolarizationalongthejetforthecaseof m /m atransverseshock.Numerousobservationsofpolarizationorthogonaltothejetareattributedtoashearedcomponentofmagneticfieldina n ra sheathsurroundingthejet.Thisoverallscenarioisopentocriticism.First,itishardtoseehowweakerbridgeswiththesamecharacteristic s /a polarizationconnectingbrightknotscouldbeproduced:thiswouldrequireaquasi-steadysequenceofweakshocks.Secondly,sinceinternal rtic shockscanbeoblique,witharangeoforientations,itisnotnaturaltohaveabimodaldistributionoftherelativeEVPAs(theEVPAsinBLLac le -a seemtobeindisagreementwiththeshockmodelDenn,Mutel&Marscher2000).Thirdly,somefeaturesshowinglongitudinalpolarization b s arefarfrombeingcompact(e.g.theresolvedVLBIjetsof1219+285,seeGabuzdaetal.1994,and1803+784,seeGabuzda&Chernetskii tra c 2003). t/3 6 Analternativeinterpretationofthejetpolarization,whichwefavour,isthattheflowcarrieslarge-scalehelicalmagneticfields.Inthis 0 /3 paper,wecalculatethepolarizationpropertiesofarelativisticjetcarryinghelicalmagneticfieldsandcomparethemwithobservations.The /8 6 9 /9 9 9 6 6 2 4 b y 5 gu e s t o n 4 0 4 A p RC SEC 3 ril 2019 A 2 Milli 1 0 -1 -2 1 0 -1 -2 -3 -4 -5 -6 MilliARC SEC Figure1. Observed4-cmtotal-intensitycontoursandsuperposedlinear-polarizationvectorsfortheBLLacobject1749+701:thepolarizationremainsaligned withthejetdirectionasthejetbends(dataprocessingisdescribedinGabuzda,Pushkarev&Garnich2001a). (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 871 4 2 0 -2 C E S RC -4 A Milli -6 D o w n lo -8 a d e d -10 fro m h ttp -12 s 12 10 8 6 4 2 0 -2 -4 ://a MilliARC SEC c a d Figure2. Observed6-cmtotal-intensitycontoursandsuperposedlinear-polarizationvectorsfortheBLLacobject1418+546:theorientationofthepolarization em relativetothejetdisplaysjumpsbetweenbeingalignedwithandorthogonaltothejet(dataprocessingandfurtheranalysisarediscussedinPushkarevetal. ic (2005). .ou p .c o m resultsareencouraging.Wecanbothreproducetheaveragepropertiesofthejetpolarization,suchasthebimodaldistributionoftheobserved /m EVPAs,aswellasallowforpossibleexceptions,suchasorthogonaljumpsintheEVPAalongthejet. n ra TherehavebeentwoapproachestostudiesofthesynchrotronpolarizationofAGNjets.Ontheonehand,Laing(1980,1981)developed s/a detailedmodelsforopticallythinsynchrotronemissionfromnon-relativisticjets.Recently,suchnon-relativisticmodelsweregeneralized rtic toincludeplasmaeffectsonthepropagationoftheradiationinsidethejet,FaradayrotationandtheCotton–Moutoneffect(Zheleznyakov le-a &Koryagin2002;Beckert&Falcke2002;Beckert2003;Ruszkowski2003).Intheseworks,althoughplasmaisrelativistic,theradiation bs andpolarizationtransportareconsideredinastaticmedium.Inactualjets,theplasmaisinastateofbulkmotionwithrelativisticspeeds. tra c Ontheotherhand,thepolarizationpropertiesofthesynchrotronemissionfromrelativisticAGNjetshavebeendiscussedbyBlandford& t/3 6 0 Ko¨nigl(1979),Bjornsson(1982)andKonigl&Choudhuri(1985),butnotinthecontextoflarge-scalespiralmagneticfields.Pariev,Istomin /3 &Beresnyak(2003)haveinvestigatedthepolarizationpropertiesofaspecificconfigurationofaspiralmagneticfieldwithauniformaxial /86 9 field,zerototalpoloidalcurrentinthejet,andwithshearedrelativisticspiralmotionoftheplasmaperpendiculartothemagneticfieldlines. /9 9 Inthispaper,wepresenttheresultsoffullyrelativisticcalculationsforvariousjetinternalstructuresandtheresultingpolarizationstructures. 9 6 2 WetakeastepbackandtrytoanswerthequestionofwhetherwecanreproducethemostsalientpolarizationfeaturesofAGNjetsunder 4 b genericassumptionsabouttheinternalhelicalmagneticfieldinthejet(basicallygeneralizingtheworkofLaing1981,torelativisticjets).In y g ordertoanswerthisquestion,onemustknowtheinternalstructureofthejet(distributionofpoloidalandtoroidalmagneticfields)andthe ue s distributionofsynchrotronemissivities.Thesearehighlyuncertainintermsoftheoreticalprinciples,andarealsosubjecttoaveragingover t o n thewholejet(forunresolvedjets)andalongthelineofsight(forresolvedjets). 0 4 Conventionally (and erroneously for a relativistically moving plasma!), the direction of the observed polarization for optically thin A p regionsandtheassociatedmagneticfieldsareassumedtobeinone-to-onecorrespondence,beingorthogonaltoeachother,sothatsome ril 2 observerschosetoplotthedirectionoftheelectricvectorofthewave,whileothersplotvectorsorthogonaltotheelectricvectorsandcall 0 1 themthedirectionofthemagneticfield.Thisiscorrectonlyfornon-relativisticallymovingsources,andthuscannotbeappliedtoAGNjets. 9 First,relativisticboostingchangestherelativestrengthofthemagneticfieldcomponentsalongandorthogonaltothelineofsight,which transformdifferentlyundertheLorentzboost.Thus,ifwecouldseethemagneticfieldsdirectly,thestrengthofthejetpoloidalandtoroidal fieldsmeasuredinthelaboratoryframewouldbedifferentfromthosemeasuredinthejetframe.Secondly,sincetheemissionisboostedby therelativisticmotionofthejetmaterial,thepolarizationEVPArotatesparalleltotheplanecontainingthevelocityvectoroftheemitting volumevandtheunitvectorinthedirectiontotheobservernˆ,sothat theobservedelectricfieldofthewaveisnot,ingeneral,orthogonal totheobservedmagneticfield(Blandford&Ko¨nigl1979;Lyutikov,Pariev&Blandford2003).Thus,toreconstructtheinternalstructureof relativisticjetsfrompolarizationobservationsoneneedstoknowboththepolarizationandthevelocityfieldofthejet.Overall,plottingthe directionoftheelectricfield(EVPA)shouldbeconsideredtheonlyacceptablewaytorepresentpolarizationdataforsourceswhererelativistic motionmaybeinvolved. Becauseofthefiniteresolutionofrealpolarimetricobservations,theobservedintensitiesofthepolarizedandunpolarizedcomponents areaveragesovertheeffectivebeamsize.Whentheresolutionisrelativelylow,thetransversedistributionoftheintensityisunresolved.Inthis case,onlytheintensityandpolarizationaveragedoverthejetsizeisobserved.Ifthejetiscircularincrosssectionandthedistributionsofthe (cid:4)C 2005RAS,MNRAS360,869–891 872 M.Lyutikov,V.I.ParievandD.C.Gabuzda magneticfields,emittingparticlesandvelocityfieldsareaxisymmetricacrossthejet,thenthewholejetcanbedecomposedintoacollection ofinfinitesimallythinshells.Theseshellshaveconstantcomponentsofthespiralmagneticfieldandconstantemissivityalongtheirperimeter, andaremovinguniformlywithaconstantvelocity.Thesummationofthepolarizationfromthefrontandbackcrossingpointsofalineofsight withsuchashellresultsintheobservedEVPAofeachshelleitherbeingparallelorperpendiculartothejetaxis.Consequently,theintegrated polarizationfromacylindricalaxisymmetricjetiseitherparallelorperpendiculartothejetaxis.Thisistrueregardlessofrelativisticeffects andisalsotrueinthepresenceofrotationofthejet(Parievetal.2003).Realjetsarenotcylindrical,anddivergewithdistancefromthecore, andtheymayhaveanellipticalorotherwisenon-axisymmetriccrosssection.Wequalitativelyexpectthattheseeffectswillleadtodeviations oftheEVPAfromastrictlybimodaldistribution,andeventotheappearanceofπ/4EVPAswithrespecttothejetaxis. Polarization along or orthogonal to the jet is often interpreted in terms of toroidally or poloidally dominated jets. Since the ratio of thetoroidaltopoloidalfieldsdependsonthereferenceframe,oneshouldbecarefulindefiningwhatismeantby,forexample,atoroidally dominatedjet.Astronglyrelativisticjetwithcomparabletoroidalandpoloidalfieldsinitsrestframe(defined,forexample,asaframein whichtheparticledistributionisisotropic)willbestronglytoroidallydominatedintheobserverframe. D o Thechoiceofreferenceframeinwhichthestructureofthejetisconsidereddependsonthequestionstobeasked.Forexample,the w n intrinsicstabilityofthejet(e.g.withrespecttokinkmodes)dependsmostlyonthepropertiesofthejetinitsrestframe.Itisconjecturedthat lo a stronglytoroidallydominatedjets(intheirrestframe)shouldbecomeunstable(seeworksonnon-relativisticMHDstabilityofjets(Torricelli- de d Ciamponi&Pietrini1990;Appl&Camenzind1992;Appl,Lery&Baty2000).Thoughtherearestablelaboratoryfieldconfigurationswith fro dominanttoroidalfields(reverse-fieldpinches),theyrequireacarefularrangementofcurrentsthatisnotlikelytooccurunderastrophysical m h conditions.Inaddition,relativisticforce-free,differentiallyrotatingpinches1 arelikelytobemorestablethanthenon-relativisticanalogue ttp owingtothestabilizingeffectsofdifferentialrotation(Istomin&Pariev1994,1996).However,westressthatbecauseofthespecificchoiceof s://a theuniformaxialmagneticfieldusedintheseworks,thedifferentialrotationmightnothaveastabilizingeffectformoregeneralequilibrium c a magneticfieldconfigurations(seefurtherconsiderationsinLyubarskii1999;Tomimatsu,Matsuoka&Takahashi2001).Thesetwoarguments de m showthatthefieldconfigurationintherestframemaybesomewhatdominatedbythetoroidalfield,butisunlikelytobestronglytoroidally ic .o dominated.Theobservationalappearanceofjets,suchastheirintensityandlinearpolarization,alsodependsmostlyontheinternalstructure u p ofthejetandtheemissivitydistribution,butapropertransformationtotheobserverframeisneeded.Ontheotherhand,interactionsofajet .c o m withthesurroundingmediumandthecorrespondinginstabilities(e.g.Kelvin–Helmholtz)dependonthejetpropertiesintheobserverframe /m (Blandford&Pringle1976;Turland&Scheuer1976;Hardee1979;Bodo,Mignone&Rosner2004). n ra Our polarization calculations indicate that, in the jet rest frame, the toroidal and poloidal fields are generally comparable, so that in s /a theobserverframe,therelativisticjetsaredominatedbythetoroidalmagneticfield:thehighertheDopplerfactorofthejet,thelargerthe rtic observedtoroidalmagneticfield.Notethat,inthisspecificcase,theobservedpolarizationelectricvectorsaveragedoverthejetsizewould le -a bealignedwiththejetdirection,andtheconclusionthatthecorrespondingmagneticfieldinthejetframeisatleastslightlydominatedby b s the‘transverse’(toroidal)B-fieldcomponentwould,infact,becorrect.Thisillustratesthefactthatcertainofthegeneralconclusionsthat tra c havebeendrawninearlierworkbasedonobservationswithrelativelylittleresolutionacrossthejetsmaywellbecorrect,eventhoughitis t/3 6 truethattheobservedelectricvectorsarenot,ingeneral,orthogonaltothemagneticfield.Notealsothattheconclusioninitalicsaboveis 0/3 alsoconsistentwiththedynamicalevolutionofthelarge-scalepoloidalandtoroidalfields:itisexpectedthattheratioofthepoloidaltothe /8 6 9 toroidalmagneticfieldintheobserverframedecreaseslinearlywiththecylindricalradiusofthejetasitexpandsfromthecentraldisc(sizes /9 oftheorderofhundredsofau)toathicknessof∼0.1pc;(seeSection7). 99 6 2 Wealsoassumethattheemissionisopticallythinandneglectpossibleplasmapropagationeffects,suchasFaradayandCotton–Mouton 4 b effects. This approximation is usually well justified (Pariev et al. 2003). Faraday rotation is absent in a pair plasma, as well as intrinsic y g depolarizationinsidethejet.VLBIpolarizationmeasurementsaredoneatfrequenciesintherange1.6to43GHz.Synchrotronself-absorption u e isverysmallatGHzandhigherfrequencies.For B ∼10−2 G,n ∼0.1cm−3,and p ≈2.5,anapproximateestimateforthesynchrotron st o self-absorptioncoefficientisκs =(5×103 pc)−1(ν/1GHz)−2−p/2 (e.g.Zhelezniakov1996).Thecorrespondingopticaldepththroughthe n 0 1-pc jet is only 2 × 10−4. The typical energy of particles emitting in this frequency range in a 10−2 G magnetic field is 100 MeV to 1 4 A p GreelaVt.ivTishteiccpoonwveerrs-liaownopfarltiinceleardpisotlraibriuzteiodnisnwtoitchirpcu≈la2r.p5oalnadrizaemdirnaidmioumwaLvoersen(tthzefaCcotottro∼n–1M0,othuetoensteimffeactet)foisrtahlseocosmnvaelrl.siFoonrcbooetfhficthieenrtmisalκacn=d ril 201 (500pc)−1(ν/1GHz)−3(Sazonov1969).Thisistoosmalltoinfluencethetransferoflinearpolarizationinsidethejet,butcouldbethesource 9 forasmallcircularpolarization,atthelevelofafractionofapercent.Wefocusonlinearpolarizationinthiswork. Asafirststep,weconsiderthesynchrotronemissionofanunresolved,thin,circularcylindricalshellpopulatedbyrelativisticelectrons withapower-lawdistributionandmovinguniformlywithconstantvelocityβ =v/c.Thepropertiesofthesynchrotronemissionarethen determinedbythreeparameters:theinternalpitchangleofthemagneticfieldψ(cid:6),theLorenzfactoroftheshellinthelaboratoryframe(cid:2)and theviewingangleθ thatthelineofsighttotheobservermakeswiththejetaxisintheobserver’sreferenceframe.Notethat,inthecaseof unresolvedjets,thisisequivalenttocalculatingthepolarizationfromajetwithapitchangleproperlyaveragedbytheemissivity. ByperformingthecorrectLorentztransformationsofthejetandradiationelectromagneticfields,weconstructpolarizationmapsfor variousobservationanglesθandjetparameters.Wefindthat,inordertoproducepolarizationalongthejetaxis,thepitchangleofthehelical 1Here,byarelativisticforce-freepinch,wemeanthattheelectricfieldsareoftheorderofthemagneticfields,andthechargedensitiesareoftheorderof j/nec,seebelow. (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 873 magneticfieldinthejetframemustbeoftheorderofunityorgreater,B(cid:6)/B(cid:6) ∼1.ByvirtueoftheLorentztransformation,thisimpliesthat φ z therelativisticjetsareobservedtobedominatedbythetoroidalmagneticfield Bφ/Bz(cid:1)(cid:2).Inaddition,wefindthatachangeoftheEVPA inthejetcanoccuronlyforanarrowrangeofrest-framepitchangles,π/4(cid:2)ψ(cid:6)(cid:2)π/3,whichallowsonetomeasure(andnotonlyderivea lowerlimitfor)theratioofthetoroidalandpoloidalmagneticfields:Bφ/Bz∼(cid:2)(cid:1)1. Further,weconsidertheemissionfrom‘filled’jets,i.e.whenmostofthejetvolumecontributestotheemissivity.Tofindtheemission propertiesofsuchjets,onealsoneedstointegratethejetemissivityoverthejetvolume.Thisrequiresknowledgeoftheinternalstructure ofthejetandthedistributionofsynchrotronemissivitythroughoutthejet,whichintroduceslargeuncertaintiesintothemodel.Totestthe sensitivityoftheresultstoaparticularjetmodel,weinvestigatethreepossibleforce-freemodelsforthejetstructure(diffusepinch,pinch withzerototalpoloidalmagneticfluxandhigh-orderreverse-fieldpinch)andtwoprescriptionsforthenumberdensityofrelativisticparticles (proportionaltothesecondpowerofthecurrentdensityandtothemagneticenergydensity).Weconcludethattheemission-weightedaverage pitchangleinthejetmustnotbetoosmallifwewishtoproducelongitudinalpolarization.Thisimpliesthataquasi-homogeneousemissivity distributioncannotreproducethevarietyofpositionanglebehaviourobserved–theaveragepolarizationremainsprimarilyorthogonaltothe D o jet,dominatedbythecentralpartsofthejetwherethemagneticfieldinthecomovingframeisprimarilypoloidal(sincethetoroidalfieldmust w n vanishontheaxis).Sincethisisnotgenerallythecase,thesynchrotronemissioninsuchjetsmustbegeneratedinanarrowrangeofradii, lo a wherethetoroidalandpoloidalmagneticfieldsareofthesameorderofmagnitudeinthejetframe.ThoughLaing(1981)arguedagainstthis de d possibilityonthegroundsthatitshouldproducestrongly‘edge-brightened’profilesinresolvedjets,subsequentobservationsoftheresolved fro jetsofCenA(Clarke,Burns&Feigelson1986)andM87(Biretta,Owen&Hardee1983)did,infact,showsuchanintensitydistribution. m h ttp s 2 SYNCHROTRON EMISSION FROM STEADY RELATIVISTIC FLOWS ://a c a Consider a cylindrical jet (Fig. 3) viewed by an observer. Below we denote all quantities measured in the local frame comoving with an d e elementaryemittingvolumewithprimes,whileunprimedquantitiesarethosemeasuredintheobserver’sframe.Letr,φandzbecylindrical m ic coordinatescentredonthejetaxisandx,yandzbethecorrespondingrectangularcoordinates.Themagneticfieldisintheφ–zdirection. .o u Thecomponentsofallvectorswrittenbelowarecomponentswithrespecttotherectangular(cid:1)coordinatesx,yandz.Thevelocityβ=v/cof p.c thebulkmotionisdirectedalongthez-direction(thecorrespondingLorentzfactoris(cid:2)=1/ 1−β2).Wedonotconsiderbulkrotationof om /m thejetinthiswork.Anobserverislocatedinthex–zplane,sothattheunitvectoralongthedirectionoftheemittedphotonscanbewritten n nˆ ={sinθ,0,cosθ}.Wedenotethemagneticfieldinthejetby B,themagneticfieldintheelectromagneticwaveemittedbyasmallvolume ra s ohfatthoevejertabvyebct,othreweilllecmtreiacnfiaeludniintvtheectjoertibnythEa,tadnidretchteioenl,eec.tgri.cBˆfieisldaiunntihteveelcetcotrroinmtahgendeitrieccwtioavneoefmthiettemdabgyneatiscmfiaellldvoinlutmheeoobfstehrevejer’tsbfyraem.Ae, /article eˆisaunitvectorinthedirectionoftheelectricfieldintheelectromagneticfieldintheobserver’sframe,bˆ(cid:6)isaunitvectorinthedirectionof -ab s themagneticfieldintheelectromagneticwaveinthecomovingframe,andsoon.Weassumethatthedistributionfunctionfortheemitting tra c particlesintheframecomovingwithanelementofthejetisisotropicinmomentumandisapowerlawinenergy: t/3 6 dn= Ke(cid:9)−pd(cid:9)dVd(cid:10)p. (1) 0/3 /8 6 9 /9 9 9 6 2 z 4 b y g u e R s j n t o n 0 4 A p ril 2 0 1 y 9 θ h φ x B φ Figure3. Geometryofthemodel. (cid:4)C 2005RAS,MNRAS360,869–891 874 M.Lyutikov,V.I.ParievandD.C.Gabuzda Here,dnisthenumberofparticlesintheenergyinterval(cid:9),(cid:9)+d(cid:9),dV istheelementaryvolume,d(cid:10) istheelementarysolidangleinthe p directionoftheparticlemomentum p,K =K (r)and p=constant. e e Since the emitting particles are ultra-relativistic and we neglect the generation of circular polarization, we do not include circular polarizationinourmodel(StokesV =0).Wealsoneglectapossibletangledcomponentofthemagneticfieldintheemissionregion.Under theseassumptions,ourestimatesprovideanupperlimitonthepossiblepolarization. TheStokesparametersperunitjetlengthforastationaryflowarethengivenby(seealsoLyutikovetal.2003;Parievetal.2003) (cid:2)  I = pp++71/κ3(Dν)2(1+κz(ν)(cid:2)2)+(p−d1S)/2 sdinSθ Ke D2+(p−1)/2|B(cid:6)sinχ(cid:6)|(p+1)/2, Q = K D2+(p−1)/2|B(cid:6)sinχ(cid:6)|(p+1)/2cos2χ˜, U = DD22((11++κzz(ν))22)++((pp−−11))//22 (cid:2) ssidinnSθθ Kee D2+(p−1)/2|B(cid:6)sinχ(cid:6)|(p+1)/2sin2χ˜,  (2) Dow V =0. nlo a d Thefunc√ti3onκ((cid:7)ν)3ips−1(cid:8) (cid:7)3p+7(cid:8) e3 (cid:7) 3e (cid:8)(p−1)/2 ed fro κ(ν)= (cid:2) (cid:2) ν−(p−1)/2, (3) m 4 E 12 E 12 m c2 2πm3c5 h e e ttp whereeandm arethechargeandmassofanelectron,cisthespeedoflight,(cid:2) istheEulergamma-function,zisthecosmologicalredshift s andDisthelume inositydistancetothejet.Theintegrationinequations(2)isoveErdS=rdrdφ,0<φ<2 π,0< r<Rjforunresolvedjets ://aca (R isthejetradius),while,forresolvedjetsdS=hdhdφ/sin2φ,arcsinh/R<φ<πsgnh−arcsinh/R,wherehistheprojecteddistance d j e ofthelineofsightfromthejetaxis(Parievetal.2003).Inequation(2),DistheDopplerboostingfactor mic D= 1 , (4) .oup (cid:2)(1−βcosθ) .c o χ(cid:6)istheanglebetweenthelineofsightandthemagneticfieldintherestframeofaplasmaelement,andχ˜ istheobservedEVPAintheplane m /m oftheskyseenbytheobserver,measuredclockwisefromsomereferencedirection. n Wenextintroduceaunitvectorlˆnormaltotheplanecontainingnˆ andthereferencedirectionintheplaneofthesky.Wechoosethe ras /a directionoftheprojectionofthejetaxistotheplaneoftheskyasareferencedirection,sothatlˆ={0,1,0}.Then, rtic cosχ˜ =eˆ×(nˆ×lˆ), sinχ˜ =eˆ×lˆ, (5) le-a b whereeˆisaunitvectorinthedirectionoftheelectricfieldofthewave. stra CalculationoftheStokesparametersusingequations(2)isnotasstraightforwardasinthecaseofaplasmaatrest.Severalkeyingredients c t/3 needtobetakenintoaccountinthecaseofrelativisticallymovingsynchrotronsources(Cocke&Holm1972;Blandford&Ko¨nigl1979; 6 0 Bjornsson1982;Ginzburg1989).First,thesynchrotronemissivitydependsontheanglebetweenthedirectionofanemittedphotonandthe /3 /8 magneticfieldintheplasmarestframe.Secondly,sinceemissionisboostedbythebulkrelativisticmotion,thepositionangleofthelinear 69 polarizationrotatesparalleltothenˆ–vplane.Thefractionalpolarizationemittedbyeachelementremainsthesame,butthedirectionsofthe /99 9 polarizationvectoroftheradiationemittedbydifferentelementsarerotatedbydifferentamounts.Thisleadstotheeffectivedepolarizationof 6 2 4 thetotalemission.Thetheoreticalmaximumfractionalpolarizationforahomogeneousfieldcanbeachievedonlyforauniformplane-parallel b y velocityfield.Thirdly,integrationalongthelineofsightandovertheimageofthejetintheplaneoftheskyforunresolvedjetsisbestcarried g u outinthelaboratoryframe(theframewherethesourceisatrestasawhole). es Letnˆ(cid:6) beaunitvectorinthedirectionofthewavevectorintheplasmarestframe,and Bˆ(cid:6) beaunitvectoralongthemagneticfieldin t o n theplasmarestframe.Theelectricfieldofalinearlypolarizedelectromagneticwavee(cid:6)isdirectedalongtheunitvectoreˆ(cid:6)=nˆ(cid:6)×Bˆ(cid:6)andthe 04 magneticfieldofthewaveb(cid:6)isdirectedalongtheunitvectorbˆ(cid:6)=nˆ(cid:6)×eˆ(cid:6).MakingtheLorentzboosttotheobserverframe,wefind(Lyutikov Ap etal.2003) (cid:9) (cid:10)  ril 2 0 nˆ(cid:6) = nˆ+(cid:2)(cid:2)v[1(cid:2)−(cid:2)+1((nˆnˆ××vv))]−1 ,  19 nˆ×q(cid:6) eˆ = (cid:1) , (6) q(cid:6) = Bˆ(cid:6)+q(cid:6)2nˆ−×(nˆ(v××qB(cid:6)ˆ)2(cid:6))− (cid:2) (Bˆ(cid:6)×v)v, 1+(cid:2) wherehereandinallfurtherexpressionswesetc=1.Wecanexpresstherest-frameunitvector Bˆ(cid:6)intermsoftheunitvector Bˆ alongthe magneticfieldinthelaboratoryframe.AssumingidealMHD,thereisnoelectricfieldintheplasmarestframe,E(cid:6)=0.Wethenobtain (cid:11) (cid:12)  Bˆ = (cid:1)1−(1Bˆ(cid:6)×v)2 Bˆ(cid:6)− 1+(cid:2)(cid:2)(Bˆ(cid:6)×v)v , (7) Bˆ(cid:6) = (1+(cid:2)(cid:1))Bˆ +(cid:2)2(Bˆ ×v)v ,  (1+(cid:2)) 1+(cid:2)2(Bˆ ×v)2 (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 875 toget  eˆ = (cid:1) nˆ×q , q2−(nˆ×q)2 (8)  q = Bˆ +nˆ×(v×Bˆ). ThisisageneralexpressiongivingthepolarizationvectorintermsoftheobservedquantitiesBˆ,nˆandv.Quitecompactformofexpression(8) wasderivedin(Lyutikovetal.2003). Relativisticaberrationmakestheobservedelectricfieldinthewavenon-orthogonaltotheobservedBfieldandtoitsprojectiononthe sky.Owingtotheconservationoftherelativisticinvariante(cid:6)×(b(cid:6)+B(cid:6)),wefindthat(seealsoBlandford&Ko¨nigl1979) e×B=(v×B)×(nˆ×e). (9) Forexample,theanglebetweeneˆ(whichliesintheplaneofthesky)andBˆ is (cid:9) (cid:10) cosζ =eˆ×Bˆ = (Bˆ ×(cid:1)nˆ) Bˆ ×(nˆ×v) , (10) Dow q2−(nˆ×q)2 nlo a whichisingeneralnotequaltozero.TheobservedelectricfieldisorthogonaltotheobservedBfieldifeither Bˆ liesinthenˆ–vplaneor de d (Bˆ ×nˆ)=0. fro m Next,weapplytheabovegeneralrelationstothecaseofsynchrotronemissionbyathincylindricalshellcarryingtoroidalmagneticfield h andmovinguniformly(cid:13)withvelocityβparalleltoitsaxisinthez-direction.Theshellisviewedatanangleθ withrespecttoitsaxis,sothat ttp s v=β{0,0,1} ://a (11) ca nˆ ={sinθ,0,cosθ}. d e m LetthemagneticfieldB(cid:6)intheemittingshellinthejetframebehelical: (cid:13) ic.ou BB(cid:6)(cid:6) == BBφ(cid:6)(cid:6)B{ˆ−(cid:6),siBnˆ(cid:6)φ=,csoisnφψ,(cid:6)0{−}+sinBφz(cid:6){,0c,o0s,φ1},0=}+Bc(cid:6)osisnψψ(cid:6)(cid:6){{0−,0si,n1φ},,cosφ,0}+B(cid:6)cosψ(cid:6){0,0,1} (12) p.com/m n whereψ(cid:6) isthemagneticfieldpitchangleintheshellrestframe, Bˆ(cid:6) isaunitvectoralongthemagneticfieldintheshellframe,andB(cid:6) is ra s tdheepemnadgennicteudoeftohfethmeafigneeldti.cAfitetlhdissapnodinetm,wisseivairteieisn.tTerheissteisdcionntshideeermedisisnioSnecotfioans4in.gleshellanddonotspecify,forthemoment,theradial /article Forthisparticularchoiceofgeometry,wefind -ab s nˆ(cid:6)=D[sinθ,0,(cid:2)(cosθ−β)], (13) tra 1 (cid:7) cosψ(cid:6)(cid:8) ct/36 Bˆ = (cid:1)1−β2cos2ψ(cid:6) −sinψ(cid:6)sinφ,cosφsinψ(cid:6), (cid:2) , (14) 0/3/8 (cid:9) (cid:10) 69 cosχ(cid:6)=(nˆ(cid:6)×Bˆ(cid:6))=D (cid:2)cosψ(cid:6)(cosθ−β)−sinθsinφsinψ(cid:6) , (15) /99 9 whereBˆ istheunitvectoralongthemagneticfieldinthelaboratory(observer)frame.Notethat 62  4 Bˆ ×nˆ = cosθco(cid:2)s(cid:1)ψ(cid:6)1−−(cid:2)βs2incoθss2iψnφ(cid:6) sinψ(cid:6), by gues Bˆ ×v= (cid:1) βcosψ(cid:6) , (16) t on Bˆ ×nˆ×v=−(cid:2)β(cid:1)s1i1n−−θβsβi2n2cψcoos(cid:6)s2c2oψψs(cid:6)φ(cid:6) .  04 April 2 0 1 9 Thepitchangleinthelaboratoryframe,ψ,islargerthanintherestframe: tanψ =(cid:2)tanψ(cid:6). (17) Aswehavealreadypointedout,oneofthemaineffectsoftherelativisticLorentztransformationisthattheobservedmagneticfield andpolarizationvectorsarenot,ingeneral,orthogonal(Blandford&Ko¨nigl1979).Forcylindricaljets,theexpressionfortheangleζ istoo lengthytobereproducedhere(seealsoAppendixA).Thedependenceofζ onφisplottedinFig.4.InFig.5,weplottheobservedrelative orientationsoftheelectricfieldinthewaveandthemagneticfieldprojectedontotheplaneofthesky.Notethat,forastationaryjet,the electricfieldisalwaysperpendiculartothemagneticfield,whilethisisnolongertrueforarelativisticallymovingjet.Infact,theelectric fieldofthewavemaybecomealmostparalleltothemagneticfieldforso(cid:1)meviewingangles. Thedegreeoflinearpolarizationoftheobservedradiationis(cid:13)= Q2+U2/I.TheresultantEVPAmeasuredbytheobserver,χ˜ , res isobtainedfrom Q U cos2χ˜ = (cid:1) , sin2χ˜ = (cid:1) , 0(cid:2)χ˜ <π. (18) res Q2+U2 res Q2+U2 res (cid:4)C 2005RAS,MNRAS360,869–891 876 M.Lyutikov,V.I.ParievandD.C.Gabuzda D o w n lo a d e d fro m h ttp s ://a c a d e Figure4. Angleζ betweentheobserveddirectionofthemagneticfieldBˆ andthepolarizationvectorinthewaveasafunctionofφforacylindricalshell m with(cid:2)=10,θ=0.1andsixvaluesofψ(cid:6).Inaccordancewithformula(10), ζ =90◦wheneitherthemagneticfieldispurelyaxial(ψ(cid:6)=0)oratthevisible ic.o edgesofthejet(φ=90◦andφ=270◦). u p .c o m /m n ra s /a rtic le -a b s tra c t/3 6 0 /3 /8 6 9 /9 9 9 6 2 4 b y g u e s t o n 0 4 A p ril 2 0 1 9 Figure5. Examplesofobservedelectricfieldinthewaveandmagneticfieldforθ=π/3.Projectionsofthemagneticfieldontheplaneoftheskyaredenoted byarrowswithlargehead,electricfieldsaredenotedbyarrowswithsmallheads.(a)Purelypoloidalmagneticfieldψ(cid:6)=0,(b)toroidalmagneticfieldψ(cid:6)= π/2,(c)helicalfieldwithψ(cid:6)=π/4viewedintherestframe,(d)helicalfieldwithψ(cid:6)=π/4movingwith(cid:2)=2.Forstationaryjets(a–c)theelectricvector ofthewaveisalwaysorthogonaltothemagneticfieldinthejetintheobserverframe;formovingjets(cased)thisisnottrueanymore. Itcanbeverifiedthat,foracylindricallysymmetricflowandmagneticfield,thechangeofφtoπ−φintheintegrals(2)doesnotchange thevalueofQandthesignofUisreversed.Therefore,theStokesparameterUintegratestozero.Consequently,ifQ>0thenχ˜ =0,and res ifQ<0thenχ˜ =π/2.Thus,forcircularjets,theobservedEVPAcanbeeitherparallelorperpendiculartotheprojectionofthejetaxis res ontotheplaneofthesky.Thisistruefordifferentiallyrotatingjetsaswell(Parievetal.2003).Thisnaturallyexplainstheobservedbimodal distributionofthejetEVPAs. (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 877 SinceU =0foracircularjet,wedefinethefractionalpolarizationas(cid:13)=Q/I,retainingthesignofQ,sothat (cid:13)canbesmallerthan zero.For(cid:13)>0,thepolarizationisalongthejet,whilethepolarizationisorthogonaltothejetfor (cid:13)<0. GiventhattheanglebetweentheobservedEVPAandobservedmagneticfieldforindividualradiatingplasmaelementsarenot,ingeneral, orthogonal,dependingontheviewingconditions,wecanaskwhyitisthecasethatreasonablyclearpatternshaveappearedintherelationship betweentheobservedEVPAsandthelocaljetdirection.Thiscanbeunderstood,inpart,asaconsequenceofthefactthattheresolution providedbyVLBIobservationsisofteninsufficientfullytoresolvethejetsinthetransversedirection,sothattheEVPAintegratedoverthe jetcrosssectionisobserved.ThisisessentiallyequivalenttothestatementabovethattheobservedEVPAintegratedoveracylindricaljetis expectedtobeeitherparallelorperpendiculartotheprojectionofthejetaxisontotheplaneofthesky.TheobservedEVPAwillessentially bedeterminedbytheratio B(cid:6)/B(cid:6);ifthejetsareapproximatelycylindrical,theobservedEVPAcanbeusedtodrawconclusionsaboutthe φ z ratioofthetoroidalandpoloidalmagneticfieldcomponentsintherestframe,butitisnotalwayspossibletotranslatetheseintounambiguous conclusionsaboutthisratiointheobserver’sframe.(Note,however,thatmostconclusionsabouttheB-fielddirectionthathavebeeninferred fromthedirectionoftheEVPAhave,infact,implicitlytakenthistomeantheB-fieldinthesourcerestframe.) D o w n 3 HOLLOW CYLINDRICAL JETS loa d e d 3.1 Unresolvedhollowjets(cylindricalshell) fro m Wefirstconsidercylindricaljetswiththeiremissivityconfinedtoanarrowcylindricalshell.Inordertointerpretobservationsthatdonot h resolvethetransversedependenceofthepolarizationacrossthejet,weintegratetheemissivityoftheshellovertheazimuthalangleinthe ttps observer’sframe.Foraconstantvelocityfieldoftheshell,allrelativisticeffectscanbeaccountedforbytheLorentztransformation:the ://a c degreeofpolarizationcanbecalculatedinthejetrestframefortheviewingangleinthejetrestframeθ(cid:6)obtainedfromexpression(13) ad e sinθ cosθ−β m sinθ(cid:6)= , cosθ(cid:6)= , (19) ic (cid:2)(1−βcosθ) 1−βcosθ .o u where0<θ <πand0<θ(cid:6)<π.Inaddition,theLorentztransformationofthejetmagneticfieldis Bz=B(cid:6)z,Bφ =(cid:2) B(cid:6)φ andresultsinthe p.co changeofthepitchangledescribedbyexpression(17).Thoughcorrespondingnon-relativisticcalculationshavebeendonebyLaing(1981), m /m theinterpretationofthesecalculationsforarelativisticallymovingshellisdifferent. n ThegeneralexpressionsforpolarizationgiveninSection2canbesimplifiedconsiderablyfornon-relativisticjets.Settingβ=0,wefind ras  /a sin2χ(cid:6) =cos2ψ(cid:6)sin2θ+ 1sin2θsin2ψ(cid:6)sinφ+(cos2θ+cos2φsin2θ)sin2ψ(cid:6) rtic 2 le cos2χ˜ = cos2φ1si−n2(ψco(cid:6)s−θ(ccoossψψ(cid:6)(cid:6)−sinsiθn+θscinosφθssininψφ(cid:6))s2inψ(cid:6))2.  (20) -abstra c Thedegreeofpolarization(cid:13)fromacylindricalshellpopulatedbyparticleswithvariouspower-lawindices p=1,2.4,3areplottedinFig.6 t/3 6 asafunctionoftheviewingangleandpitchangle(seealsoLaing1981).(Atypicalpower-lawindexforpc-scalejetsis p =2.4,which 0/3 correspondstoaspectralindexofα=−0.7,Sν ∝να;see,forexample,Gabuzda&Go´mez2001;Gabuzda,Go´mez&Aguda2001b.)2As /86 9 canbeseenfromFig.6(positivevaluesindicatepolarizationalongthejet,andnegativevaluespolarizationorthogonaltothejet),thereisa /9 9 weakdependenceofthepolarizationonthespectralindex.Inparticular,flatterspectra(smallerp)producemorecomplicatedpolarization 9 6 2 structure,sothatsourceswithflatterspectraaremorelikelytoproduceachangeofpolarizationfromparalleltoperpendicular. 4 b Forrelativisticjets,weadoptp=2.4asafiducialnumberandplotthefractionalpolarizationforvariousviewinganglesandpitchangles y g intherestframeandthelaboratoryframe(Fig.7).Inaddition,weplotinFig.8thefractionalpolarizationasafunctionofthebulkLorentz ue factor(cid:2)forθ =10◦. st o n Severalconclusionscanbedrawnuponanalysingtheseplots.Considerfirstthepolarizationasafunctionoftheviewingangleforvarious 0 rest-framepitchangles(Fig.7a).Forextremevaluesofthepitchangleintherestframe(purelytoroidalmagneticfield,ψ(cid:6)=π/2,andpurely 4 A pπo/l3oi(cid:2)daψlm(cid:6)(cid:2)agnπe/t2ic,tfiheeldpoψla(cid:6)r=iza0ti)o,nthaelwcoaryrsesrpemonadininsgaploonlagritzhaetiaoxnisi,spaelaoknigng((cid:13)at>θ0∼)a1n/d(cid:2)oarnthdodgeocnraela(s(cid:13)ing<s0h)artopltyhfeojreθt.(cid:2)Fo(cid:1)rl1ar.gFeopriitnctheramngedleisa,te pril 20 1 pitchangles,ψ(cid:6)(cid:2)π/3,thepolarizationcanchangefromparalleltoorthogonaldependingontheviewingangle,withsuchachangebeing 9 morelikelytooccurforlowervaluesofp.Forsmallerpitchangles,ψ(cid:6) (cid:2)π/4,thepolarizationishigh,weaklydependentontheviewing angle,andorientedorthogonaltothejet. Thus,theaveragepolarizationisaverysensitivefunctionofthejetparameters.Forsomejetparameters,thepolarizationpropertiesare fairlyconstant,while,insomecases,theycanchangeappreciablyduetosmallvariationsinthejetparameters. Mostimportantly,theobservationofpolarizationalongthejetrequiresthatthetoroidalmagneticfieldinthejetframebeatleastofthe orderofthepoloidalfield.Forrelativisticjets,thismeansthatsuchjetsarestronglydominatedbythetoroidalfieldintheobserver’sframe, Bφ/Bz ∼(cid:2) B(cid:6)φ/B(cid:6)z (cid:1)1.Incaseswhenachangeofsignisseen,wecanplacestrongconstraintsontheinternalpitchangle,sincesuch 2Aparticularlysimplecaseis p=3,whentheintegrationsinequations(2)canbedoneexactly(seealsoParievetal.2003,foranotherexactlyintegrable case).Wefindfortheaveragepolarizationofanunresolvedshell: (cid:13)=−(3/2)(1+3cos2ψ(cid:6))sin2θ(5−cos2θ−cos2ψ(cid:6)−3cos2θcos2ψ(cid:6))−1 (21) (cid:4)C 2005RAS,MNRAS360,869–891 878 M.Lyutikov,V.I.ParievandD.C.Gabuzda 0.5 0.5 0.5 0 0 0 -0.5 -0.5 -0.5 0 50 100 150 0 50 100 150 0 50 100 150 D o w (a) (b) (c) nlo a d e d fro m h ttp s 0.5 0.5 0.5 ://a c a d e m 0 0 0 ic .o u p .c o m -0.5 -0.5 -0.5 /m n ra s 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 /a rtic (d) (e) (f) le -a b s Figure6. Polarizationfraction(cid:13)=Q/I fornon-relativisticcylindricalshells.Firstrowofplotsare(cid:13)asafunctionoftheobserverangleθ for p=1(a), tra 2.4(b),3(c);secondrowofplotsare(cid:13)asafunctionofthepitchangleψ(cid:6)for p=1(d),2.4(e),3(f).Positivevaluesindicatepolarizationalongthejet; ct/3 negative–polarizationorthogonallytothejet. 6 0 /3 /8 6 9 /9 transitionscanbeseenonlyforalimitedrangeofpitchangles,π/3(cid:2)ψ(cid:6) (cid:2)π/4.A90◦ changeoftheEVPAcanbeinitiatedbyalreadya 9 9 smalldeviationofthejetdirectioncaused,forexample,bytheprecessionofthejetbase(ifθ ∼1/(cid:2),inordertochangetheobservedEVPA 62 4 byanangleoftheorderofunity,therealdirectionmaychangeby(cid:15)θ(cid:9)1/(cid:2)).Similarly,aslightaccelerationofthejetorinjectionofasmall b y amountoftheadditionaltoroidalmagneticflux(asinthe‘sweepingmagnetictwist’modelofNakamura,Uchida&Hirose2001andKigure gu etal.2004).Ontheotherhand,arelativisticjetviewedatalargeangle,θ(cid:1)1/(cid:2),willbeeitherweaklypolarizedalongthejet(forB(cid:6) (cid:1)B(cid:6)) es orstronglypolarizedorthogonallytothejet(forB(cid:6)φ (cid:2)B(cid:6)z);seeFig.7a. φ z t on 0 4 A p 3.2 Resolvedhollowjets(cylindricalshells) ril 2 0 Wenextturntoresolvedjets.Ifemissionisconfinedtoanarrowcylindricalshell,Ke∝δ(r −Rj)thenintegrationoverdSgivesamultiplier 19 h/arcsinh/R,sothatpolarizationbecomes j p+1 (cid:13)= cos2χ˜. (22) p+7/3 InFig.9weplotthefractionalpolarizationforshellsmovingwith(cid:2)=10,forvariouspitchanglesψ(cid:6)andviewinganglesθ. First,notethatthepolarizationclosetotheedgeoftheobservedjetisalwaysorthogonaltothejet.Thiscaneasilybeunderstoodfrom simplegeometricalconsiderations:atthevisibleedgeofthecylindricalshell,theprojectionofthetoroidalmagneticfieldontotheplaneofthe skybecomeszero,sothatonlythepoloidalmagneticfieldcontributestotheobservedsynchrotronemission,andthispartofthejetisobserved tobepolarizedorthogonaltothejetaxis.Forθ (cid:9)1/(cid:2) andθ (cid:1)1/(cid:2),thepolarizationinthecentralpartofthejetisalongthesymmetry axis.Also,inbothcasesofverylarge(θ (cid:1)1/(cid:2))andverysmall(θ (cid:9)1/(cid:2))viewingangles,theprofileofthepolarizationbecomescloseto symmetricwithrespecttothejetaxis.Forintermediatevaluesofθ ∼1/(cid:2),thepolarizationinthecentralpartsofthejetislongitudinalifthe pitchangleψ(cid:6) >45◦ andorthogonalifψ(cid:6) <45◦.Thiscanexplaininanaturalwaythefactthatresolvedjetssometimeshavepolarization alignedwiththejetinthecentralregionandorthogonaltothejetattheedge. (cid:4)C 2005RAS,MNRAS360,869–891

Description:
case, most relativistic jets are strongly dominated by the toroidal magnetic draw a firm conclusion about whether a jet is dominated by toroidal or
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.