POINCARE´ SERIES OF ALGEBRAIC LINKS AND LATTICE HOMOLOGY EUGENEGORSKYANDANDRA´SNE´METHI ABSTRACT. We construct a version of the lattice homology for plane curve singularities us- ingthenormalizationoftheircomponents. Weprovethatthe Poincare´ seriesoftheassociated 3 graded homologiescan be identified by an algebraic procedurewith the motivic Poincare´ se- 1 ries. Hence, for a plane curve singularity the following objects carry the same information: 0 the multi-variableAlexanderpolynomial, the multi-variableHilbertseries associated with the 2 normalization,themotivicPoincare´ series,andthePoincare´seriesofthenewlyintroducedlat- n ticehomology. WealsoconjecturearelationofthislatticehomologywiththeHeegaard–Floer a homologyofthecorrespondinglink. J 1 3 1. INTRODUCTION ] LetC = ∪r C beareducedplanecurvesingularityattheoriginin C2,whereC aretheir- G i=1 i i reduciblecomponents. Letγ : (C,0) → (C ,0)besomeuniformizationsofthesecomponents. A i i Wedefine r integer-valuedfunctionson theC–algebra O = O by . C2,0 h t v (f) = Ord(f (γ (t))), a i i m and aZr-indexedfiltration [ J(v) = {f ∈ O|vi(f) ≥ vi forall i}. 1 v Campillo,DelgadoandGusein-Zadeconsideredin[4]thePoincare´ seriesofthefiltration J(v) 6 defined as theintegralwithrespect totheEulercharacteristicovertheprojectivizationof O: 3 6 7 (1.0.1) P(t ,...,t ) = tv1 ·...·tvrdχ. . 1 r 1 r 1 ZPO 0 ThePoincare´ series P can berelated withseveraltopologicaland analyticalobjects. 3 For example, Campillo, Delgado and Gusein-Zade have shown in [4] that P basically is 1 : the multi-variable Alexander polynomial of the link of C (the intersection of C with a small v i three-dimensionalspherecentered attheorigin). Fortheprecise statementseeTheorem 2.1.1. X A more analytic invariant is the Hilbert series H associated with the filtration {J(v)} , it v r a hascoefficientsh(v) = dimO/J(v),seeDefinition2.2.1. ItisknownthatP andH determine each other, see[3, 11], insection2 wereprovethisfact. Finally,weconsiderthemotivicversionofthePoincare´ series as well([5, 7, 12]): v v (1.0.2) P (t ,...,t ;q) = t 1 ·...·t rdµ. g 1 r 1 r ZPO HereµdenotesthemotivicmeasureonPO[5,7]. SinceP canbederivedfromthecoefficients g ofH aswell,seesubsection2.4,P carriesthesameinformationas H andP. Nevertheless,all g these invariants capture different aspects and highlight different geometrical structures of the local planecurvesingularities. This note introduces another object, the lattice cohomology of the singularity. In [17] the lattice cohomology of a normal surface singularity was introduced via the lattice provided by itsresolutiongraph(orplumbinggraphofthelink). Theinvariantcreatedabridgebetweenthe 1 2 EUGENEGORSKYANDANDRA´SNE´METHI analyticinvariantsof thesingularitywithseveral topologicalones ofthelink,namely Seiberg- Witten and Heegaard-Floertheories. The goal of the present construction is similar; neverthe- less here we rely on a different lattice: the needed weight function is provided by the normal- ization, by the coefficients h(v). (In order to eliminate any further confusion, we will call the present invariant“latticehomologyvianormalization”). In short, the definition runs as follows. The lattice complex L− is generated over Z[U] by elementarycubes (cid:3)ofalldimensionsinRr,withverticesinthelatticeZr. Forsuchacubewe defineh((cid:3)) = maxx∈(cid:3)∩Zr h(x). Thedifferentialisdefined as ∂ ((cid:3)) = ε Uh((cid:3))−h((cid:3)i)(cid:3) , U i i i X where (cid:3) aretheorientedboundary cubesof (cid:3), andε are thecorrespondingsigns. i i The complex L− is naturally Zr-filtered: the subcomplex L−(v) is generated by the cubes contained in the positivequadrant originatingat v. Ourmain theorem describes the homology ofthesubcomplexesL−(v)and theassociatedgraded complexesgr L− forall v. v Theorem 1.0.3. (1) The homology of L−(v) is given by H∗(L−(v)) = Z[U][−2h(v)]. Hence, thePoincare´ series forthishomologyequals t−2h(v) P (t) = . L−(v) 1−t−2 (2) ThePoincare´ polynomialofthehomologyofgr L− isgiven bytheformula v P (t) = (−t)−h(v)H (−t−1), gr L− v v where H (q)is thecoefficient inthemotivicPoincare´ series: v P (t ,...,t ;q) = H (q)tv1 ···t vr. g 1 r v 1 r v X WeprovethepartsofthistheoremasTheorem4.2.2andTheorem4.3.2. Themainingredient isthestructureoftheOrlik-Solomonalgebrasassociatedwithcentralhyperplanearrangements. Corollary1.0.4. Thepolynomial(−1)h(v)H (−t) hasonlynon-negativecoefficients. v Corollary1.0.5. ThegeneratingfunctionfortheEulercharacteristicsofgr L−, v P (−1)·tv1 ···tvr, grvL− 1 r v X equalsP(t ,...,t ). Hence, itcan beexpressed bythemulti-variableAlexander polynomial. 1 r Motivatedby Theorem1.0.3and Corollary 1.0.5, weformulatethefollowing Conjecture1.0.6. ThegradedhomologyofgrL− isisomorphictotheHeegaard-Floerhomol- ogyHF− ofthelinkof C ([21,22, 23, 24], seealso[26]). We compare various structural properties of both homology theories and show that the con- jectureholds for r = 1. We also computethehomologyof grL− in otherexamplesand match themto theHeegaard-Floerhomology. POINCARE´ SERIESOFALGEBRAICLINKSANDLATTICEHOMOLOGY 3 ACKNOWLEDGEMENTS The authors are grateful to S. Gusein-Zade, J. Moyano-Fernandez, P. Ozsva´th and J. Ras- mussen for the useful discussions. We also thank the Oberwolfach Mathematical Institute, where part of this work was done, for the hospitality. The research of E. G. is partially sup- ported by the grants RFBR-10-01-678, NSh-8462.2010.1and the Simons foundation. A. N. is partiallysupportedbyOTKA Grants81203and 100796. 2. HILBERT FUNCTION 2.1. The Poincare´ seriesofmulti-index filtrations. Let usfix alocalplanecurvesingularity withr irreduciblecomponentsasintheintroduction. Set K = {1,...,r}. Lete denotethei- 0 i thcoordinatevectorin Zr. ForasubsetK ⊂ K wewritee = e ande = e = e . 0 K i∈K i K0 i Foravectorv weset v = v e . K i∈K i i P P Furthermore, let P be the series defined in (1.0.1), and ∆(t ,...,t ) be the multi-variable 1 r P Alexanderpolynomialofthelinkof C. Then thefollowingholds. Theorem 2.1.1 ([4]). If r = 1,then P(t)(1−t) = ∆(t), whileif r > 1, then (2.1.2) P(t ,...,t ) = ∆(t ,...,t ). 1 r 1 r 2.2. The Hilbertseries ofmulti-index filtrations. Weset apartial orderon Zr by u (cid:22) v ⇐⇒ u ≤ v forall i. i i We define r integer-valued functions on O = O by v (f) = Ord (f (γ (t))), and a C2,0 i 0 i Zr-indexedfiltration J(v) = {f ∈ O | v(f) (cid:23) v}. NotethattheidealsJ(v)arealsodefinedfornegativevaluesofv. Thisfiltrationisdecreasing inthesensethatifu (cid:22) v, thenJ(u) ⊃ J(v). Definition 2.2.1. Let h(v) = dimO/J(v). Wedefine theHilbert series ofa multi-indexfiltra- tionJ as theseries (2.2.2) H(t ,...,t ) = h(v)·tv1 ···tvr. 1 r 1 r v X Furthermore, we define the set S := {v ∈ Zr : there existsf ∈ O withv(f) = v} as well. It iscalled thesemigroupoff. Fromthedefinitiononegetsthefollowingelementaryfacts. Lemma 2.2.3. S = {v ∈ Zr : h(v +e ) > h(v) forevery i = 1,...,r}. Furthermore, fix ≥0 i any0 (cid:22) v ande . Thenh(v+e ) = h(v)+1ifthereisanelementu ∈ S suchthatu = v and i i i i u ≥ v for j 6= i. Otherwiseh(v +e ) = h(v).In particular,H andS determineeach other. j j i Proof. If h(v + e ) > h(v) for all i, then there exist functions f such that v (f ) = v and i i i i i v (f ) ≥ v for j 6= i. Therefore v( r λ f ) = v for generic coefficients λ . For the second j i j i=1 i i i partnotethath(v+e )−h(v) = dimJ(v)/J(v+e ). Thisquotientspaceistrivialifthereisno i i functionf suchthatv (f) = v andPv (f) ≥ v forj 6= i. Otherwiseitisone-dimensional. (cid:3) i i j j Thefollowinglemmais avariationoftheanalogousstatementfrom[3]. Lemma 2.2.4. Theseries H andP arerelatedby (2.2.5) P(t ,...,t ) = −H(t ,...,t )· (1−t−1). 1 r 1 s i i Y 4 EUGENEGORSKYANDANDRA´SNE´METHI Atthelevel ofcoefficientsthisreads asfollows. Definetheintegersπ(v) bytheequation (2.2.6) P(t ,...,t ) = tv1 ...tvr ·π(v). 1 r 1 r v X Then (2.2.7) π(v) = (−1)|K|−1h(v +e ). K KX⊂K0 We will invert the equation (2.2.7), namely, we express the integers h(v) from the Poincare´ series P . Firstnotethat C (2.2.8) h(v) = h(max(v,0)), where max(v,0) = v if v > 0 and = 0 otherwise. Hence it is enough to determine h(v) for i i i 0 (cid:22) v only. Theseries h(v)tv willbedenotedby H(t)| . 0(cid:22)v 0(cid:22)v Next, for a subset K = {i ,...,i } ⊂ K , K 6= ∅, consider a curve C = ∪ C . As 1 |K| 0 K i∈K i P above, this germ defines a |K|-index filtration of O , hence it provides the Hilbert series C2,0 H ofC invariables {t } : CK K i i∈K H (t ,...,t ) = tvi1 ...tvi|K| ·hK(v). CK i1 i|K| i1 i|K| v X By construction,for K ⊂ K onehasH (t ,...,t ) = H (t ,...,t )| ; or 0 CK i1 i|K| C 1 r ti=0i6∈K (2.2.9) ifv = 0forall i ∈/ K, then hK(v) = h(v). i Analogously,wehavethePoincare´ series of C : K PK(t ,...,t ) = P (t ,...,t ) = tvi1 ...tvi|K| ·πK(v). 1 r CK i1 i|K| i1 i|K| v X Bydefinition,forK = ∅wetakeπ∅(v) = 0.Notethatfromh(v)onecanrecoveranyPK: first computinghK by(2.2.9) andthen recovering PK from HK using(2.2.7). Althoughby[29]P determinestheembeddedtopologicaltypeofC,hencealltheseriesPK forall subsets K ⊂ K as well, theanalogueof(2.2.9)is nottrueforthepair πK(v)and π(v). 0 Indeed, the“restrictingrelation”([28])is oftype 1 (2.2.10) PK0\{1}(t ,...,t ) = P(t ,...,t )| · , 2 r 1 r t1=1 (1−t(C1,C2))···(1−t(C1,Cr)) 2 r where (C ,C ) denotestheintersectionmultiplicityattheoriginofthecomponentsC andC , i j i j i 6= j. Thisalsoshowsthatgiventheseintersectionmultiplicitiesonecan recoverbyinduction PK from P easily. The following theorem was proved in [11] as Corollary 4.3. For the completeness of the expositionwepresentaproofofit(which isslightlydifferent from[11]). Theorem 2.2.11. Thefollowingequationholds: 1 (2.2.12) H(t ,...,t )| = (−1)|K|−1 t ·PK(t ,...,t ). 1 r 0(cid:22)v r i 1 r (1−t ) i=1 i KX⊂K0 (cid:16)iY∈K (cid:17) Proof. The identity(2.2.12) forthQe generating series is equivalentto thefollowingidentityfor theircoefficients: (2.2.13) h(v) = (−1)|K|−1 πK(u). KX⊂K0 0(cid:22)u(cid:22)XvK−eK POINCARE´ SERIESOFALGEBRAICLINKSANDLATTICEHOMOLOGY 5 Wewillprovetheidentity(2.2.13)byatwo-stepinduction: thefirstinductionisbythenumber ofcomponentsr, and thesecond one(forfixed r)is overthenorm |v| = v . i Ifr = 1,then(2.2.7)impliesthatπ(v) = h(v+1)−h(v).Therefore π(u) = h(v) P0≤u≤v−1 sinceh(0) = 0. P Letusprove(2.2.13)forthecasewhenatleastoneofcoordinatesv vanish. Wecanassume i thatv = 0. By theinductionassumptionweget r h(v) = h{1,...,r−1}(v ,...,v ) = (−1)|K|−1 πK(u). 1 r−1 K⊂{X1,...r−1} 0(cid:22)u(cid:22)XvK−eK On the other hand, in (2.2.13) for all K ⊂ K with r ∈ K we get the vacuous restriction 0 0 ≤ u ≤ −1, henceweget nontrivialcontributiononlyfromterms with K ⊂ {1,...r −1}. r Suppose now that v has no vanishing coordinates and we proved (2.2.13) for v −e for all K non-emptysubsetsK ⊂ K . Wecan rewrite(2.2.7)as alinearequationon h(v): 0 π(v −e) = (−1)r−|K|−1h(v −e ). K KX⊂K0 By theinductionassumptionforK 6= ∅ wehave h(v −e ) = (−1)|M|−1 πM(u), K MX⊂K0 0(cid:22)u(cid:22)(vMX−eK∩M−eM) and weshouldestablishthesameidentityforK = ∅. Thereforewehavetoprovethat (2.2.14) π(v−e) = (−1)r−|K|+|M| πM(u). KX⊂K0MX⊂K0 0(cid:22)u(cid:22)(vMX−eK∩M−eM) Let us fix M and u (cid:22) v − e and sum the expression (−1)|K| over all sets K ⊂ K such that 0 u ≤ v −2 for i ∈ K ∩M. This sum does not vanish iff M = K and u = v −1 for all i. i i 0 i i Thisproves(2.2.14). (cid:3) Corollary 2.2.15. The restricted Hilbert function H(t)| of a multi-component curve is a 0(cid:22)v rationalfunctionwith denominator r (1−t )2. i=1 i Example2.2.16. ConsiderthesinguQlarityA . ItsPoincare´ seriesis1+t t +···+(t t )n−1, 2n−1 1 2 1 2 and thePoincare´ series ofbothitscomponentsequals 1/(1−t). TheHilbertseries is 1 t t H(t ,t )| = 1 + 2 −t t (1+...+(t t )n−1) . 1 2 0(cid:22)v 1 2 1 2 (1−t )(1−t ) 1−t 1−t 1 2 (cid:18) 1 2 (cid:19) Therefore, fornon-negativeintegers (v ,v ) onehas 1 2 max(v ,v ), if min(v ,v ) < n 1 2 1 2 h(v) = v +v −n, otherwise. ( 1 2 Figure1illustratesthisformulafortheHilbertfunctionforA singularity. Thepointscorre- 3 spondingto thesemigroup S aremarked inbold. Example2.2.17. Considerthesingularity D ,that is,equationy ·(x2 −y3) = 0. Then 5 1 1−t +t2 P(t ,t ) = 1+t t3,P (t ) = ,P (t ) = 2 2. 1 2 1 2 1 1 1−t 2 2 1−t 1 2 6 EUGENEGORSKYANDANDRA´SNE´METHI 4 4 4 5 6 3 3 3 4 5 2 2 2 3 4 1 1 2 3 4 0 1 2 3 4 FIGURE 1. ValuesoftheHilbertfunctionfor A 3 4 4 4 5 6 7 3 3 3 4 5 6 2 2 3 4 5 6 1 1 2 3 4 5 1 1 2 3 4 5 0 1 2 3 4 5 FIGURE 2. ValuesoftheHilbertfunctionfor D 5 Onecan check that h(v ,v )fornon-negativev and v is (seeFigure2 too): 1 2 1 2 v , ifv < 3,v > 0 1 2 1 v +1, ifv = 3,v > 0 1 2 1 h(v ,v ) = v −1, ifv < 2,v ≥ 2 1 2 2 1 2 v +v −3, ifv ≥ 2,v ≥ 4 1 2 1 2 0,1,1, ifv = 0 and v = 0,1,2. 1 2 2.3. Some properties of the Hilbert function. For any i ∈ K let µ and δ (respectively 0 i i µ(C)andδ(C))betheMilnornumberandthedeltainvariantofC (respectivelyofC)([1,10]). i Then, cf. [10], µ = 2δ , andµ(C)+r −1 = 2δ(C). Definel = (l ,...,l ) by i i 1 r l = µ + (C ,C ). i i j i j6=i X It isknownthattheAlexanderpolynomialissymmetricinthe followingsense ∆(t−1,...,t−1) = t1−li ·∆(t ,...,t ) for r > 1, 1 r i 1 r (cid:16)Y (cid:17) ∆(t−1) = t−µ(C)∆(t) for r = 1. Thiscan becompared withthefollowing. POINCARE´ SERIESOFALGEBRAICLINKSANDLATTICEHOMOLOGY 7 Lemma 2.3.1. ([12, 6])TheHilbertfunctionsatisfiesthefollowingsymmetryproperty: (2.3.2) h(l −v)−h(v) = δ(C)−|v|, where |v| = r v . i=1 i Remark 2.3P.3. Consider v (cid:23) l. It follows from (2.3.2) that h(v) = |v| − δ(C). This can be verified by the identity (2.2.13) as well. Indeed, for |K| = 1 we have πK(u) = 0≤ui≤vi−1 v −δ(C ),for|K| = 2wehave π{i,j}(u ,u ) = P{i,j}(1,1) = (C ,C ),whilePK(e ) = 0 i i i j i jP K for|K| > 2. Hence h(v) = (v −δ(C ))− (C ,C ) = |v|−δ(C). i i i i,j i j P Theidentityh(v) = |v|−δ(C)andLemma2.2.3givethatv ∈ S wheneverv (cid:23) l (hence, in P P fact, l is theconductorof S). Thisfact combinedagain with2.2.3gives Corollary2.3.4. Foranybasicvectore andn ≥ l onehash(v+(n+1)e )−h(v+ne ) = 1. i i i i Thenextpropertyis notusedinthepresentnote, neverthelessweadditsinceitcontainsthe keyobservationwhichwillbeusedin aforthcomingarticlewithapplicationsindeformations. Proposition 2.3.5. (a) Let f′ be a deformation of f, where f and f′ are irreducible. Then h (v) ≤ h (v)for everyv. f f′ (b) Let a (possibly reducible) curve C′ be a deformation of an irreducible curve C. Then h (v) ≥ h (|v|)forevery v. C′ C Proof. (a) Forany function g theintersection multiplicityof g with f is greaterorequal to the intersectionmultiplicityof g withf′. Therefore J (v) ⊂ J (v)and f′ f h (v) = codimJ (v) ≤ codimJ (v) = h (v). f f f′ f′ (b)ConsiderafunctiongfromJ (v). ItsordersonthecomponentsofC′aregreaterorequalto C′ thecorrespondingcomponentsofv,hencetheintersectionmultiplicityofgwithC′isgreateror equalto|v|. Hencetheintersectionmultiplicityofg withC isgreaterorequalto |v|. Therefore J (v) ⊂ J (|v|)and h (|v|) = codimJ (|v|) ≤ codimJ (v) = h (v). (cid:3) C′ C C C C′ C′ 2.4. MotivicPoincare´ series. Following[5], wedefinethemotivicPoincare´ series ofaplane curvesingularity C = ∪r C bytheformula i=1 i 1 P (t ,...,t ;q) = tv1 ···tvr (−1)|K|qh(v+eK). g 1 r 1−q 1 r vX∈Zr KX⊂K0 It follows from the results of [5] that this definition agrees with the integral (1.0.2). In [7], and independently in [12], the following properties are proved: P (t ,...,t ;q) is a rational g 1 r functionwithdenominator r (1−t q),hence i=1 i r Q P (t ,...,t ;q) := P (t ,...,t ;q)· (1−t q) g 1 r g 1 r i i=1 Y isapolynomial. Moreover, P satisfies thefunctionalequation g 1 1 P ( ,..., ;q) = q−δ(C) t−li ·P (t ,...,t ;q). g qt qt i g 1 r 1 r i Y In [12] this equation was deduced from (2.3.2). Moreover, one can check that for q = 1 one has P (t ,...,t ;q = 1) = P(t ,...,t ). An explicit algorithm of the computation of g 1 r 1 r P (t ,...,t ;q) intermsoftheembeddedresolutiontreeof C isprovidedin[7]. g 1 r 8 EUGENEGORSKYANDANDRA´SNE´METHI 2.5. Conclusion. By the above discussions, the following objects associated with a plane curvesingularitycarry thesameamountofinformation: ∆, S, H,P andP . g 3. CENTRAL HYPERPLANE ARRANGEMENTS 3.1. Matroids and rank functions. Definition 3.1.1. (A) ([27]) Let K be a finite set. A function ρ, assigning a non-negative 0 integertoany subset K ⊂ K , iscalled arankfunction,if 0 (1) 0 ≤ ρ(K) ≤ |K|(where |K|denotesthecardinalityof K). (2) IfK ⊂ K thenρ(K ) ≤ ρ(K ). 1 2 1 2 (3) Foreverypairofsubsets K and K onehasthefollowinginequality: 1 2 ρ(K ∩K )+ρ(K ∪K ) ≤ ρ(K )+ρ(K ). 1 2 1 2 1 2 (B)Amatroidisa finiteset witharank functionon it. (C)Thecharacteristicpolynomialofamatroid M = (K ,ρ) isdefined as 0 χ (t) = (−1)|K|tρ(K0)−ρ(K). M KX⊂K0 Remark 3.1.2. Some authors define the characteristic polynomial using the Mo¨bius function ofamatroid. Thisdefinitionisequivalenttothepresent one,seee.g. [27, Theorem2.4]. Leth(v)denotetheHilbertfunctionofaplanecurvesingularity. LetusfixK = {1,...,r} 0 and forevery v considerthefollowingfunctiononsubsetsof K : 0 ρ (K) := h(v +e )−h(v) = dimJ(v)/J(v +e ). v K K Proposition3.1.3. Foreveryv thefunctionρ is arankfunctiononK . v 0 Proof. Property(1)followsfromLemma2.2.3. Next,forK ⊂ K onehasρ (K )−ρ (K ) = 1 2 v 2 v 1 dimJ(v + e )/J(v + e ) ≥ 0. To prove the third property notice that J(v + e ) = K1 K2 K1∪K2 J(v +e )∩J(v +e ), and J(v +e )+J(v+e ) ⊂ J(v +e ), hence K1 K2 K1 K2 K1∩K2 ρ (K )+ρ (K )−ρ (K ∪K ) = dimJ(v)/(J(v +e )+J(v +e )) ≥ ρ (K ∩K ). v 1 v 2 v 1 2 K1 K2 v 1 2 (cid:3) We will call ρ the rank function for a the “local matroid M ”. In the space J(v) we have r v v subspaces J(v +e ) of codimension 0 or 1. If v ∈ S, then the set of functions with valuation i v can be represented as a complement of a hyperplane arrangement (cf. [12]). If v 6∈ S, then J(v) = J(v +e ) forsomei , cf. Lemma2.2.3. Moreover,onehasthefollowinglemma. i0 0 Lemma 3.1.4. Assume that J(v) = J(v + e ) for some i ∈ K . Then J(v + e ) = J(v + i0 0 0 K e +e ) foranyK ⊂ E with K 6∋ i . Hence K i0 0 χMv(t) = (−1)|K| ·th(v+eK0)−h(v+eK) = 0. KX⊂K0 Proof. Use J(v + e + e ) = J(v + e ) ∩ J(v + e ) for the first statement, and pairwise K i0 K i0 cancellationforthesecond one. (cid:3) POINCARE´ SERIESOFALGEBRAICLINKSANDLATTICEHOMOLOGY 9 3.2. Central hyperplane arrangements andOrlik-Solomonalgebras. Letusrecallsomefactsaboutcentralhyperplanearrangements. LetV beavectorspaceand let H = {H ,...,H } be acollection oflinearhyperplanes in V. Fora set K = {α ,...,α } 1 r 1 k wedefinetherank function ρ(K) = codim(H ∩...∩H ). α1 αk SimilarlytoProposition3.1.3,onecancheckthatρisarankfunctionforacertainmatroid. Let usdenoteby χ (t) itscharacteristicpolynomial. H Lemma3.2.1. TheclassintheGrothendieckringofvarietiesofthecomplementof ∪ H inV i i equals [V \∪r H ] = LdimV−ρ(K0)χ (L), i=1 i H where Ldenotestheclassof theaffineline. Proof. Followsfrom theinclusion-exclusionformula: [V \∪r H ] = (−1)|K| [∩ H ] = (−1)|K| LdimV−ρ(K). (cid:3) i=1 i α∈K α KX⊂K0 KX⊂K0 To the arrangement H one can associate the corresponding Orlik-Solomon algebra. Con- sider the anticommutative algebra E generated by the variables z ,...,z corresponding to 1 r hyperplanes. For any set K ⊂ K we consider the monomial z = z ∧ ... ∧ z , where 0 K α1 αk K = {α ,...,α }.Wecan equipE withthenatural differential ∂ sendingz to 1,namely 1 k i k ∂(z ) = (−1)i−1z . K K\{αi} i=1 X Definition 3.2.2. We call the set K dependent, if the equations of the corresponding hyper- planesare linearlydependent. Otherwise K iscalled independent. TheOrlik-SolomonidealI istheidealinE generatedbytheelements∂z foralldependent K setsK. TheOrlik-Solomonalgebrais thequotient A = E/I. Theorem 3.2.3. ([18, Theorem 5.2]) The integral cohomology ring of the complement V \ ∪r H is isomorphic to the Orlik-Solomon algebra E/I. It has no torsion, and its Poincare´ i=1 i polynomialis givenbytheformula P(H,t) = (−t)r(E) ·χ (−t−1) = (−1)|K|(−t)ρ(K). H KX⊂K0 As a corollary, we conclude that the homology of V \ ∪r H is defined by its class in the i=1 i Grothendieckring. Thesameistrueforitsprojectivization(seebelow). Wewillneed thefollowingdeformationsofthedifferential on E. Definition 3.2.4. Let usdefine thefollowingoperator: k ∂ : E[U] → E[U], ∂ (z ) = (−1)i−1Uρ(K)−ρ(K\{αi})z , U U K K\αi i=1 X where U isaformal parameterand K = {α ,...,α }. 1 k Notethatρ(K)−ρ(K\{α }) ∈ {0,1},hence∂ decomposesintoasumoftwocomponents i U (3.2.5) ∂ = ∂ +U∂ , with ∂ +∂ = ∂. U 0 1 0 1 10 EUGENEGORSKYANDANDRA´SNE´METHI Lemma 3.2.6. The operator ∂ is a differential on E[U], that is, ∂2 = 0. In particular, the U U followingidentitieshold: ∂2 = ∂2 = 0, ∂ ∂ +∂ ∂ = 0. 0 1 0 1 1 0 Proof. Straightforward. (cid:3) Let J and J⊥ denote the subspaces of E spanned by the elements z for all dependent, K respectivelyindependentsubsets K. Clearly E = J ⊕J⊥. Lemma 3.2.7. Thefollowingstatementshold: (a) ([18], Lemma 2.7) I = J +∂J. (b) ∂ J⊥ = 0, henceIm∂ = ∂ J. 0 0 0 (c) ∂ J ⊂ J, henceI = J +∂J = J +∂ J. 1 0 (d) Ker∂ = J⊥ +Im∂ . 0 0 (e) There existsubspacesA ⊂ J,B ⊂ J⊥ suchthatIm∂ = A⊕B. 0 Proof. The claims (b) and (c) are clear. Let us prove(d). The inclusionJ⊥ +Im∂ ⊂ Ker∂ 0 0 is also clear, hence we need to prove that if ∂ (φ) = 0 then there exists φ ∈ J⊥ such that 0 φ−φ ∈ Im(∂ ). 0 Let us call z essential in a monomial z ∧ z , if ρ({i} ⊔ K) = ρ(K) +e1, and redundant i i K otherewise. Letusdecomposeφ = z ∧φ +z ∧φ +φ ,wherez isessentialineverymonomial 1 1 1 2 3 1 ofz ∧φ ,redundant ineverymonomialof z ∧φ , andφ containsno z . 1 1 1 2 3 1 Then ∂ (φ) = z ∧ψ +φ +∂ (φ ) 0 1 2 0 3 forsomeψ, and neitherφ nor∂ (φ ) containz . Hence, if∂ (φ) = 0then φ = −∂ (φ ). 2 0 3 1 0 2 0 3 Since z is redundant in every monomial in z ∧ ∂ (φ ), it is redundant in every monomial 1 1 0 3 inz ∧φ . Therefore 1 3 ∂ (z ∧φ ) = φ −z ∧∂ (φ )+z ∧η, 0 1 3 3 1 0 3 1 where z is essential in every monomial of z ∧ η. Indeed, if α ∈ K, z is redundant in 1 1 j αj K ∪{1}and essentialinK, then z is essentialinK ∪{1}\{α }. 1 j Weconcludethat φ−∂ (z ∧φ ) = z ∧(φ −η) 0 1 3 1 1 andz isessentialineverymonomialintherighthandside. Now∂ (φ) = −z ∧∂ (φ −η) = 0, 1 0 1 0 1 hence ∂ (φ − η) = 0. Then we can repeat the procedure inductively replacing φ by φ − η, 0 1 1 and z by z , etc. At the end we reduce φ modulo Im(∂ ) to an element of E where all z are 1 2 0 i essential;suchan element belongsto J⊥. Next, we prove (e). Recall that Im∂ = ∂ J and K is dependent iff ρ(K) < |K|. If 0 0 the monomial z appears in ∂ (z ) then ρ(K) = ρ(K′) and |K′| = |K| − 1. Therefore K′ 0 K ∂ (z ) ∈ J⊥ ifρ(K) = |K|−1,and ∂ (z ) ∈ J otherwise. (cid:3) 0 K 0 K Wewillneed thefollowingtwo resultsintheconstructionof latticehomology. Theorem 3.2.8. The Orlik-Solomon algebra is isomorphic to the homology of the differential ∂ : 0 H (E,∂ ) = E/I ≃ H∗(V \∪r H ). ∗ 0 i=1 i Proof. By Lemma3.2.7onehastheisomorphisms Ker∂ = J⊥ +Im∂ , Im∂ = ∂ J, 0 0 0 0 hence H (E,∂ ) = (J⊥ +∂ J)/∂ J ≃ J⊥/(∂ J ∩J⊥) ≃ E/(J +∂ J). ∗ 0 0 0 0 0