ebook img

Polar Codes PDF

174 Pages·2019·5.142 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Polar Codes

Springer Topics in Signal Processing Orhan Gazi Polar Codes A Non-Trivial Approach to Channel Coding Springer Topics in Signal Processing Volume 15 Series editors Jacob Benesty, Montreal, Canada Walter Kellermann, Erlangen, Germany More information about this series at http://www.springer.com/series/8109 Orhan Gazi Polar Codes A Non-Trivial Approach to Channel Coding 123 Orhan Gazi Department ofElectronic and Communication Engineering Çankaya University Etimesgut/Ankara Turkey ISSN 1866-2609 ISSN 1866-2617 (electronic) SpringerTopics inSignal Processing ISBN978-981-13-0736-2 ISBN978-981-13-0737-9 (eBook) https://doi.org/10.1007/978-981-13-0737-9 LibraryofCongressControlNumber:2018943249 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. partofSpringerNature Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Contents 1 Information Theory Perspective of Polar Codes and Polar Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Information Theory Perspective of Polar Codes . . . . . . . . . . . . . . 1 1.1.1 The Philosophy of Polar Codes . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Fundamental Idea of Polar Codes . . . . . . . . . . . . . . . . . . . 7 1.2 Polar Encoding Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Recursive Construction of Polar Encoder Structures . . . . . . . . . . . 11 1.4 Generator Matrix and Encoding Formula for Polar Codes. . . . . . . 14 2 Decoding of Polar Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 Kernel Encoder and Decoder Units of the Polar Codes. . . . . . . . . 27 2.2 Decoding Tree for the Successive Cancelation Decoding of Polar Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Level Indices and Determination of Levels for Bit Distribution. . . 46 2.4 Decoding Algorithm for Polar Codes. . . . . . . . . . . . . . . . . . . . . . 47 2.5 Binary Erasure Channel (BEC) . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.6 Determination of Frozen Bit Locations for BEC Channels . . . . . . 58 2.7 Decoding Operation with Frozen Bits . . . . . . . . . . . . . . . . . . . . . 64 3 Polarization of Binary Erasure Channels . . . . . . . . . . . . . . . . . . . . . 75 3.1 Polar Codes in Binary Erasure Channels . . . . . . . . . . . . . . . . . . . 75 3.1.1 Split Channels and Capacity of Split Channels When BECs are Employed. . . . . . . . . . . . . . . . . . . . . . . . 76 3.2 Capacity of Split Channels for N = 4. . . . . . . . . . . . . . . . . . . . . . 78 3.3 Bhattacharyya Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4 Capacity Bound Using Bhattacharyya Parameter . . . . . . . . . . . . . 84 3.5 Inequalities for the Mutual Information and Bhattacharyya Parameters of the Split Channels. . . . . . . . . . . . . . . . . . . . . . . . . 86 3.6 Split Binary Erasure Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 v vi Contents 4 Mathematical Modelling of Polar Codes, Channel Combining and Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1 Channel Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Probability Background Information . . . . . . . . . . . . . . . . . 92 4.1.2 Recursive Construction of Polar Encoder Structures. . . . . . 97 4.2 Channel Splitting and Decoding of Polar Codes. . . . . . . . . . . . . . 103 4.3 Mathematical Description of Successive Cancellation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4 Recursive Computation of the Successive Cancellation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4.1 Recursive Channel Transformation . . . . . . . . . . . . . . . . . . 115 4.4.2 Butterfly Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5 Recursive Calculation of Conditional Channel Input Probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.6 Recursive Calculation of Likelihood Ratio. . . . . . . . . . . . . . . . . . 130 4.6.1 Bit Value Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5 Polarization Rate and Performance of Polar Codes . . . . . . . . . . . . . 135 5.1 r-Field or r-Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.1.1 Borel Field or Borel r-Field. . . . . . . . . . . . . . . . . . . . . . . 136 5.1.2 Measure Function and Measure Space . . . . . . . . . . . . . . . 137 5.1.3 Probability Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2 Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3 Random or Stochastic Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3.1 Cylinder Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.2 Measurable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.3 Adopted Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.4 Martingale Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.5 Super-Martingale Process. . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.6 Sub-Martingale Process . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.7 Martingale Process Convergence Theorem . . . . . . . . . . . . 146 5.4 Channel Polarization Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.5 Performance Analysis of Polar Codes . . . . . . . . . . . . . . . . . . . . . 158 References.... .... .... .... ..... .... .... .... .... .... ..... .... 167 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 169 Chapter 1 Information Theory Perspective of Polar Codes and Polar Encoding Polar codes are one of the recently discovered capacity achieving channel codes. Whatmakesthepolarcodesdifferentfromotherchannelcodesisthatpolarcodes aredesignedmathematicallyandtheirperformancearemathematicallyproven.On the other hand, the previous channel codes are constructed in a trivial manner. In thischapterwefirstprovidethefundamentalconceptsfromtheinformationtheory, suchasentropy,mutualinformation,andchannelcapacity,thendiscussthephiloso- phybehindtheideaofpolarencodingconsideringthefundamentalssubjectsofthe informationtheory. Afterexplainingthephilosophyofthepolarencoding,weinspectthepolarencod- ingtechniqueprosedbyArıkan[1].Polarencodingoperationcanbeperformedina recursivemanner.Forthispurpose,therearetwotypesofencoderstructuresdefined in[1].Afterexplainingtherecursiveencodingmethods,weprovidethemathematical formulasforthepolarencodingoperation. 1.1 InformationTheoryPerspectiveofPolarCodes (cid:2) (cid:3) ˜ ˜ ForthediscreterandomvariableU,theentropy H U isdefinedas (cid:2) (cid:3) (cid:4) H U˜ (cid:2)− p(u)logp(u) (1.1) u (cid:2) (cid:3) where p(u)istheprobabilitymassfunctionof H U˜ ,andlog(·)isthelogarithmic ˜ ˜ functionwithbase2.ThejointentropyoftwodiscreterandomvariablesU andY is definedas (cid:2) (cid:3) (cid:4) H U˜,Y˜ (cid:2)− p(u,y)logp(u,y) (1.2) u,y ©SpringerNatureSingaporePteLtd.2019 1 O.Gazi,PolarCodes,SpringerTopicsinSignalProcessing15, https://doi.org/10.1007/978-981-13-0737-9_1 2 1 InformationTheoryPerspectiveofPolarCodesandPolarEncoding where p(u,y)isthejointprobabilitymassfunctionofU˜ andY˜. ˜ ˜ ThemutualinformationbetweentwodiscreterandomvariableU andY isdefined as (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:5) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:5) (cid:3) (cid:5) (cid:5) I U˜;Y˜ (cid:2) H U˜ −H U˜(cid:5)Y˜ oras I U˜;Y˜ (cid:2) H Y˜ −H Y˜(cid:5)U˜ (1.3) whichcanbeexpressedintermsofthejointandmarginalprobabilitymassfunctions as I(cid:2)U˜;Y˜(cid:3)(cid:2)(cid:4)p(u,y)log p(u,y) . (1.4) p(u)p(y) u,y Theexpressionin(1.4)isnothingbutaprobabilisticaveragequantityandcanbe writteninshortas ⎧ (cid:2) (cid:3) ⎫ (cid:2) (cid:3) ⎨ p U˜,Y˜ ⎬ I U˜;Y˜ (cid:2) E log (cid:2) (cid:3) (cid:2) (cid:3) . (1.5) ⎩ ˜ ˜ ⎭ p U p Y Note: (cid:2) (cid:2) (cid:3)(cid:3) (cid:4) E g U˜,Y˜ (cid:2) p(u,y)g(u,y). u,y ThemutualinformationbetweenU˜ and(Y˜,Z˜)isdefinedas I(cid:2)U˜;Y˜,Z˜(cid:3)(cid:2) (cid:4) p(u,y,z)log p(u,y,z) (1.6) p(u)p(y,z) u,y,z whichcanbewrittenas ⎧ (cid:2) (cid:3) ⎫ (cid:2) (cid:3) ⎨ p U˜,Y˜,Z˜ ⎬ I U˜;Y˜,Z˜ (cid:2) E log (cid:2) (cid:3) (cid:2) (cid:3) . (1.7) ⎩ p U˜ p Y˜,Z˜ ⎭ (cid:2) (cid:3) Inasimilarmanner,wecandefine I U˜ ,U˜ Y˜ ,Y˜ as 1 1 1 2 I(cid:2)U˜ ,U˜ ;Y˜ ,Y˜ (cid:3)(cid:2) (cid:4) p(u ,u ,y ,y )log p(u1,u2,y1,y2) (1.8) 1 2 1 2 1 2 1 2 p(u ,u )p(y ,y ) u1,u2,y1,y2 1 2 1 2 Ingeneral,fortworandomvariablevectors (cid:12) (cid:13) (cid:12) (cid:13) U¯ (cid:2) U˜ ,U˜ ,...U˜ Y (cid:2) Y˜ ,Y˜ ,...Y˜ (1.9) 1 2 N 1 2 N 1.1 InformationTheoryPerspectiveofPolarCodes 3 (cid:14) (cid:15) ¯ ¯ themutualinformation I U;Y isdefinedas I(cid:14)U¯;Y¯(cid:15)(cid:2)(cid:4)p(u¯,y¯)log p(u¯,y¯) . (1.10) p(u¯)p(y¯) u¯,y¯ Theorem1.1 Themutualinformation (cid:2) (cid:3) I U˜;Y˜,Z˜ canbewrittenas (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:5) (cid:3) (cid:5) I U˜;Y˜,Z˜ (cid:2) I U˜;Y˜ +I U˜;Z˜(cid:5)Y˜ . (1.11) (cid:2) (cid:3) Proof1.1 Fromdefinition(1.5),wecanwrite I U˜;Y˜,Z˜ as I(cid:2)U˜;Y˜,Z˜(cid:3)(cid:2) (cid:4) p(u,y,z)log p(u,y,z) (1.12) p(u)p(y,z) u,y,z where p(u,y,z) p(u)p(y,z) canbewrittenas p(u,y,z) p(u,z|y)p(y) (cid:2) p(u)p(y,z) p(u)p(z|y)p(y) inwhichmultiplyingthenumeratoranddenominatoroftherightsideby p(u,y)we get p(u,y,z) p(u,y) p(u,z|y)p(y) (cid:2) p(u)p(y,z) p(u,y) p(u)p(z|y)p(y) wheretherighthandsidecanberearrangedas p(u,y) p(u,z|y)p(y) p(u)p(y) p(z|y)p(u,y) inwhichusing p(u,y)(cid:2) p(u|y)p(y),weget p(u,y) p(u,z|y)p(y) p(u)p(y) p(z|y)p(u|y)p(y) whichissimplifiedas

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.