Progress in Mathematics Volume 242 Series Editor H. Bass J. Oesterlé A. Weinstein Jean-Paul Dufour Nguyen Tien Zung Poisson Structures and Their Normal Forms Birkhäuser Verlag Basel (cid:1) Boston (cid:1) Berlin Authors: Jean-Paul Dufour Nguyen Tien Zung Département de mathématique Laboratoire Émile Picard, Université de Montpellier 2 UMR 5580 CNRS place Eugène Bataillon Institut de Mathématiques 34095 Montpellier Université Paul Sabatier France 118 route de Narbonne e-mail: [email protected] 31062 Toulouse France e-mail: [email protected] 2000 Mathematics Subject Classifi cation 53Dxx, 53Bxx, 85Kxx, 70Hxx A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 3-7643-7334-2 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfi lms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp. TCF ∞ Printed in Germany ISBN-10: 3-7643-7334-2 e-ISBN: 3-7643-7335-0 ISBN-13: 978-3-7643-7334-4 9 8 7 6 5 4 3 2 1 www.birkhauser.ch `a H´el`ene J.-P. D. `a Mai N. T. Z. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Generalities on Poisson Structures 1.1 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Poisson tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Poisson morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Local canonical coordinates . . . . . . . . . . . . . . . . . . . . . . 13 1.5 Singular symplectic foliations . . . . . . . . . . . . . . . . . . . . . 16 1.6 Transverse Poisson structures . . . . . . . . . . . . . . . . . . . . . 21 1.7 Group actions and reduction . . . . . . . . . . . . . . . . . . . . . 23 1.8 The Schouten bracket . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.8.1 Schouten bracket of multi-vector fields . . . . . . . . . . . . 27 1.8.2 Schouten bracket on Lie algebras . . . . . . . . . . . . . . . 31 1.8.3 Compatible Poisson structures . . . . . . . . . . . . . . . . 33 1.9 Symplectic realizations . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 Poisson Cohomology 2.1 Poisson cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.1 Definition of Poisson cohomology . . . . . . . . . . . . . . . 39 2.1.2 Interpretation of Poissoncohomology . . . . . . . . . . . . 40 2.1.3 Poissoncohomology versus de Rham cohomology . . . . . . 41 2.1.4 Other versions of Poisson cohomology . . . . . . . . . . . . 42 2.1.5 Computation of Poissoncohomology . . . . . . . . . . . . . 43 2.2 Normal forms of Poisson structures . . . . . . . . . . . . . . . . . . 44 2.3 Cohomology of Lie algebras . . . . . . . . . . . . . . . . . . . . . . 49 2.3.1 Chevalley–Eilenberg complexes . . . . . . . . . . . . . . . . 49 2.3.2 Cohomology of linear Poisson structures . . . . . . . . . . . 51 2.3.3 Rigid Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 Spectral sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.1 Spectral sequence of a filtered complex . . . . . . . . . . . . 54 2.4.2 Leray spectral sequence . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Hochschild–Serre spectral sequence . . . . . . . . . . . . . . 57 viii Contents 2.4.4 Spectral sequence for Poisson cohomology . . . . . . . . . . 59 2.5 Poisson cohomology in dimension 2 . . . . . . . . . . . . . . . . . . 60 2.5.1 Simple singularities. . . . . . . . . . . . . . . . . . . . . . . 61 2.5.2 Cohomology of Poissongerms . . . . . . . . . . . . . . . . . 63 2.5.3 Some examples and remarks. . . . . . . . . . . . . . . . . . 68 2.6 The curl operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.6.1 Definition of the curl operator. . . . . . . . . . . . . . . . . 69 2.6.2 Schouten bracket via curl operator . . . . . . . . . . . . . . 71 2.6.3 The modular class . . . . . . . . . . . . . . . . . . . . . . . 72 2.6.4 The curl operator of an affine connection . . . . . . . . . . 73 2.7 Poisson homology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3 Levi Decomposition 3.1 Formal Levi decomposition . . . . . . . . . . . . . . . . . . . . . . 78 3.2 Levi decomposition of Poissonstructures . . . . . . . . . . . . . . . 81 3.3 Construction of Levi decomposition. . . . . . . . . . . . . . . . . . 84 3.4 Normed vanishing of cohomology . . . . . . . . . . . . . . . . . . . 88 3.5 Proof of analytic Levi decomposition theorem . . . . . . . . . . . . 92 3.6 The smooth case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4 Linearization of Poisson Structures 4.1 Nondegenerate Lie algebras . . . . . . . . . . . . . . . . . . . . . . 105 4.2 Linearization of low-dimensional Poissonstructures . . . . . . . . . 107 4.2.1 Two-dimensional case . . . . . . . . . . . . . . . . . . . . . 107 4.2.2 Three-dimensional case . . . . . . . . . . . . . . . . . . . . 108 4.2.3 Four-dimensional case . . . . . . . . . . . . . . . . . . . . . 110 4.3 Poisson geometry of real semisimple Lie algebras . . . . . . . . . . 112 4.4 Nondegeneracy of aff(n) . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5 Some other linearization results . . . . . . . . . . . . . . . . . . . . 122 4.5.1 Equivariant linearization. . . . . . . . . . . . . . . . . . . . 122 4.5.2 Linearization of Poisson–Lie tensors . . . . . . . . . . . . . 122 4.5.3 Poissonstructures with a hyperbolic Rk-action . . . . . . . 124 4.5.4 Transverse Poissonstructures to coadjoint orbits . . . . . . 125 4.5.5 Finite determinacy of Poissonstructures . . . . . . . . . . . 126 5 Multiplicative and Quadratic PoissonStructures 5.1 Multiplicative tensors . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 Poisson–Lie groups and r-matrices . . . . . . . . . . . . . . . . . . 132 5.3 The dual and the double of a Poisson-Lie group . . . . . . . . . . . 136 5.4 Actions of Poisson–Lie groups . . . . . . . . . . . . . . . . . . . . . 139 5.4.1 Poissonactions of Poisson–Lie groups . . . . . . . . . . . . 139 5.4.2 Dressing transformations . . . . . . . . . . . . . . . . . . . 142 5.4.3 Momentum maps . . . . . . . . . . . . . . . . . . . . . . . . 144 5.5 r-matrices and quadratic Poissonstructures . . . . . . . . . . . . . 145 Contents ix 5.6 Linear curl vector fields . . . . . . . . . . . . . . . . . . . . . . . . 147 5.7 Quadratization of Poisson structures . . . . . . . . . . . . . . . . . 150 5.8 Nonhomogeneous quadratic Poisson structures . . . . . . . . . . . 156 6 Nambu Structures and Singular Foliations 6.1 Nambu brackets and Nambu tensors . . . . . . . . . . . . . . . . . 159 6.2 Integrable differential forms . . . . . . . . . . . . . . . . . . . . . . 165 6.3 Frobenius with singularities . . . . . . . . . . . . . . . . . . . . . . 168 6.4 Linear Nambu structures . . . . . . . . . . . . . . . . . . . . . . . 171 6.5 Kupka’s phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.6 Linearization of Nambu structures . . . . . . . . . . . . . . . . . . 182 6.6.1 Decomposability of ω . . . . . . . . . . . . . . . . . . . . . 184 6.6.2 Formal linearization of the associated foliation . . . . . . . 185 6.6.3 The analytic case . . . . . . . . . . . . . . . . . . . . . . . . 188 6.6.4 Formal linearization of Λ . . . . . . . . . . . . . . . . . . . 188 6.6.5 The smooth elliptic case . . . . . . . . . . . . . . . . . . . . 190 6.7 Integrable 1-forms with a non-zero linear part . . . . . . . . . . . . 192 6.8 Quadratic integrable 1-forms . . . . . . . . . . . . . . . . . . . . . 197 6.9 Poisson structures in dimension 3 . . . . . . . . . . . . . . . . . . . 199 7 Lie Groupoids 7.1 Some basic notions on groupoids . . . . . . . . . . . . . . . . . . . 203 7.1.1 Definitions and first examples . . . . . . . . . . . . . . . . . 203 7.1.2 Lie groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.1.3 Germs and slices of Lie groupoids. . . . . . . . . . . . . . . 208 7.1.4 Actions of groupoids . . . . . . . . . . . . . . . . . . . . . . 208 7.1.5 Haar systems . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.2 Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 7.3 Proper Lie groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7.3.1 Definition and elementary properties . . . . . . . . . . . . . 213 7.3.2 Source-localtriviality . . . . . . . . . . . . . . . . . . . . . 215 7.3.3 Orbifold groupoids . . . . . . . . . . . . . . . . . . . . . . . 216 7.4 Linearization of Lie groupoids . . . . . . . . . . . . . . . . . . . . . 217 7.4.1 Linearization of Lie group actions . . . . . . . . . . . . . . 217 7.4.2 Local linearization of Lie groupoids. . . . . . . . . . . . . . 218 7.4.3 Slice theorem for Lie groupoids . . . . . . . . . . . . . . . . 222 7.5 Symplectic groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.5.1 Definition and basic properties . . . . . . . . . . . . . . . . 223 7.5.2 Proper symplectic groupoids . . . . . . . . . . . . . . . . . 227 7.5.3 Hamiltonian actions of symplectic groupoids . . . . . . . . 232 7.5.4 Some generalizations . . . . . . . . . . . . . . . . . . . . . . 233 x Contents 8 Lie Algebroids 8.1 Some basic definitions and properties . . . . . . . . . . . . . . . . . 235 8.1.1 Definition and some examples . . . . . . . . . . . . . . . . . 235 8.1.2 The Lie algebroid of a Lie groupoid . . . . . . . . . . . . . 237 8.1.3 Isotropy algebras . . . . . . . . . . . . . . . . . . . . . . . . 238 8.1.4 Characteristic foliation of a Lie algebroid . . . . . . . . . . 239 8.1.5 Lie pseudoalgebras . . . . . . . . . . . . . . . . . . . . . . . 239 8.2 Fiber-wise linear Poisson structures. . . . . . . . . . . . . . . . . . 240 8.3 Lie algebroid morphisms . . . . . . . . . . . . . . . . . . . . . . . . 242 8.4 Lie algebroid actions and connections. . . . . . . . . . . . . . . . . 243 8.5 Splitting theorem and transverse structures . . . . . . . . . . . . . 246 8.6 Cohomology of Lie algebroids . . . . . . . . . . . . . . . . . . . . . 249 8.7 Linearization of Lie algebroids. . . . . . . . . . . . . . . . . . . . . 252 8.8 Integrability of Lie brackets . . . . . . . . . . . . . . . . . . . . . . 257 8.8.1 Reconstruction of groupoids from their algebroids . . . . . 257 8.8.2 Integrability criteria . . . . . . . . . . . . . . . . . . . . . . 259 8.8.3 Integrability of Poissonmanifolds . . . . . . . . . . . . . . . 262 Appendix A.1 Moser’s path method . . . . . . . . . . . . . . . . . . . . . . . . . . 263 A.2 Division theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 A.3 Reeb stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 A.4 Action-angle variables . . . . . . . . . . . . . . . . . . . . . . . . . 273 A.5 Normal forms of vector fields . . . . . . . . . . . . . . . . . . . . . 276 A.5.1 Poincar´e–Dulacnormal forms . . . . . . . . . . . . . . . . . 276 A.5.2 Birkhoff normal forms . . . . . . . . . . . . . . . . . . . . . 278 A.5.3 Toric characterizationof normal forms . . . . . . . . . . . . 280 A.5.4 Smooth normal forms . . . . . . . . . . . . . . . . . . . . . 282 A.6 Normal forms along a singular curve . . . . . . . . . . . . . . . . . 283 A.7 The neighborhood of a symplectic leaf . . . . . . . . . . . . . . . . 286 A.7.1 Geometric data and coupling tensors . . . . . . . . . . . . . 286 A.7.2 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . 290 A.8 Dirac structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 A.9 Deformation quantization . . . . . . . . . . . . . . . . . . . . . . . 294 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Preface “Il ne semblait pas que cette importante th´eorie puˆt encore ˆetre perfectionn´ee, lorsque les deux g´eom`etres qui ont le plus contribu´e `a la rendre compl`ete, en ont fait de nouveau le sujet de leurs m´editations...”. By these words, Sim´eon Denis Poissonannouncedin1809[293]thathehadfoundanimprovementinthetheoryof Lagrangianmechanics,which wasbeing developedby Joseph-LouisLagrangeand Pierre-Simon Laplace. In that pioneering paper, Poisson introduced (we slightly modernize his writing) the notation (cid:2) (cid:3) (cid:1)n ∂a ∂b ∂a ∂b (a,b)= − , (0.1) ∂q ∂p ∂p ∂q i i i i i=1 whereaandbaretwofunctionsofthecoordinatesq andthe conjugatequantities i p = ∂R for a mechanical system with Lagrangianfunction R. He proved that, if i ∂q˙i a and b are first integrals of the system then (a,b) also is. This (a,b) is nowadays denoted by {a,b} and called the Poisson bracket of a and b. Mathematicians of the 19thcentury alreadyrecognizedthe importance of this bracket.In particular, William Hamilton used it extensively to express his equations in an essay in 1835 [168]onwhatwenowcallHamiltoniandynamics.CarlJacobiinhis“Vorlesungen u¨ber Dynamik” around 1842 (see [185]) showed that the Poisson bracket satisfies the famous Jacobi identity: {{a,b},c}+{{b,c},a}+{{c,a},b}=0. (0.2) This same identity is satisfied by Lie algebras, which are infinitesimal versions of Liegroups,firststudiedbySophusLieandhiscollaboratorsintheendofthe19th century [213]. In our modern language, a Poisson structure on a manifold M is a 2-vector field Π (Poisson tensor) on M, such that the corresponding bracket (Poisson bracket) on the space of functions on M, defined by {f,g}:=(cid:1)df ∧dg,Π(cid:3) , (0.3) satisfiesthe Jacobiidentity. (M,Π) is then calleda Poissonmanifold. This notion of Poissonmanifolds generalizes both symplectic manifolds and Lie algebras.The