ebook img

Polarisation studies in H-t production PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polarisation studies in H-t production

Polarisation studies in H−t production R. M. Godbole 3 CenterforHighEnergyPhysics,IndianInstituteofScience,Bangalore 1 0 E-mail: [email protected] 2 L. Hartgring n a Nikhef,Amsterdam J E-mail: [email protected] 9 2 I. Niessen UniversityofNijmegen ] h E-mail: [email protected] p - C. D. White∗ p e SchoolofPhysicsandAstronomy,UniversityofGlasgow h E-mail: [email protected] [ 1 v We summarise a recent study looking at top quark polarisation effects in charged Higgs boson 7 production. Labframeangularandenergyobservablesrelatingtoleptonicdecaysoftopquarks 7 8 areanalysed,andcorrespondingasymmetryparametersobtained.Theseareshowntobesensitive 6 totoppolarisationandrobustwithrespecttohigherordercorrections. Thus,theyareanefficient . 1 probeofchargedHiggsparameterspace. 0 3 1 : v i X r a ProspectsforChargedHiggsDiscoveryatColliders-Charged2012, October8-11,2012 UppsalaUniversity,Sweden ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ PolarisationstudiesinH−t production C.D.White t t − − H H Figure1: LeadingorderdiagramsforH−t production. 1. Introduction ManyextensionsoftheStandardModelinvolvemorethanHiggsdoublet,animmediatecon- sequenceofwhichisthepresenceofachargedHiggsboson. Observationofthelatterwouldthus beaspectacularconfirmationofBSMphysics, andthehuntforsuchparticlesisongoing. Anim- portantproductionmode(particularlywhenthechargedHiggsbosonmassexceedsthatofthetop quark) is that of associated production with a (single) top quark. This is analagous toWt produc- tionintheStandardModel,andtheleadingorderFeynmandiagramsareshowninfigure1. Inthis contribution, we assume that the coupling of the Higgs to the top quark is given by a type-II two Higgsdoubletmodelcoupling: i G =− √ V [m tanβ(1−γ )+m cotβ(1+γ )], (1.1) H−tb¯ tb b 5 t 5 v 2 where,asusual,tanβ istheratioofHiggsVEVs(withoverallnormalisationv);m andm arethe t b topandbottomquarkmasses,andV theappropriateCKMmatrixelement. However,ourconclu- tb sionsaremoregeneralthanthis,andmayapplyinotherscenarios. Given that the above coupling involves a superposition of left- and right-handed projectors, the top quark will be produced with a net polarisation on average. The degree of longitudinal polarisationisdefinedby σ(+,+)−σ(−,−) P = , (1.2) t σ(+,+)+σ(−,−) whereσ(±,±)isthecross-sectionforproducingapositivelyornegativelypolarisedtopquark. In SMpairproduction,eachtoporantitopisunpolarisedonaverage,sothatP =0. InH±tproduction, t P will be nonzero, and will depend on the parameter space (m ,tanβ). If the top quark decays t H− accordingtot →Wb→ f f¯bforsomefermionicdecayproduct f,thelatterisdistributedinthetop quarkrestframe 1 ∼ (1+κ Pcosθ ). f t f,rest 2 Here θ is the angle between f and the top quark spin vector, and κ the analysing power, f,rest f whose value depends on the identity of f, and potentially receives higher order corrections from both SM and BSM sources. For a positively charged lepton (f =l), the analysing power κ (cid:39)1, l and turns out to be insensitive to BSM corrections to the decay of the top quark, up to quadratic correctionsintheinversescaleofnewphysics[1]. Thus,leptonicdecayproductsoftopquarksare 2 PolarisationstudiesinH−t production C.D.White highlyefficientpolarisationanalysers. ConsideranewphysicsparticleX producedinassociationwithatopquark. Thecouplingof X to the top will produce a non-zero polarisation P (cid:54)=0 in general. If the top decays leptonically, t theangulardistributionoftheproducedleptonwillbegovernedbyP andκ . BSMcorrectionsto t l thedecayareirrelevanttoagoodapproximation,asstatedabove,andthusitfollowsthatleptonic decayproductsoftopquarkscanbeusedtodirectlyprobethecouplingofX tothetopquark. Here X isachargedHiggsboson,butourargumentiseasilygeneralisedtoothernewphysicsscenarios. Above we considered the top quark rest frame. Given the difficulty of fully reconstructing topquarkmomenta,itiseasierandmoreusefultoconsiderquantitiesinthelabframe. Assuming thatthetopquarkdirectioncanbereconstructed,onemaydefinetheazimuthal(φ )andpolar(θ ) l l anglesbetweenthedecayleptonandthedirectionofitsparenttop. Thesewerefirstdefinedin[1], and analysed within a charged Higgs context in [2, 3] (see also [4]). Both carry an imprint of top polarisation: apurelypolarcorrelationinthelabframeappearsasamixtureofpolarandazimuthal informationinthelabframe,duetothenon-zeroboostofthetopquarkinthelatter. 2. ResultsinH−t production In [3], we examined the above angular distributions using the recently developed MC@NLO softwareforH−t production[5]. ThiscombinesNLOmatrixelementsforthisproductionprocess withpartonshowerandhadronisationalgorithms,andalsoincludesspincorrelations[6]. Bycom- paring these results with LO ones obtained using MadGraph [7], one may evaluate the robustness ofpolarisationobservableswithrespecttohigherordercorrections. Allresultsherewereobtained withtopandbottomquarkmassesofm =172GeVandm =4.95GeVrespectively,atopwidth t b of Γ =1.4 GeV, and a common renormalisation and factorisation scale µ = µ =m . We use t r f t MSTW2008LOandNLOpartons[8],asappropriate. In figure 2 we show the distribution of the azimuthal angle φ , as a function of tanβ and for l two different charged Higgs boson masses. It is strongly peaked at φ =0 and φ =2π, due to l l the boost fromthe top quark restframe. Polarisation information modifies this shape, and wecan efficiently distil this information into a single number: noting the crossing points in figure 2, we candefinetheasymmetryparameter σ(cosφ >0)−σ(cosφ <0) l l A = . (2.1) φ σ(cosφ >0)+σ(cosφ <0) l l EachpointinparameterspacecorrespondstoadifferentvalueofA ,asshowninfigure3(a). Thus, φ this quantity can be used to pin down the coupling of a charged Higgs boson to the top quark, as wellastoenhancethesignaltobackgroundratio. Results for the polar angle are shown in figure 4. This is strongly peaked near θ =0, again l due to the boost from the top quark rest frame. Polarisation information also modifies the overall 3 PolarisationstudiesinH−t production C.D.White dφl0.8 dφl0.6 / d1/σσ0.7 mH=200 GeV / d1/σσ0.5 mH=200 GeV tan β=40 0.6 m=1500 GeV m=1500 GeV 0.5 H tan β=5 0.4 H 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 φ φ l l Figure2: Azimuthalangleφ betweenthetopquarkanditsdecayleptoninH−t production,obtainedusing l MC@NLO[5]. AAφφ00..7755 AAθθ 00..5555 00..77 00..55 00..6655 00..4455 00..66 00..44 00..5555 00..3355 00..55 00..33 00..4455 00..2255 00..44 00..22 00 55 1100 1155 2200 2255 3300 3355 4400 00 55 1100 1155 2200 2255 3300 3355 4400 ttaann ββ ttaann ββ Figure3: Behaviourof(a)theazimuthalasymmetryparameterA ;(b)thepolarasymmetryparameterA , φ θ atbothLO(blue)andMC@NLO(black)levels.UpperandlowercurvescorrespondtochargedHiggsboson massesof1500and200GeV.AlsoshownaretheresultsobtainedforSMWt production(lowerbands). shapeinthiscase,ascanbeencapsulatedbythepolarasymmetryparameter σ(θ <π/4)−σ(θ >π/4) l l A = , (2.2) θ σ(θ <π/4)+σ(θ >π/4) l l whosebehaviourisshowninfigure3(b)fordifferentparameterspacevalues. Weseeinparticular thatthepolarasymmetryisabletodistinguishdifferentchargedHiggsbosonmassesathightanβ, thusprovidesusefulcomplementaryinformationwhencombinedwiththeazimuthalasymmetry. Further information can be gained by considering observables based on ratios of energies of thetopquarkanditsdecayproducts,whichwereshownin[9]tocarrypolarisationinformation: E E b l z= , u= , (2.3) E E +E t l b Here E , E and E are the energies of the top quark, and its decay b quark and lepton. The t b l observables of eq. (2.3) were defined for boosted top quarks, such that it is easier to construct 4 PolarisationstudiesinH−t production C.D.White /ddθσl1.4 /ddθσl1.4 1/σ1.2 mH=200 GeV 1/σ1.2 mH=200 GeV m=1500 GeV m=1500 GeV 1 H 1 H 0.8 0.8 tan β=5 0.6 0.6 tan β=40 0.4 0.4 0.2 0.2 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 θl θl Figure 4: Polar angle θ between the top quark and its decay lepton in H−t production, obtained using l MC@NLO[5]. σσ/du d2.5 No cut σσ/dz d2.5 No cut 1/ 2 1/ 2 B>0.8 B>0.8 B>0.9 B>0.9 1.5 1.5 1 1 0.5 0.5 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 u z Figure5: ThezanduparametersinH−t production,obtainedusingMC@NLO[5],andfordifferentcuts ontheboostparameter. them. Herewecharacterisetheboostofthetopquarkusingtheparameter |(cid:126)p | top B= , (2.4) E t i.e. theratioofthree-momentumandenergy. UponimposinganincreasingcutontheBparameter, the shape of the distributions of the z and u parameters converge to a shape which carries polar- isation information, as shown in figure 5. Again there are crossing points for curves obtained at differentvaluesoftanβ andm . Analogouslytotheangulardistributionsconsideredearlier,one H−t maydefineasymmetryparameters(see[3]formoredetails) σ(u>0.215)−σ(u<0.215) σ(0.1≤z≤0.4)−σ(0.4≤z≤0.7) A = ; A = . (2.5) u z σ(u>0.215)+σ(u<0.215) σ(0.1≤z≤0.4)+σ(0.4≤z≤0.7) Thebehaviouroftheseasymmetriesatdifferentpointsinparameterspaceisshowninfigure6. One sees more sensitivity to additional radiation than for angular observables, although the results are stillreasonablyrobust. Furthermore,theenergyasymmetriesprovidecomplementaryinformation totheangularobservables: theyaresensitivetonewphysicscorrectionsinboththeproductionand 5 PolarisationstudiesinH−t production C.D.White AAuu00..5566 AAzz00..0033 00..5544 00..0022 00..5522 00..0011 B>0.8 B>0.8 00..55 00 00..4488 00..0011 00..4466 00..0022 00..4444 00..0033 00..4422 00..0044 00 55 1100 1155 2200 2255 3300 3355 4400 00 55 1100 1155 2200 2255 3300 3355 4400 ttaann ββ ttaann ββ Figure6: Energyasymmetryparameters,atbothLO(blue)andMC@NLO(black)levels. Upperandlower curvescorrespondtochargedHiggsbosonmassesof1500and200GeV.Alsoshownaretheresultsobtained forSMWt production(flatbands). decay of the top quark, rather than just the production stage. A recent paper analysed the z and u parameters in a different new physics context, and also concluded that these observables remain usefulevenwhendetectoreffectsandreconstructionambiguitiesareaccountedfor[10]. To summarise, polarisation observables are an efficient way of probing the parameter space of new physics models. We have here focused on the case of H−t production. As stressed in [3], similarmethodscanalsobeusedinapurelySMcontexte.g. enhancingasignalofWt production againstthetoppairbackground. References [1] R.M.Godbole,K.Rao,S.D.RindaniandR.K.Singh,JHEP1011(2010)144[arXiv:1010.1458 [hep-ph]]. [2] K.Huitu,S.KumarRai,K.Rao,S.D.RindaniandP.Sharma,JHEP1104(2011)026 [arXiv:1012.0527[hep-ph]]. [3] R.M.Godbole,L.Hartgring,I.NiessenandC.D.White,JHEP1201(2012)011[arXiv:1111.0759 [hep-ph]]. [4] J.Baglio,M.Beccaria,A.Djouadi,G.Macorini,E.Mirabella,N.Orlando,F.M.Renardand C.Verzegnassi,Phys.Lett.B705(2011)212[arXiv:1109.2420[hep-ph]]. [5] C.Weydert,S.Frixione,M.Herquet,M.Klasen,E.Laenen,T.Plehn,G.StavengaandC.D.White, Eur.Phys.J.C67(2010)617[arXiv:0912.3430[hep-ph]]. [6] S.Frixione,E.Laenen,P.MotylinskiandB.R.Webber,JHEP0704(2007)081[hep-ph/0702198 [hep-ph]]. [7] J.Alwall,M.Herquet,F.Maltoni,O.MattelaerandT.Stelzer,JHEP1106(2011)128 [arXiv:1106.0522[hep-ph]]. [8] A.D.Martin,W.J.Stirling,R.S.ThorneandG.Watt,Eur.Phys.J.C63(2009)189 [arXiv:0901.0002[hep-ph]]. [9] J.Shelton,Phys.Rev.D79(2009)014032[arXiv:0811.0569[hep-ph]]. [10] A.PapaefstathiouandK.Sakurai,JHEP1206(2012)069[arXiv:1112.3956[hep-ph]]. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.