Mon.Not.R.Astron.Soc.360,869–891(2005) doi:10.1111/j.1365-2966.2005.08954.x Polarization and structure of relativistic parsec-scale AGN jets (cid:1) M. Lyutikov,1,2,3 V. I. Pariev4,5† and D. C. Gabuzda6 1PhysicsDepartment,McGillUniversity,3600rueUniversity,Montreal,QC,CanadaH3A2T8 2CanadianInstituteforTheoreticalAstrophysics,60StGeorge,Toronto,Ont,M5S3H8,Canada 3KavliInstituteforParticleAstrophysicsandCosmology,2575SandhillRoad,MenloPark,CA94305,USA 4DepartmentofPhysicsandAstronomy,UniversityofRochester,Rochester,NY14627,USA 5LebedevPhysicalInstitute,LeninskyProspect53,Moscow119991,Russia 6DepartmentofPhysics,UniversityCollegeCork,Cork,Ireland D o w Accepted2005February22.Received2005February11;inoriginalform2004June6 n lo a d e d ABSTRACT fro m We consider the polarization properties of optically thin synchrotron radiation emitted by h relativistically moving electron–positron jets carrying large-scale helical magnetic fields. In ttp s our model, the jet is cylindrical and the emitting plasma moves parallel to the jet axis with ://a c a characteristic Lorentz factor (cid:2). Wedraw attention to the strong influence that the bulk ad e relativisticmotionoftheemittingrelativisticparticleshasontheobservedpolarization. m ic Ourcomputationspredictandexplainthefollowingbehaviour.(i)Forjetsunresolvedin .o u thedirectionperpendiculartotheirdirectionofpropagation,thepositionangleoftheelectric p.c o vector of the linear polarization has a bimodal distribution, being oriented either parallel or m perpendiculartothejet.(ii)Ifanultra-relativisticjetwith(cid:2) (cid:1)1whoseaxismakesasmall /m n angletothelineofsight,θ ∼1/(cid:2),experiencesarelativelysmallchangeinthedirectionof ras /a propagation,velocityorpitchangleofthemagneticfields,thepolarizationislikelytoremain rtic parallelorperpendicular;ontheotherhand,insomecases,thedegreeofpolarizationcanexhibit le largevariationsandthepolarizationpositionanglecanexperienceabrupt90◦ changes.This -ab s changeismorelikelytooccurinjetswithflatterspectra.(iii)Inorderforthejetpolarization tra c tobeorientedalongthejetaxis,theintrinsictoroidalmagneticfield(intheframeofthejet) t/3 6 shouldbeoftheorderoforstrongerthantheintrinsicpoloidalfield;inthiscase,thehighly 0/3 relativisticmotionofthejetimpliesthat,intheobserver’sframe,thejetisstronglydominated /8 6 by the toroidal magnetic field Bφ/Bz (cid:1) (cid:2). (iv) The emission-weighted average pitch angle 9/99 oftheintrinsichelicalfieldinthejetmustnotbetoosmalltoproducepolarizationalongthe 96 2 jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be 4 b generatedinalimitedrangeofradiinottooclosetothejetcore.(v)Formildlyrelativisticjets, y g u whenacounter-jetcanbeseen,thepolarizationofthecounter-jetispreferentiallyorthogonal e s totheaxis,unlessthejetisstronglydominatedbythetoroidalmagneticfieldinitsrestframe. t o n (vi)Forresolvedjets,thepolarizationpatternisnotsymmetricwithrespecttojetaxis.Under 0 4 certain conditions, this can be used to deduce the direction of the spin of the central object A p (black hole or disc), whether it is aligned or anti-aligned with the jet axis. (vii) In resolved ril 2 0 ‘cylindricalshell’typejets,thecentralpartsofthejetarepolarizedalongtheaxis,whilethe 1 9 outerpartsarepolarizedorthogonaltoit,inaccordancewithobservations. Weconcludethatlarge-scalemagneticfieldscanexplainthesalientpolarizationproperties of parsec-scale AGN jets. Since the typical degrees of polarization are (cid:2)15 per cent, the emittingpartsofthejetsmusthavecomparablerest-frametoroidalandpoloidalfields.Inthis case, most relativistic jets are strongly dominated by the toroidal magnetic field component intheobserver’sframe, Bφ/Bz∼(cid:2).WealsodiscussthepossibilitythatrelativisticAGNjets (cid:1) E-mail:[email protected] †Currentlyat:PhysicsDepartment,UniversityofWisconsin-Madison,1150UniversityAve.,Madison,WI53706,USA. (cid:4)C 2005RAS 870 M.Lyutikov,V.I.ParievandD.C.Gabuzda maybeelectromagnetically(Poyntingflux)dominated.Inthiscase,dissipationofthetoroidal magneticfield(andnotfluidshocks)mayberesponsibleforparticleacceleration. Keywords: MHD–radiationmechanisms:non-thermal–galaxies:active–galaxies:jets– galaxies:nuclei. 1 INTRODUCTION VLBIlinearpolarizationstudiesofcompactparsec-scalejetsinradio-loudAGNshaverevealedanumberofgeneraltendencies(e.g.Cawthorne etal.1993;Gabuzda,Pushkarev&Cawthorne2000;Gabuzda2003,andreferencestherein).Thesetendenciesinclude:(i)aroughlybimodal distributionoftheelectricvectorpositionangles(EVPAs)forthejetlinearpolarizationwithrespecttojetdirection,withquasarstendingto havepolarizationorthogonaltothejetandBLLacobjectstendingtohavepolarizationalongthejet(Marscheretal.2002);(ii)theEVPAs D sometimes ‘follow’ the jet as it bends, keeping its relative orientation with respect to the jet direction (Fig. 1; see also Owen, Hardee & ow n Cornwell1989forthekiloparsecjetinM87);(iii)thejetEVPAssometimesexperienceorthogonaljumpsalongthejet,changingfromaligned lo a toorthogonalorviceversa(Gabuzda&Go´mez2001;Pushkarevetal.2005;Fig.2);(iv)insomeresolvedjets,theEVPAinthecentralpart d e d ofthejetliesalongthejet,whiletheedgesarepolarizedorthogonallytothejetdirection(Attridge,Roberts&Wardle1999;Moellenbrock, fro Roberts&Wardle2000;Pushkarevetal.2005);(v)Faraday-rotationgradientsarefrequentlyobservedacrossthejetsofBLLacobjects m (Gabuzda,Murray&Cronin2004).Allofthesepropertiesarestatistical,eachhavinganumberofknownexceptions. http 1977T),haecclaerlgeera-sticoanle(em.ga.gnBeltaincdfifoelrdds&arePaaylmneos1t9u8n2i;veCrosanltloypaocucloepst&edLtoovpelalaycean19im94p;orCtaanmternozleinidn1th9e95p)roadnudc,tieosnpe(cei.agl.lyB,lcaonldlfimoradti&onZonfajtehke s://ac a jets(e.g.Heyvaerts&Norman1989;Sauty,Tsinganos&Trussoni2002;Heyvaerts&Norman2003);seealsothereviewbyBegelman, de m Blandford&Rees(1984).Yettheirimportanceforjetpropagationandemissiongenerationisunderestimated.Mostcommonly,polarization ic structureisattributedtotransverseorobliquerelativisticshockspropagatinginthejetandcompressingtheupstreamturbulentmagneticfield, .ou p sothatthecompresseddownstreammagneticfieldbecomesanisotropicallydistributed(e.g.Laing1980;Hughes,Aller&Aller1989a,b). .c o Thismechanismproducesfieldscompressedintheplaneoftheshockandisexpectedtoproducepolarizationalongthejetforthecaseof m /m atransverseshock.Numerousobservationsofpolarizationorthogonaltothejetareattributedtoashearedcomponentofmagneticfieldina n ra sheathsurroundingthejet.Thisoverallscenarioisopentocriticism.First,itishardtoseehowweakerbridgeswiththesamecharacteristic s /a polarizationconnectingbrightknotscouldbeproduced:thiswouldrequireaquasi-steadysequenceofweakshocks.Secondly,sinceinternal rtic shockscanbeoblique,witharangeoforientations,itisnotnaturaltohaveabimodaldistributionoftherelativeEVPAs(theEVPAsinBLLac le -a seemtobeindisagreementwiththeshockmodelDenn,Mutel&Marscher2000).Thirdly,somefeaturesshowinglongitudinalpolarization b s arefarfrombeingcompact(e.g.theresolvedVLBIjetsof1219+285,seeGabuzdaetal.1994,and1803+784,seeGabuzda&Chernetskii tra c 2003). t/3 6 Analternativeinterpretationofthejetpolarization,whichwefavour,isthattheflowcarrieslarge-scalehelicalmagneticfields.Inthis 0 /3 paper,wecalculatethepolarizationpropertiesofarelativisticjetcarryinghelicalmagneticfieldsandcomparethemwithobservations.The /8 6 9 /9 9 9 6 6 2 4 b y 5 gu e s t o n 4 0 4 A p RC SEC 3 ril 2019 A 2 Milli 1 0 -1 -2 1 0 -1 -2 -3 -4 -5 -6 MilliARC SEC Figure1. Observed4-cmtotal-intensitycontoursandsuperposedlinear-polarizationvectorsfortheBLLacobject1749+701:thepolarizationremainsaligned withthejetdirectionasthejetbends(dataprocessingisdescribedinGabuzda,Pushkarev&Garnich2001a). (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 871 4 2 0 -2 C E S RC -4 A Milli -6 D o w n lo -8 a d e d -10 fro m h ttp -12 s 12 10 8 6 4 2 0 -2 -4 ://a MilliARC SEC c a d Figure2. Observed6-cmtotal-intensitycontoursandsuperposedlinear-polarizationvectorsfortheBLLacobject1418+546:theorientationofthepolarization em relativetothejetdisplaysjumpsbetweenbeingalignedwithandorthogonaltothejet(dataprocessingandfurtheranalysisarediscussedinPushkarevetal. ic (2005). .ou p .c o m resultsareencouraging.Wecanbothreproducetheaveragepropertiesofthejetpolarization,suchasthebimodaldistributionoftheobserved /m EVPAs,aswellasallowforpossibleexceptions,suchasorthogonaljumpsintheEVPAalongthejet. n ra TherehavebeentwoapproachestostudiesofthesynchrotronpolarizationofAGNjets.Ontheonehand,Laing(1980,1981)developed s/a detailedmodelsforopticallythinsynchrotronemissionfromnon-relativisticjets.Recently,suchnon-relativisticmodelsweregeneralized rtic toincludeplasmaeffectsonthepropagationoftheradiationinsidethejet,FaradayrotationandtheCotton–Moutoneffect(Zheleznyakov le-a &Koryagin2002;Beckert&Falcke2002;Beckert2003;Ruszkowski2003).Intheseworks,althoughplasmaisrelativistic,theradiation bs andpolarizationtransportareconsideredinastaticmedium.Inactualjets,theplasmaisinastateofbulkmotionwithrelativisticspeeds. tra c Ontheotherhand,thepolarizationpropertiesofthesynchrotronemissionfromrelativisticAGNjetshavebeendiscussedbyBlandford& t/3 6 0 Ko¨nigl(1979),Bjornsson(1982)andKonigl&Choudhuri(1985),butnotinthecontextoflarge-scalespiralmagneticfields.Pariev,Istomin /3 &Beresnyak(2003)haveinvestigatedthepolarizationpropertiesofaspecificconfigurationofaspiralmagneticfieldwithauniformaxial /86 9 field,zerototalpoloidalcurrentinthejet,andwithshearedrelativisticspiralmotionoftheplasmaperpendiculartothemagneticfieldlines. /9 9 Inthispaper,wepresenttheresultsoffullyrelativisticcalculationsforvariousjetinternalstructuresandtheresultingpolarizationstructures. 9 6 2 WetakeastepbackandtrytoanswerthequestionofwhetherwecanreproducethemostsalientpolarizationfeaturesofAGNjetsunder 4 b genericassumptionsabouttheinternalhelicalmagneticfieldinthejet(basicallygeneralizingtheworkofLaing1981,torelativisticjets).In y g ordertoanswerthisquestion,onemustknowtheinternalstructureofthejet(distributionofpoloidalandtoroidalmagneticfields)andthe ue s distributionofsynchrotronemissivities.Thesearehighlyuncertainintermsoftheoreticalprinciples,andarealsosubjecttoaveragingover t o n thewholejet(forunresolvedjets)andalongthelineofsight(forresolvedjets). 0 4 Conventionally (and erroneously for a relativistically moving plasma!), the direction of the observed polarization for optically thin A p regionsandtheassociatedmagneticfieldsareassumedtobeinone-to-onecorrespondence,beingorthogonaltoeachother,sothatsome ril 2 observerschosetoplotthedirectionoftheelectricvectorofthewave,whileothersplotvectorsorthogonaltotheelectricvectorsandcall 0 1 themthedirectionofthemagneticfield.Thisiscorrectonlyfornon-relativisticallymovingsources,andthuscannotbeappliedtoAGNjets. 9 First,relativisticboostingchangestherelativestrengthofthemagneticfieldcomponentsalongandorthogonaltothelineofsight,which transformdifferentlyundertheLorentzboost.Thus,ifwecouldseethemagneticfieldsdirectly,thestrengthofthejetpoloidalandtoroidal fieldsmeasuredinthelaboratoryframewouldbedifferentfromthosemeasuredinthejetframe.Secondly,sincetheemissionisboostedby therelativisticmotionofthejetmaterial,thepolarizationEVPArotatesparalleltotheplanecontainingthevelocityvectoroftheemitting volumevandtheunitvectorinthedirectiontotheobservernˆ,sothat theobservedelectricfieldofthewaveisnot,ingeneral,orthogonal totheobservedmagneticfield(Blandford&Ko¨nigl1979;Lyutikov,Pariev&Blandford2003).Thus,toreconstructtheinternalstructureof relativisticjetsfrompolarizationobservationsoneneedstoknowboththepolarizationandthevelocityfieldofthejet.Overall,plottingthe directionoftheelectricfield(EVPA)shouldbeconsideredtheonlyacceptablewaytorepresentpolarizationdataforsourceswhererelativistic motionmaybeinvolved. Becauseofthefiniteresolutionofrealpolarimetricobservations,theobservedintensitiesofthepolarizedandunpolarizedcomponents areaveragesovertheeffectivebeamsize.Whentheresolutionisrelativelylow,thetransversedistributionoftheintensityisunresolved.Inthis case,onlytheintensityandpolarizationaveragedoverthejetsizeisobserved.Ifthejetiscircularincrosssectionandthedistributionsofthe (cid:4)C 2005RAS,MNRAS360,869–891 872 M.Lyutikov,V.I.ParievandD.C.Gabuzda magneticfields,emittingparticlesandvelocityfieldsareaxisymmetricacrossthejet,thenthewholejetcanbedecomposedintoacollection ofinfinitesimallythinshells.Theseshellshaveconstantcomponentsofthespiralmagneticfieldandconstantemissivityalongtheirperimeter, andaremovinguniformlywithaconstantvelocity.Thesummationofthepolarizationfromthefrontandbackcrossingpointsofalineofsight withsuchashellresultsintheobservedEVPAofeachshelleitherbeingparallelorperpendiculartothejetaxis.Consequently,theintegrated polarizationfromacylindricalaxisymmetricjetiseitherparallelorperpendiculartothejetaxis.Thisistrueregardlessofrelativisticeffects andisalsotrueinthepresenceofrotationofthejet(Parievetal.2003).Realjetsarenotcylindrical,anddivergewithdistancefromthecore, andtheymayhaveanellipticalorotherwisenon-axisymmetriccrosssection.Wequalitativelyexpectthattheseeffectswillleadtodeviations oftheEVPAfromastrictlybimodaldistribution,andeventotheappearanceofπ/4EVPAswithrespecttothejetaxis. Polarization along or orthogonal to the jet is often interpreted in terms of toroidally or poloidally dominated jets. Since the ratio of thetoroidaltopoloidalfieldsdependsonthereferenceframe,oneshouldbecarefulindefiningwhatismeantby,forexample,atoroidally dominatedjet.Astronglyrelativisticjetwithcomparabletoroidalandpoloidalfieldsinitsrestframe(defined,forexample,asaframein whichtheparticledistributionisisotropic)willbestronglytoroidallydominatedintheobserverframe. D o Thechoiceofreferenceframeinwhichthestructureofthejetisconsidereddependsonthequestionstobeasked.Forexample,the w n intrinsicstabilityofthejet(e.g.withrespecttokinkmodes)dependsmostlyonthepropertiesofthejetinitsrestframe.Itisconjecturedthat lo a stronglytoroidallydominatedjets(intheirrestframe)shouldbecomeunstable(seeworksonnon-relativisticMHDstabilityofjets(Torricelli- de d Ciamponi&Pietrini1990;Appl&Camenzind1992;Appl,Lery&Baty2000).Thoughtherearestablelaboratoryfieldconfigurationswith fro dominanttoroidalfields(reverse-fieldpinches),theyrequireacarefularrangementofcurrentsthatisnotlikelytooccurunderastrophysical m h conditions.Inaddition,relativisticforce-free,differentiallyrotatingpinches1 arelikelytobemorestablethanthenon-relativisticanalogue ttp owingtothestabilizingeffectsofdifferentialrotation(Istomin&Pariev1994,1996).However,westressthatbecauseofthespecificchoiceof s://a theuniformaxialmagneticfieldusedintheseworks,thedifferentialrotationmightnothaveastabilizingeffectformoregeneralequilibrium c a magneticfieldconfigurations(seefurtherconsiderationsinLyubarskii1999;Tomimatsu,Matsuoka&Takahashi2001).Thesetwoarguments de m showthatthefieldconfigurationintherestframemaybesomewhatdominatedbythetoroidalfield,butisunlikelytobestronglytoroidally ic .o dominated.Theobservationalappearanceofjets,suchastheirintensityandlinearpolarization,alsodependsmostlyontheinternalstructure u p ofthejetandtheemissivitydistribution,butapropertransformationtotheobserverframeisneeded.Ontheotherhand,interactionsofajet .c o m withthesurroundingmediumandthecorrespondinginstabilities(e.g.Kelvin–Helmholtz)dependonthejetpropertiesintheobserverframe /m (Blandford&Pringle1976;Turland&Scheuer1976;Hardee1979;Bodo,Mignone&Rosner2004). n ra Our polarization calculations indicate that, in the jet rest frame, the toroidal and poloidal fields are generally comparable, so that in s /a theobserverframe,therelativisticjetsaredominatedbythetoroidalmagneticfield:thehighertheDopplerfactorofthejet,thelargerthe rtic observedtoroidalmagneticfield.Notethat,inthisspecificcase,theobservedpolarizationelectricvectorsaveragedoverthejetsizewould le -a bealignedwiththejetdirection,andtheconclusionthatthecorrespondingmagneticfieldinthejetframeisatleastslightlydominatedby b s the‘transverse’(toroidal)B-fieldcomponentwould,infact,becorrect.Thisillustratesthefactthatcertainofthegeneralconclusionsthat tra c havebeendrawninearlierworkbasedonobservationswithrelativelylittleresolutionacrossthejetsmaywellbecorrect,eventhoughitis t/3 6 truethattheobservedelectricvectorsarenot,ingeneral,orthogonaltothemagneticfield.Notealsothattheconclusioninitalicsaboveis 0/3 alsoconsistentwiththedynamicalevolutionofthelarge-scalepoloidalandtoroidalfields:itisexpectedthattheratioofthepoloidaltothe /8 6 9 toroidalmagneticfieldintheobserverframedecreaseslinearlywiththecylindricalradiusofthejetasitexpandsfromthecentraldisc(sizes /9 oftheorderofhundredsofau)toathicknessof∼0.1pc;(seeSection7). 99 6 2 Wealsoassumethattheemissionisopticallythinandneglectpossibleplasmapropagationeffects,suchasFaradayandCotton–Mouton 4 b effects. This approximation is usually well justified (Pariev et al. 2003). Faraday rotation is absent in a pair plasma, as well as intrinsic y g depolarizationinsidethejet.VLBIpolarizationmeasurementsaredoneatfrequenciesintherange1.6to43GHz.Synchrotronself-absorption u e isverysmallatGHzandhigherfrequencies.For B ∼10−2 G,n ∼0.1cm−3,and p ≈2.5,anapproximateestimateforthesynchrotron st o self-absorptioncoefficientisκs =(5×103 pc)−1(ν/1GHz)−2−p/2 (e.g.Zhelezniakov1996).Thecorrespondingopticaldepththroughthe n 0 1-pc jet is only 2 × 10−4. The typical energy of particles emitting in this frequency range in a 10−2 G magnetic field is 100 MeV to 1 4 A p GreelaVt.ivTishteiccpoonwveerrs-liaownopfarltiinceleardpisotlraibriuzteiodnisnwtoitchirpcu≈la2r.p5oalnadrizaemdirnaidmioumwaLvoersen(tthzefaCcotottro∼n–1M0,othuetoensteimffeactet)foisrtahlseocosmnvaelrl.siFoonrcbooetfhficthieenrtmisalκacn=d ril 201 (500pc)−1(ν/1GHz)−3(Sazonov1969).Thisistoosmalltoinfluencethetransferoflinearpolarizationinsidethejet,butcouldbethesource 9 forasmallcircularpolarization,atthelevelofafractionofapercent.Wefocusonlinearpolarizationinthiswork. Asafirststep,weconsiderthesynchrotronemissionofanunresolved,thin,circularcylindricalshellpopulatedbyrelativisticelectrons withapower-lawdistributionandmovinguniformlywithconstantvelocityβ =v/c.Thepropertiesofthesynchrotronemissionarethen determinedbythreeparameters:theinternalpitchangleofthemagneticfieldψ(cid:6),theLorenzfactoroftheshellinthelaboratoryframe(cid:2)and theviewingangleθ thatthelineofsighttotheobservermakeswiththejetaxisintheobserver’sreferenceframe.Notethat,inthecaseof unresolvedjets,thisisequivalenttocalculatingthepolarizationfromajetwithapitchangleproperlyaveragedbytheemissivity. ByperformingthecorrectLorentztransformationsofthejetandradiationelectromagneticfields,weconstructpolarizationmapsfor variousobservationanglesθandjetparameters.Wefindthat,inordertoproducepolarizationalongthejetaxis,thepitchangleofthehelical 1Here,byarelativisticforce-freepinch,wemeanthattheelectricfieldsareoftheorderofthemagneticfields,andthechargedensitiesareoftheorderof j/nec,seebelow. (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 873 magneticfieldinthejetframemustbeoftheorderofunityorgreater,B(cid:6)/B(cid:6) ∼1.ByvirtueoftheLorentztransformation,thisimpliesthat φ z therelativisticjetsareobservedtobedominatedbythetoroidalmagneticfield Bφ/Bz(cid:1)(cid:2).Inaddition,wefindthatachangeoftheEVPA inthejetcanoccuronlyforanarrowrangeofrest-framepitchangles,π/4(cid:2)ψ(cid:6)(cid:2)π/3,whichallowsonetomeasure(andnotonlyderivea lowerlimitfor)theratioofthetoroidalandpoloidalmagneticfields:Bφ/Bz∼(cid:2)(cid:1)1. Further,weconsidertheemissionfrom‘filled’jets,i.e.whenmostofthejetvolumecontributestotheemissivity.Tofindtheemission propertiesofsuchjets,onealsoneedstointegratethejetemissivityoverthejetvolume.Thisrequiresknowledgeoftheinternalstructure ofthejetandthedistributionofsynchrotronemissivitythroughoutthejet,whichintroduceslargeuncertaintiesintothemodel.Totestthe sensitivityoftheresultstoaparticularjetmodel,weinvestigatethreepossibleforce-freemodelsforthejetstructure(diffusepinch,pinch withzerototalpoloidalmagneticfluxandhigh-orderreverse-fieldpinch)andtwoprescriptionsforthenumberdensityofrelativisticparticles (proportionaltothesecondpowerofthecurrentdensityandtothemagneticenergydensity).Weconcludethattheemission-weightedaverage pitchangleinthejetmustnotbetoosmallifwewishtoproducelongitudinalpolarization.Thisimpliesthataquasi-homogeneousemissivity distributioncannotreproducethevarietyofpositionanglebehaviourobserved–theaveragepolarizationremainsprimarilyorthogonaltothe D o jet,dominatedbythecentralpartsofthejetwherethemagneticfieldinthecomovingframeisprimarilypoloidal(sincethetoroidalfieldmust w n vanishontheaxis).Sincethisisnotgenerallythecase,thesynchrotronemissioninsuchjetsmustbegeneratedinanarrowrangeofradii, lo a wherethetoroidalandpoloidalmagneticfieldsareofthesameorderofmagnitudeinthejetframe.ThoughLaing(1981)arguedagainstthis de d possibilityonthegroundsthatitshouldproducestrongly‘edge-brightened’profilesinresolvedjets,subsequentobservationsoftheresolved fro jetsofCenA(Clarke,Burns&Feigelson1986)andM87(Biretta,Owen&Hardee1983)did,infact,showsuchanintensitydistribution. m h ttp s 2 SYNCHROTRON EMISSION FROM STEADY RELATIVISTIC FLOWS ://a c a Consider a cylindrical jet (Fig. 3) viewed by an observer. Below we denote all quantities measured in the local frame comoving with an d e elementaryemittingvolumewithprimes,whileunprimedquantitiesarethosemeasuredintheobserver’sframe.Letr,φandzbecylindrical m ic coordinatescentredonthejetaxisandx,yandzbethecorrespondingrectangularcoordinates.Themagneticfieldisintheφ–zdirection. .o u Thecomponentsofallvectorswrittenbelowarecomponentswithrespecttotherectangular(cid:1)coordinatesx,yandz.Thevelocityβ=v/cof p.c thebulkmotionisdirectedalongthez-direction(thecorrespondingLorentzfactoris(cid:2)=1/ 1−β2).Wedonotconsiderbulkrotationof om /m thejetinthiswork.Anobserverislocatedinthex–zplane,sothattheunitvectoralongthedirectionoftheemittedphotonscanbewritten n nˆ ={sinθ,0,cosθ}.Wedenotethemagneticfieldinthejetby B,themagneticfieldintheelectromagneticwaveemittedbyasmallvolume ra s ohfatthoevejertabvyebct,othreweilllecmtreiacnfiaeludniintvtheectjoertibnythEa,tadnidretchteioenl,eec.tgri.cBˆfieisldaiunntihteveelcetcotrroinmtahgendeitrieccwtioavneoefmthiettemdabgyneatiscmfiaellldvoinlutmheeoobfstehrevejer’tsbfyraem.Ae, /article eˆisaunitvectorinthedirectionoftheelectricfieldintheelectromagneticfieldintheobserver’sframe,bˆ(cid:6)isaunitvectorinthedirectionof -ab s themagneticfieldintheelectromagneticwaveinthecomovingframe,andsoon.Weassumethatthedistributionfunctionfortheemitting tra c particlesintheframecomovingwithanelementofthejetisisotropicinmomentumandisapowerlawinenergy: t/3 6 dn= Ke(cid:9)−pd(cid:9)dVd(cid:10)p. (1) 0/3 /8 6 9 /9 9 9 6 2 z 4 b y g u e R s j n t o n 0 4 A p ril 2 0 1 y 9 θ h φ x B φ Figure3. Geometryofthemodel. (cid:4)C 2005RAS,MNRAS360,869–891 874 M.Lyutikov,V.I.ParievandD.C.Gabuzda Here,dnisthenumberofparticlesintheenergyinterval(cid:9),(cid:9)+d(cid:9),dV istheelementaryvolume,d(cid:10) istheelementarysolidangleinthe p directionoftheparticlemomentum p,K =K (r)and p=constant. e e Since the emitting particles are ultra-relativistic and we neglect the generation of circular polarization, we do not include circular polarizationinourmodel(StokesV =0).Wealsoneglectapossibletangledcomponentofthemagneticfieldintheemissionregion.Under theseassumptions,ourestimatesprovideanupperlimitonthepossiblepolarization. TheStokesparametersperunitjetlengthforastationaryflowarethengivenby(seealsoLyutikovetal.2003;Parievetal.2003) (cid:2) I = pp++71/κ3(Dν)2(1+κz(ν)(cid:2)2)+(p−d1S)/2 sdinSθ Ke D2+(p−1)/2|B(cid:6)sinχ(cid:6)|(p+1)/2, Q = K D2+(p−1)/2|B(cid:6)sinχ(cid:6)|(p+1)/2cos2χ˜, U = DD22((11++κzz(ν))22)++((pp−−11))//22 (cid:2) ssidinnSθθ Kee D2+(p−1)/2|B(cid:6)sinχ(cid:6)|(p+1)/2sin2χ˜, (2) Dow V =0. nlo a d Thefunc√ti3onκ((cid:7)ν)3ips−1(cid:8) (cid:7)3p+7(cid:8) e3 (cid:7) 3e (cid:8)(p−1)/2 ed fro κ(ν)= (cid:2) (cid:2) ν−(p−1)/2, (3) m 4 E 12 E 12 m c2 2πm3c5 h e e ttp whereeandm arethechargeandmassofanelectron,cisthespeedoflight,(cid:2) istheEulergamma-function,zisthecosmologicalredshift s andDisthelume inositydistancetothejet.Theintegrationinequations(2)isoveErdS=rdrdφ,0<φ<2 π,0< r<Rjforunresolvedjets ://aca (R isthejetradius),while,forresolvedjetsdS=hdhdφ/sin2φ,arcsinh/R<φ<πsgnh−arcsinh/R,wherehistheprojecteddistance d j e ofthelineofsightfromthejetaxis(Parievetal.2003).Inequation(2),DistheDopplerboostingfactor mic D= 1 , (4) .oup (cid:2)(1−βcosθ) .c o χ(cid:6)istheanglebetweenthelineofsightandthemagneticfieldintherestframeofaplasmaelement,andχ˜ istheobservedEVPAintheplane m /m oftheskyseenbytheobserver,measuredclockwisefromsomereferencedirection. n Wenextintroduceaunitvectorlˆnormaltotheplanecontainingnˆ andthereferencedirectionintheplaneofthesky.Wechoosethe ras /a directionoftheprojectionofthejetaxistotheplaneoftheskyasareferencedirection,sothatlˆ={0,1,0}.Then, rtic cosχ˜ =eˆ×(nˆ×lˆ), sinχ˜ =eˆ×lˆ, (5) le-a b whereeˆisaunitvectorinthedirectionoftheelectricfieldofthewave. stra CalculationoftheStokesparametersusingequations(2)isnotasstraightforwardasinthecaseofaplasmaatrest.Severalkeyingredients c t/3 needtobetakenintoaccountinthecaseofrelativisticallymovingsynchrotronsources(Cocke&Holm1972;Blandford&Ko¨nigl1979; 6 0 Bjornsson1982;Ginzburg1989).First,thesynchrotronemissivitydependsontheanglebetweenthedirectionofanemittedphotonandthe /3 /8 magneticfieldintheplasmarestframe.Secondly,sinceemissionisboostedbythebulkrelativisticmotion,thepositionangleofthelinear 69 polarizationrotatesparalleltothenˆ–vplane.Thefractionalpolarizationemittedbyeachelementremainsthesame,butthedirectionsofthe /99 9 polarizationvectoroftheradiationemittedbydifferentelementsarerotatedbydifferentamounts.Thisleadstotheeffectivedepolarizationof 6 2 4 thetotalemission.Thetheoreticalmaximumfractionalpolarizationforahomogeneousfieldcanbeachievedonlyforauniformplane-parallel b y velocityfield.Thirdly,integrationalongthelineofsightandovertheimageofthejetintheplaneoftheskyforunresolvedjetsisbestcarried g u outinthelaboratoryframe(theframewherethesourceisatrestasawhole). es Letnˆ(cid:6) beaunitvectorinthedirectionofthewavevectorintheplasmarestframe,and Bˆ(cid:6) beaunitvectoralongthemagneticfieldin t o n theplasmarestframe.Theelectricfieldofalinearlypolarizedelectromagneticwavee(cid:6)isdirectedalongtheunitvectoreˆ(cid:6)=nˆ(cid:6)×Bˆ(cid:6)andthe 04 magneticfieldofthewaveb(cid:6)isdirectedalongtheunitvectorbˆ(cid:6)=nˆ(cid:6)×eˆ(cid:6).MakingtheLorentzboosttotheobserverframe,wefind(Lyutikov Ap etal.2003) (cid:9) (cid:10) ril 2 0 nˆ(cid:6) = nˆ+(cid:2)(cid:2)v[1(cid:2)−(cid:2)+1((nˆnˆ××vv))]−1 , 19 nˆ×q(cid:6) eˆ = (cid:1) , (6) q(cid:6) = Bˆ(cid:6)+q(cid:6)2nˆ−×(nˆ(v××qB(cid:6)ˆ)2(cid:6))− (cid:2) (Bˆ(cid:6)×v)v, 1+(cid:2) wherehereandinallfurtherexpressionswesetc=1.Wecanexpresstherest-frameunitvector Bˆ(cid:6)intermsoftheunitvector Bˆ alongthe magneticfieldinthelaboratoryframe.AssumingidealMHD,thereisnoelectricfieldintheplasmarestframe,E(cid:6)=0.Wethenobtain (cid:11) (cid:12) Bˆ = (cid:1)1−(1Bˆ(cid:6)×v)2 Bˆ(cid:6)− 1+(cid:2)(cid:2)(Bˆ(cid:6)×v)v , (7) Bˆ(cid:6) = (1+(cid:2)(cid:1))Bˆ +(cid:2)2(Bˆ ×v)v , (1+(cid:2)) 1+(cid:2)2(Bˆ ×v)2 (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 875 toget eˆ = (cid:1) nˆ×q , q2−(nˆ×q)2 (8) q = Bˆ +nˆ×(v×Bˆ). ThisisageneralexpressiongivingthepolarizationvectorintermsoftheobservedquantitiesBˆ,nˆandv.Quitecompactformofexpression(8) wasderivedin(Lyutikovetal.2003). Relativisticaberrationmakestheobservedelectricfieldinthewavenon-orthogonaltotheobservedBfieldandtoitsprojectiononthe sky.Owingtotheconservationoftherelativisticinvariante(cid:6)×(b(cid:6)+B(cid:6)),wefindthat(seealsoBlandford&Ko¨nigl1979) e×B=(v×B)×(nˆ×e). (9) Forexample,theanglebetweeneˆ(whichliesintheplaneofthesky)andBˆ is (cid:9) (cid:10) cosζ =eˆ×Bˆ = (Bˆ ×(cid:1)nˆ) Bˆ ×(nˆ×v) , (10) Dow q2−(nˆ×q)2 nlo a whichisingeneralnotequaltozero.TheobservedelectricfieldisorthogonaltotheobservedBfieldifeither Bˆ liesinthenˆ–vplaneor de d (Bˆ ×nˆ)=0. fro m Next,weapplytheabovegeneralrelationstothecaseofsynchrotronemissionbyathincylindricalshellcarryingtoroidalmagneticfield h andmovinguniformly(cid:13)withvelocityβparalleltoitsaxisinthez-direction.Theshellisviewedatanangleθ withrespecttoitsaxis,sothat ttp s v=β{0,0,1} ://a (11) ca nˆ ={sinθ,0,cosθ}. d e m LetthemagneticfieldB(cid:6)intheemittingshellinthejetframebehelical: (cid:13) ic.ou BB(cid:6)(cid:6) == BBφ(cid:6)(cid:6)B{ˆ−(cid:6),siBnˆ(cid:6)φ=,csoisnφψ,(cid:6)0{−}+sinBφz(cid:6){,0c,o0s,φ1},0=}+Bc(cid:6)osisnψψ(cid:6)(cid:6){{0−,0si,n1φ},,cosφ,0}+B(cid:6)cosψ(cid:6){0,0,1} (12) p.com/m n whereψ(cid:6) isthemagneticfieldpitchangleintheshellrestframe, Bˆ(cid:6) isaunitvectoralongthemagneticfieldintheshellframe,andB(cid:6) is ra s tdheepemnadgennicteudoeftohfethmeafigneeldti.cAfitetlhdissapnodinetm,wisseivairteieisn.tTerheissteisdcionntshideeermedisisnioSnecotfioans4in.gleshellanddonotspecify,forthemoment,theradial /article Forthisparticularchoiceofgeometry,wefind -ab s nˆ(cid:6)=D[sinθ,0,(cid:2)(cosθ−β)], (13) tra 1 (cid:7) cosψ(cid:6)(cid:8) ct/36 Bˆ = (cid:1)1−β2cos2ψ(cid:6) −sinψ(cid:6)sinφ,cosφsinψ(cid:6), (cid:2) , (14) 0/3/8 (cid:9) (cid:10) 69 cosχ(cid:6)=(nˆ(cid:6)×Bˆ(cid:6))=D (cid:2)cosψ(cid:6)(cosθ−β)−sinθsinφsinψ(cid:6) , (15) /99 9 whereBˆ istheunitvectoralongthemagneticfieldinthelaboratory(observer)frame.Notethat 62 4 Bˆ ×nˆ = cosθco(cid:2)s(cid:1)ψ(cid:6)1−−(cid:2)βs2incoθss2iψnφ(cid:6) sinψ(cid:6), by gues Bˆ ×v= (cid:1) βcosψ(cid:6) , (16) t on Bˆ ×nˆ×v=−(cid:2)β(cid:1)s1i1n−−θβsβi2n2cψcoos(cid:6)s2c2oψψs(cid:6)φ(cid:6) . 04 April 2 0 1 9 Thepitchangleinthelaboratoryframe,ψ,islargerthanintherestframe: tanψ =(cid:2)tanψ(cid:6). (17) Aswehavealreadypointedout,oneofthemaineffectsoftherelativisticLorentztransformationisthattheobservedmagneticfield andpolarizationvectorsarenot,ingeneral,orthogonal(Blandford&Ko¨nigl1979).Forcylindricaljets,theexpressionfortheangleζ istoo lengthytobereproducedhere(seealsoAppendixA).Thedependenceofζ onφisplottedinFig.4.InFig.5,weplottheobservedrelative orientationsoftheelectricfieldinthewaveandthemagneticfieldprojectedontotheplaneofthesky.Notethat,forastationaryjet,the electricfieldisalwaysperpendiculartothemagneticfield,whilethisisnolongertrueforarelativisticallymovingjet.Infact,theelectric fieldofthewavemaybecomealmostparalleltothemagneticfieldforso(cid:1)meviewingangles. Thedegreeoflinearpolarizationoftheobservedradiationis(cid:13)= Q2+U2/I.TheresultantEVPAmeasuredbytheobserver,χ˜ , res isobtainedfrom Q U cos2χ˜ = (cid:1) , sin2χ˜ = (cid:1) , 0(cid:2)χ˜ <π. (18) res Q2+U2 res Q2+U2 res (cid:4)C 2005RAS,MNRAS360,869–891 876 M.Lyutikov,V.I.ParievandD.C.Gabuzda D o w n lo a d e d fro m h ttp s ://a c a d e Figure4. Angleζ betweentheobserveddirectionofthemagneticfieldBˆ andthepolarizationvectorinthewaveasafunctionofφforacylindricalshell m with(cid:2)=10,θ=0.1andsixvaluesofψ(cid:6).Inaccordancewithformula(10), ζ =90◦wheneitherthemagneticfieldispurelyaxial(ψ(cid:6)=0)oratthevisible ic.o edgesofthejet(φ=90◦andφ=270◦). u p .c o m /m n ra s /a rtic le -a b s tra c t/3 6 0 /3 /8 6 9 /9 9 9 6 2 4 b y g u e s t o n 0 4 A p ril 2 0 1 9 Figure5. Examplesofobservedelectricfieldinthewaveandmagneticfieldforθ=π/3.Projectionsofthemagneticfieldontheplaneoftheskyaredenoted byarrowswithlargehead,electricfieldsaredenotedbyarrowswithsmallheads.(a)Purelypoloidalmagneticfieldψ(cid:6)=0,(b)toroidalmagneticfieldψ(cid:6)= π/2,(c)helicalfieldwithψ(cid:6)=π/4viewedintherestframe,(d)helicalfieldwithψ(cid:6)=π/4movingwith(cid:2)=2.Forstationaryjets(a–c)theelectricvector ofthewaveisalwaysorthogonaltothemagneticfieldinthejetintheobserverframe;formovingjets(cased)thisisnottrueanymore. Itcanbeverifiedthat,foracylindricallysymmetricflowandmagneticfield,thechangeofφtoπ−φintheintegrals(2)doesnotchange thevalueofQandthesignofUisreversed.Therefore,theStokesparameterUintegratestozero.Consequently,ifQ>0thenχ˜ =0,and res ifQ<0thenχ˜ =π/2.Thus,forcircularjets,theobservedEVPAcanbeeitherparallelorperpendiculartotheprojectionofthejetaxis res ontotheplaneofthesky.Thisistruefordifferentiallyrotatingjetsaswell(Parievetal.2003).Thisnaturallyexplainstheobservedbimodal distributionofthejetEVPAs. (cid:4)C 2005RAS,MNRAS360,869–891 PolarizationofrelativisticAGNjets 877 SinceU =0foracircularjet,wedefinethefractionalpolarizationas(cid:13)=Q/I,retainingthesignofQ,sothat (cid:13)canbesmallerthan zero.For(cid:13)>0,thepolarizationisalongthejet,whilethepolarizationisorthogonaltothejetfor (cid:13)<0. GiventhattheanglebetweentheobservedEVPAandobservedmagneticfieldforindividualradiatingplasmaelementsarenot,ingeneral, orthogonal,dependingontheviewingconditions,wecanaskwhyitisthecasethatreasonablyclearpatternshaveappearedintherelationship betweentheobservedEVPAsandthelocaljetdirection.Thiscanbeunderstood,inpart,asaconsequenceofthefactthattheresolution providedbyVLBIobservationsisofteninsufficientfullytoresolvethejetsinthetransversedirection,sothattheEVPAintegratedoverthe jetcrosssectionisobserved.ThisisessentiallyequivalenttothestatementabovethattheobservedEVPAintegratedoveracylindricaljetis expectedtobeeitherparallelorperpendiculartotheprojectionofthejetaxisontotheplaneofthesky.TheobservedEVPAwillessentially bedeterminedbytheratio B(cid:6)/B(cid:6);ifthejetsareapproximatelycylindrical,theobservedEVPAcanbeusedtodrawconclusionsaboutthe φ z ratioofthetoroidalandpoloidalmagneticfieldcomponentsintherestframe,butitisnotalwayspossibletotranslatetheseintounambiguous conclusionsaboutthisratiointheobserver’sframe.(Note,however,thatmostconclusionsabouttheB-fielddirectionthathavebeeninferred fromthedirectionoftheEVPAhave,infact,implicitlytakenthistomeantheB-fieldinthesourcerestframe.) D o w n 3 HOLLOW CYLINDRICAL JETS loa d e d 3.1 Unresolvedhollowjets(cylindricalshell) fro m Wefirstconsidercylindricaljetswiththeiremissivityconfinedtoanarrowcylindricalshell.Inordertointerpretobservationsthatdonot h resolvethetransversedependenceofthepolarizationacrossthejet,weintegratetheemissivityoftheshellovertheazimuthalangleinthe ttps observer’sframe.Foraconstantvelocityfieldoftheshell,allrelativisticeffectscanbeaccountedforbytheLorentztransformation:the ://a c degreeofpolarizationcanbecalculatedinthejetrestframefortheviewingangleinthejetrestframeθ(cid:6)obtainedfromexpression(13) ad e sinθ cosθ−β m sinθ(cid:6)= , cosθ(cid:6)= , (19) ic (cid:2)(1−βcosθ) 1−βcosθ .o u where0<θ <πand0<θ(cid:6)<π.Inaddition,theLorentztransformationofthejetmagneticfieldis Bz=B(cid:6)z,Bφ =(cid:2) B(cid:6)φ andresultsinthe p.co changeofthepitchangledescribedbyexpression(17).Thoughcorrespondingnon-relativisticcalculationshavebeendonebyLaing(1981), m /m theinterpretationofthesecalculationsforarelativisticallymovingshellisdifferent. n ThegeneralexpressionsforpolarizationgiveninSection2canbesimplifiedconsiderablyfornon-relativisticjets.Settingβ=0,wefind ras /a sin2χ(cid:6) =cos2ψ(cid:6)sin2θ+ 1sin2θsin2ψ(cid:6)sinφ+(cos2θ+cos2φsin2θ)sin2ψ(cid:6) rtic 2 le cos2χ˜ = cos2φ1si−n2(ψco(cid:6)s−θ(ccoossψψ(cid:6)(cid:6)−sinsiθn+θscinosφθssininψφ(cid:6))s2inψ(cid:6))2. (20) -abstra c Thedegreeofpolarization(cid:13)fromacylindricalshellpopulatedbyparticleswithvariouspower-lawindices p=1,2.4,3areplottedinFig.6 t/3 6 asafunctionoftheviewingangleandpitchangle(seealsoLaing1981).(Atypicalpower-lawindexforpc-scalejetsis p =2.4,which 0/3 correspondstoaspectralindexofα=−0.7,Sν ∝να;see,forexample,Gabuzda&Go´mez2001;Gabuzda,Go´mez&Aguda2001b.)2As /86 9 canbeseenfromFig.6(positivevaluesindicatepolarizationalongthejet,andnegativevaluespolarizationorthogonaltothejet),thereisa /9 9 weakdependenceofthepolarizationonthespectralindex.Inparticular,flatterspectra(smallerp)producemorecomplicatedpolarization 9 6 2 structure,sothatsourceswithflatterspectraaremorelikelytoproduceachangeofpolarizationfromparalleltoperpendicular. 4 b Forrelativisticjets,weadoptp=2.4asafiducialnumberandplotthefractionalpolarizationforvariousviewinganglesandpitchangles y g intherestframeandthelaboratoryframe(Fig.7).Inaddition,weplotinFig.8thefractionalpolarizationasafunctionofthebulkLorentz ue factor(cid:2)forθ =10◦. st o n Severalconclusionscanbedrawnuponanalysingtheseplots.Considerfirstthepolarizationasafunctionoftheviewingangleforvarious 0 rest-framepitchangles(Fig.7a).Forextremevaluesofthepitchangleintherestframe(purelytoroidalmagneticfield,ψ(cid:6)=π/2,andpurely 4 A pπo/l3oi(cid:2)daψlm(cid:6)(cid:2)agnπe/t2ic,tfiheeldpoψla(cid:6)r=iza0ti)o,nthaelwcoaryrsesrpemonadininsgaploonlagritzhaetiaoxnisi,spaelaoknigng((cid:13)at>θ0∼)a1n/d(cid:2)oarnthdodgeocnraela(s(cid:13)ing<s0h)artopltyhfeojreθt.(cid:2)Fo(cid:1)rl1ar.gFeopriitnctheramngedleisa,te pril 20 1 pitchangles,ψ(cid:6)(cid:2)π/3,thepolarizationcanchangefromparalleltoorthogonaldependingontheviewingangle,withsuchachangebeing 9 morelikelytooccurforlowervaluesofp.Forsmallerpitchangles,ψ(cid:6) (cid:2)π/4,thepolarizationishigh,weaklydependentontheviewing angle,andorientedorthogonaltothejet. Thus,theaveragepolarizationisaverysensitivefunctionofthejetparameters.Forsomejetparameters,thepolarizationpropertiesare fairlyconstant,while,insomecases,theycanchangeappreciablyduetosmallvariationsinthejetparameters. Mostimportantly,theobservationofpolarizationalongthejetrequiresthatthetoroidalmagneticfieldinthejetframebeatleastofthe orderofthepoloidalfield.Forrelativisticjets,thismeansthatsuchjetsarestronglydominatedbythetoroidalfieldintheobserver’sframe, Bφ/Bz ∼(cid:2) B(cid:6)φ/B(cid:6)z (cid:1)1.Incaseswhenachangeofsignisseen,wecanplacestrongconstraintsontheinternalpitchangle,sincesuch 2Aparticularlysimplecaseis p=3,whentheintegrationsinequations(2)canbedoneexactly(seealsoParievetal.2003,foranotherexactlyintegrable case).Wefindfortheaveragepolarizationofanunresolvedshell: (cid:13)=−(3/2)(1+3cos2ψ(cid:6))sin2θ(5−cos2θ−cos2ψ(cid:6)−3cos2θcos2ψ(cid:6))−1 (21) (cid:4)C 2005RAS,MNRAS360,869–891 878 M.Lyutikov,V.I.ParievandD.C.Gabuzda 0.5 0.5 0.5 0 0 0 -0.5 -0.5 -0.5 0 50 100 150 0 50 100 150 0 50 100 150 D o w (a) (b) (c) nlo a d e d fro m h ttp s 0.5 0.5 0.5 ://a c a d e m 0 0 0 ic .o u p .c o m -0.5 -0.5 -0.5 /m n ra s 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 /a rtic (d) (e) (f) le -a b s Figure6. Polarizationfraction(cid:13)=Q/I fornon-relativisticcylindricalshells.Firstrowofplotsare(cid:13)asafunctionoftheobserverangleθ for p=1(a), tra 2.4(b),3(c);secondrowofplotsare(cid:13)asafunctionofthepitchangleψ(cid:6)for p=1(d),2.4(e),3(f).Positivevaluesindicatepolarizationalongthejet; ct/3 negative–polarizationorthogonallytothejet. 6 0 /3 /8 6 9 /9 transitionscanbeseenonlyforalimitedrangeofpitchangles,π/3(cid:2)ψ(cid:6) (cid:2)π/4.A90◦ changeoftheEVPAcanbeinitiatedbyalreadya 9 9 smalldeviationofthejetdirectioncaused,forexample,bytheprecessionofthejetbase(ifθ ∼1/(cid:2),inordertochangetheobservedEVPA 62 4 byanangleoftheorderofunity,therealdirectionmaychangeby(cid:15)θ(cid:9)1/(cid:2)).Similarly,aslightaccelerationofthejetorinjectionofasmall b y amountoftheadditionaltoroidalmagneticflux(asinthe‘sweepingmagnetictwist’modelofNakamura,Uchida&Hirose2001andKigure gu etal.2004).Ontheotherhand,arelativisticjetviewedatalargeangle,θ(cid:1)1/(cid:2),willbeeitherweaklypolarizedalongthejet(forB(cid:6) (cid:1)B(cid:6)) es orstronglypolarizedorthogonallytothejet(forB(cid:6)φ (cid:2)B(cid:6)z);seeFig.7a. φ z t on 0 4 A p 3.2 Resolvedhollowjets(cylindricalshells) ril 2 0 Wenextturntoresolvedjets.Ifemissionisconfinedtoanarrowcylindricalshell,Ke∝δ(r −Rj)thenintegrationoverdSgivesamultiplier 19 h/arcsinh/R,sothatpolarizationbecomes j p+1 (cid:13)= cos2χ˜. (22) p+7/3 InFig.9weplotthefractionalpolarizationforshellsmovingwith(cid:2)=10,forvariouspitchanglesψ(cid:6)andviewinganglesθ. First,notethatthepolarizationclosetotheedgeoftheobservedjetisalwaysorthogonaltothejet.Thiscaneasilybeunderstoodfrom simplegeometricalconsiderations:atthevisibleedgeofthecylindricalshell,theprojectionofthetoroidalmagneticfieldontotheplaneofthe skybecomeszero,sothatonlythepoloidalmagneticfieldcontributestotheobservedsynchrotronemission,andthispartofthejetisobserved tobepolarizedorthogonaltothejetaxis.Forθ (cid:9)1/(cid:2) andθ (cid:1)1/(cid:2),thepolarizationinthecentralpartofthejetisalongthesymmetry axis.Also,inbothcasesofverylarge(θ (cid:1)1/(cid:2))andverysmall(θ (cid:9)1/(cid:2))viewingangles,theprofileofthepolarizationbecomescloseto symmetricwithrespecttothejetaxis.Forintermediatevaluesofθ ∼1/(cid:2),thepolarizationinthecentralpartsofthejetislongitudinalifthe pitchangleψ(cid:6) >45◦ andorthogonalifψ(cid:6) <45◦.Thiscanexplaininanaturalwaythefactthatresolvedjetssometimeshavepolarization alignedwiththejetinthecentralregionandorthogonaltothejetattheedge. (cid:4)C 2005RAS,MNRAS360,869–891
Description: