ebook img

Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations PDF

0.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations

Astronomy&Astrophysicsmanuscriptno.pluto˙ch4 (cid:13)c ESO2009 January30,2009 Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy 9 and stellar occultations 0 0 2 E.Lellouch1,B.Sicardy1,2,C.deBergh1,H.-U.Ka¨ufl3,S.Kassi4,andA.Campargue4 n a J 1 LESIA,ObservatoiredeParis,5placeJulesJanssen,92195Meudon,France 0 e-mail:[email protected] 3 2 Universite´PierreetMarieCurie,4placeJussieu,F-75005Paris,France;seniormemberofthe ] InstitutUniversitairedeFrance P E 3 EuropeanSpaceObservatory,Karl-Schwarzschild-Strasse2,D-85748GarchingbeiMu¨nchen, . Germany h p 4 LaboratoiredeSpectrome´triePhysique,Universite´ JosephFourier,BP-87,F-38402St-Martin - o d’He`resCedex,France r t s ReceivedJanuary,9,2009;revisedJanuary27,2009,accepted,January29,2009 a [ ABSTRACT 1 v 2 Context.Plutopossessesathinatmosphere,primarilycomposedofnitrogen,inwhichthedetec- 8 tionofmethanehasbeenreported. 8 4 Aims.The goal is to constrain essential but so far unknown parameters of Pluto’satmosphere . 1 suchasthesurfacepressure,loweratmospherethermalstucture,andmethanemixingratio. 0 Methods.Weuse high-resolution spectroscopic observations of gaseous methane, and a novel 9 0 analysisofoccultationlight-curves. : v Results.Weshowthat(i)Pluto’ssurfacepressureiscurrentlyinthe6.5-24µbarrange(ii)the i X methane mixing ratiois0.5±0.1%, adequate toexplain Pluto’sinverted thermal structure and r ∼100 K upper atmosphere temperature (iii) a troposphere is not required by our data, but if a present, it has a depth of at most 17 km, i.e. less than one pressure scale height; in this case methaneissupersaturatedinmostofit.Theatmosphericandbulksurfaceabundanceofmethane arestrikinglysimilar,apossibleconsequenceofthepresenceofaCH -richtopsurfacelayer. 4 Keywords.Solarsystem:general;Infrared:solarsystem;KuiperBelt 1. Introduction Since its detection in the 1980s (Brosch, 1995, Hubbard et al. 1988, Elliot et al. 1989), stellar occultationshaverevealedremarkablefeaturesofPluto’stenuous(µbar-like)atmosphere.Pluto’s upperatmosphereisisothermal(T∼100Kataltitudesabove1215kmfromPluto’scenter)andhas undergonea pressureexpansionbyafactorof2from1988to2002,probablyrelatedtoseasonal cycles,followedbyastabilizationover2002-2007(Sicardyetal.2003,Elliotetal.2003,2007,E. Youngetal.2008).Belowthe1215kmlevel,occultationlightcurvesarecharacterizedbyasharp 2 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance drop(“kink”)influx,interpretedasduetoeithera∼10km-thickthermallyinvertedlayer(strato- sphere)orabsorptionbyalow-altitudehazewithsignificantopacity(>0.15inverticalviewing).So far,observationsofstellaroccultationshavenotprovidedconstraintsontheatmosphericstructure atdeeperlevels,noronthesurfacepressure. While Pluto’s atmosphere is predominantly composed of N , the detection of methane has 2 been reportedfrom 1.7 µm spectroscopy (Younget al. 1997),leading to a roughestimate of the CH column density (1.2 cm-am within a factor of 3-4). Even before its detection, methane had 4 beenrecognizedtobethekeyheatingagentinPluto’satmosphere,abletoproduceasharpthermal inversion (Yelle and Lunine, 1989, Lellouch 1994, Strobel et al. 1996). The large uncertainty in thedataofYoungetal.,however,aswellastheunknownN columndensity,didnotallowoneto 2 determinetheCH /N mixingratio. 4 2 We here report on high-quality spectroscopic observations of gaseous CH on Pluto, from 4 which we separately determine the column density and equivalent temperature of methane. Combining this information with a novel analysis of recent occultation lightcurves, we obtain a precise measurement of the methane abundance, as well as new constraints on the structure of Pluto’sloweratmosphereandthesurfacepressure. 2. VLT/CRIRESobservations Plutoobservationswereobtainedwiththecryogenichigh-resolutioninfraredechellespectrograph (CRIRES, Ka¨ufletal. 2004)installedonESO VLT(EuropeanSouthernObservatoryVeryLarge Telescope)UT1(Antu)8.2mtelescope.CRIRESwasusedinadaptiveopticsmode(MACAO)and witha0.4”spectrometerslit.TheinstrumentconsistsoffourAladdinIIIInSbarrays.Wefocussed on the 2ν bandof methane,coveringthe 1642-1650,1652-1659,1662-1670and1672-1680nm 3 ranges, at a mean spectral resolution of 60,000,almost five times better than in the Young et al. (1997) observations. Observations were acquired on August 1 (UT = 3.10-4.30) and 16 (UT = 0.55-2.20), 2008, corresponding to mean Pluto (East) longitudes of 299o and 179o respectively. (WeusetheorbitalconventionofBuieetal.(1997)inwhichtheNorthPoleiscurrentlyfacingthe Sun). Pluto’stopocentricDopplershift was +20.0and +24.8km/s (i.e. ∼0.11and ∼0.14nm) on thetwodatesrespectively,ensuringproperseparationofthePlutomethanelinesfromtheirtelluric counterparts.Oneachdate,wealsoobservedonetelluricstandardstar(HIP91347andHIP87220, respectively).WeemphasizeheretheAugust1data,whichhavethehighestquality. 3. InferencesonPluto’sloweratmospherestructureandmethaneabundance Theobservedspectrum(Fig. 1)showsthedetectionofnolessthan17methanelinesoftheP,Q andRbranchesofthe2ν band,includinghighJ-levellines(uptoR7 andQ8),aswellas, more 3 marginally,thepresenceofafewweakerlinesbelongingtootherband(s)ofmethane(seebelow). Thisspectralrichnessmakesitpossible,forthefirsttime,toseparatetemperatureandabundance effectsinthePlutospectra. Spectraweredirectlymodelledusingatellurictransmissionspectrumcheckedagainstthestan- dardstarsobservations,a solar spectrum(FiorenzaandFormisano,2005)anda line-by-linesyn- theticspectrumofPluto.ThethreecomponentswereshiftedaccordingtotheirindividualDoppler shifts,andthenconvolvedtotheinstrumentalresolutionof60,000,determinedbyfittingthewidth E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 3 000...444 OObbsseerrvveedd,, 11 AAuugguusstt 22000088 000...333555 RR77 90 K, 0.75 cm-am s)s)s) 000...333 RR66 nitnitnit uuu RR55 arb. arb. arb. 000...222555 RR33 RR22 x (x (x ( 000...222 uuu FlFlFl 000...111555 000...111 111666444222 111666444444 111666444666 111666444888 111666555000 111666555222 111666555444 111666555666 111666555888 WWWaaavvveeellleeennngggttthhh (((nnnaaannnooommmeeettteeerrrsss))) 000...333555 OObbsseerrvveedd,, 11 AAuugguusstt 22000088 90 K, 0.75 cm-am 000...333 s)s)s) nitnitnit 000...222555 uuu arb. arb. arb. 000...222 RR00 QQ bbrraanncchh ((QQ11--QQ88)) PP11 x (x (x ( uuu 000...111555 FlFlFl PP44 PP33 000...111 000...000555 111666666444 111666666666 111666666888 111666777000 111666777222 111666777444 111666777666 111666777888 111666888000 WWWaaavvveeellleeennngggttthhh (((nnnaaannnooommmeeettteeerrrsss))) Fig.1. Black: Pluto spectrum observed with VLT/CRIRES. Red: Best-fit isothermal model (90 K, 0.75 cm-am CH ), including telluric and solar lines. The general continuum shape is due to 4 absorptioninthe2ν +ν and2ν bandsofsolidmethane(seeDoute´etal.1999) 2 3 3 ofthetelluriclines(andcorrespondingtoaneffectivesourcesizeof0.33”).FormodellingthePluto spectrum,weusedarecentCH linelist(Gaoetal.2009),basedonlaboratorymeasurements(po- 4 sitions and intensities) at 81 K, and including lower energy levels for 845 lines, determined by comparison with the intensities at 296 K collected in the HITRAN database. Although the tem- peratureof laboratorydata issimilar to Pluto’s, we used onlylinesforwhich energylevelswere available, in order to avoid dubious extrapolation towards lower temperatures. These data show that,inadditiontotheJ-manifoldsofthe2ν band,thespectralrangecontainsotherlinesoflow 3 energylevel(e.g.J=2near6085.2cm−1,seeFig. 2),whichappeartobemarginallydetectedin thePlutospectrum(seeFig.3). 3.1.Isothermalfits Wefirstmodelledthedataintermsofasingle,isothermalmethanelayer.Becausecollisionalbroad- eningisnegligibleatthelowpressuresofPluto’satmosphere,resultsatthisstepareindependent of Pluto’s pressure-temperaturestructure. Scattering was ignored, as justified below. The outgo- ing radiation was integrated over angles, using the classical formulation in which the two-way transmittanceisexpressedas2E (2τ),whereτisthezenithalopticaldepthoftheatmosphere.A 2 least-squareanalysisofthedatawasperformedinthe(temperature(T),columndensity(a))space. Fig. 3showsthatthebestfitoftheAug.1,2008dataisachievedforT=90K.Toolow(resp.too high)temperaturesleadtoanunderestimate(resp.overestimate)ofthehigh-Jlinesandanoveres- timate(resp.underestimate)ofthelow-Jlines.Basedonleast-squarefitting,weinferredT=90+25 −18 4 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance -1 m) 0.003 c K ( 1 J=2 J=1 8 1 torr, 0.002 ν, @ J=2 2 3 J=7 nt e ci effi o 0.001 c n ptio J=3 or J=3 s b J=3 A 0.000 6083 6084 6085 6086 6087 6088 -1 Wavenumber (cm ) Fig.2.Laboratoryspectrumofmethaneat81K inthe6083-6088cm−1 range,demonstratingthe existenceof strong,lowJ-level,linesin additiontothe R-branchmanifoldsof the2ν band.The 3 J-levelfortheselinesisdeterminedbycomparisonoftheirintensityat81Kandatroomtemper- ature(seeGaoetal.2009).TheJ=2doubletnear6085.2cm−1 ismarginallydetectedinthePluto spectrum(1643.4nm,seeFig. 3). K and a = 0.75+0.55 cm-am forthe data of August1, and similar numbers(T = 80+25 K and a = −0.30 −15 0.65+0.35cm-am)forAugust16. −0.30 3.2.Combinationwithinferencesfromstellaroccultations The above inferred methane temperatures, much warmer than Pluto’s mean surface temperature (∼50 K, Lellouch et al. 2000) are inconsistent with the existence of a deep, cold and methane- richtroposphere,suchasthe ∼40kmtroposphereadvocatedto matchestimatesofPluto’sradius fromthePluto-Charonmutualevents(Stansberryetal.1994).Toquantifythisstatement,wecom- binedourspectroscopicdatawithanewassessmentofstellaroccultationlight-curves.Besidesthe isothermalpartandthe“kink”featurementionedpreviously,recenthigh-quality,occultationcurves (Sicardyetal.2003,Elliotetal.2003,2007,E.Youngetal.2008,L.Youngetal.2008)exhibita numberofremarkablecharacteristics:(i)alowresidualfluxduringoccultation,typicallylessthan 3 % of the unattenuatedstellar flux (ii) the conspicuousabsence of caustic spikes in the bottom part of the light-curves(iii) the existence of a central flash, caused by Pluto’s limb curvature,in occultationsinwhichtheEarthpassednearthegeometriccentreoftheshadow. To determine the range of Pluto’s thermal structures that can account for these features, we performedray-tracingcalculationsforavarietyoftemperature/pressureprofiles,expandingupon theworkofStansberryetal.(1994).Forthistask,weassumedaclearatmosphere.Thisisjustified by(i)theabsenceofcolourvariationinthecentralflash(L.Youngetal.2008)and(ii)thedifficulty forhazestobeproducedphotochemicallyattherequiredopticaldepthinatenuousatmospherelike Pluto’s(Stansberryetal.1989).Wethusadoptedthe“stratosphericgradient”interpretationofthe light-curves,andexploredabroadrangeofsituations,varyingthevalueofthisgradient,thelevel atwhichtheinversionlayerconnectstoatroposphere(i.e.thetropopausepressure),andthedepth andlapserateofthistroposphere(Fig.4). E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 5 000000000.........333333333666666666 000000000.........222222222444444444 000000000.........333333333444444444 000000000.........333333333222222222 000000000.........222222222222222222 s)s)s)s)s)s)s)s)s) s)s)s)s)s)s)s)s)s) nitnitnitnitnitnitnitnitnit 000000000.........333333333 nitnitnitnitnitnitnitnitnit 000000000.........222222222 uuuuuuuuu uuuuuuuuu b. b. b. b. b. b. b. b. b. 000000000.........222222222888888888 9999999900000000 KKKKKKKK b. b. b. b. b. b. b. b. b. 9999999900000000 KKKKKKKK ararararararararar ararararararararar 000000000.........111111111888888888 x (x (x (x (x (x (x (x (x ( 000000000.........222222222666666666 7777777700000000 KKKKKKKK x (x (x (x (x (x (x (x (x ( 7777777700000000 KKKKKKKK uuuuuuuuu 111111112222222200000000 KKKKKKKK uuuuuuuuu 000000000.........111111111666666666 111111112222222200000000 KKKKKKKK FlFlFlFlFlFlFlFlFl 000000000.........222222222444444444 RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm FlFlFlFlFlFlFlFlFl RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm 000000000.........222222222222222222 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm 000000000.........111111111444444444 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm 000000000.........222222222 000000000.........111111111222222222 111111111666666666444444444222222222.........666666666 111111111666666666444444444222222222.........888888888 111111111666666666444444444333333333 111111111666666666444444444333333333.........222222222 111111111666666666444444444333333333.........444444444 111111111666666666444444444333333333.........666666666 111111111666666666444444444777777777.........888888888 111111111666666666444444444888888888 111111111666666666444444444888888888.........222222222 111111111666666666444444444888888888.........444444444 111111111666666666444444444888888888.........666666666 111111111666666666444444444888888888.........888888888 WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss))))))))) WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss))))))))) 000000000.........222222222 000000000.........111111111888888888 000000000.........111111111999999999 000000000.........111111111666666666 000000000.........111111111888888888 s)s)s)s)s)s)s)s)s) s)s)s)s)s)s)s)s)s) nitnitnitnitnitnitnitnitnit 000000000.........111111111444444444 nitnitnitnitnitnitnitnitnit 000000000.........111111111777777777 uuuuuuuuu uuuuuuuuu b. b. b. b. b. b. b. b. b. 000000000.........111111111222222222 b. b. b. b. b. b. b. b. b. 000000000.........111111111666666666 9999999900000000 KKKKKKKK ararararararararar 9999999900000000 KKKKKKKK ararararararararar Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux ( 000000000.........111111111 71717171717171710202020202020202 0 0 0 0 0 0 0 0KKKKKKKK KKKKKKKK Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux ( 000000000000000000..................111111111111111111454545454545454545 71717171717171710202020202020202 0 0 0 0 0 0 0 0KKKKKKKK KKKKKKKK 000000000.........000000000888888888 RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm 000000000.........000000000666666666 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm 000000000.........111111111333333333 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm 000000000.........111111111222222222 111111111666666666666666666555555555.........444444444 111111111666666666666666666555555555.........777777777 111111111666666666666666666666666666 111111111666666666666666666666666666.........333333333 111111111666666666666666666666666666.........666666666 111111111666666666666666666888888888 111111111666666666666666666888888888.........222222222 111111111666666666666666666888888888.........444444444 111111111666666666666666666888888888.........666666666 111111111666666666666666666888888888.........888888888 111111111666666666666666666999999999 WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss))))))))) WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss))))))))) Fig.3.Modelfitting ofthe August1,2008Plutospectrum(histograms)zoomedonfourspectral regions.TheblackcurveisamodelwithnomethaneonPluto.The90K,70K,and120Kcurves indicateisothermal,single-layer,fits, including0.75cm-am,1.3cm-amand0.45cm-amofCH , 4 respectively.Therotationaldistributionoflinesindicatesthata90Ktemperatureprovidesthebest fit.The“R=1193km”model(pink,fitalmostindistinguishabletothe90Kmodel)correspondstoa 6K/kmstratospherictemperaturegradient,a1193kmradius(7.5µbarsurfacepressure)anda0.62 % methane mixingratio. The “R=1168km” modelincludesa 6 K/km stratospheric temperature gradient, joining with a wet tropospheric lapse rate of -0.1 K/km below 1188 km (tropopause) andextendingdowntoa 1168kmsurfaceradius(29µbar).This20km-deeptropospheremodel, optimized here with CH = 0.36 %, is inconsistent with the methane spectrum; for this thermal 4 profile,theminimumradiusis1172km(seeFig.4).Thewavelengthscaleisintheobserverframe. These spectral regions are those showing maximum sensitivity to the methane temperature (or equivalentlydepth of the troposphere),as they include low J-level and high J-level lines, but for quantitativeanalysis,aleast-squarefitonalllineswasperformed. Wereachedthefollowingconclusions(Fig. 4and 5):(i)thestratospherictemperaturegradient isinthe3-15K/kmrange.Gradientssmallerthan3K/kmwouldleadtoresidualfluxesinexcess of 3 %; gradients larger than 15 K/km produce residual fluxes lower than 1 %, and are anyway notexpectedfromradiativemodels(Strobeletal.1996)(ii)withinthisrange,theexistenceofthe centralflash implies a minimumatmosphericpressure of 7.5±1.2bar (iii) the absence of caustic spikes in the region of low residual flux puts stringent constraints on a putative troposphere. In most cases, it restricts such a troposphereto be at most shallow (2-5 km deep, dependingon its meantemperature),andthesurfacepressuretobelessthan∼10µbar.Anexceptionisthefamily ofthermalprofileswithintermediate(5-7K/km)stratospherictemperaturegradientsandacold(< 38K)tropopause,whichappearconsistentwithoccultationcurvesforanytroposphericdepth.In 6 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance Fig.4. Range of possible thermal profiles (pressure-temperature (left) and radius-temperature (right)) in Pluto’s atmosphere. From bottom to top, they have stratospheric thermal gradients of 3 and 4 K/km (red profiles), 5 K/km (one orange and one green), 6 K/km (two green), 7 K/km (green),and9and15K/km(blue).Allprofilesarecontinuousinfirstandsecondordertemperature derivatives.Mostoftheseprofileshavenoorverylimitedtropospheres(lessthan5kmindepth), inordertomatchtheresidualfluxobservedduringstellaroccultationsandavoidtheformationof strongcaustics(seeFig.5).Onlyprofilesingreenandorange,withmoderatestratospherictemper- aturegradients(5-7K/km)andacoldtropopause(<38K)canhavesignificanttropospheres.The lapserateinsuchtropospheresrangesfrom-0.1K/km,correspondingtotheN wetadiabat(green 2 profiles)to-0.6K/km(N dryadiabat,orangeprofile).TheCRIRESspectraindicatethatthesewet 2 and dry profilescannotextenddeeper than p ∼24µbar (1172and 1169km, respectively).In the leftpanel,thesolidlineonthetoprightisthelocusofminimumatmosphericpressureimpliedby theobservationofacentralflash,andthesolidlineontheleftisthevapourpressureequilibrium ofN .Thedashed-dottedlineisthevapourpressureequilibriumofCH fora0.5%mixingratio. 2 4 Thedottedlineat50Killustratesthemaximumpossiblenear-surfacegastemperature.Theshaded areas represent the range of possible tropospheres. If Pluto has a troposphere, methane must be supersaturatedovermostofit. fact,suchprofiles(greencurvesinFig.4and5)leadtomodestcausticspikesintheregionofthe “kink”,i.e.wherespikesareobservedinactualobservations,forwhichtheycanbemistaken. The allowed thermal profiles were finally tested against the methane spectrum. We assumed uniformatmosphericmixing,aplausiblecasegiventhat(i)thesourceofmethaneisatthesurface (ii)itsequivalenttemperatureimpliesthatalargefractionofmethaneisintheupperatmosphere, andperformedaleast-squareanalysisofthedatainthe(surfaceradius,CH mixingratio)domain. 4 Notsurprisinglyinviewoftheisothermalfits,thermalprofileshavingno(oramini-)troposphere areallconsistentwiththemethanespectrum.Forexample,forastratospherictemperaturegradient of6K/km,asurfaceradiusof1193km(surfacepressure=7.5µbar,i.e.theminimumrequiredby the occultations)providesan adequatefit ofthe August1 data fora CH mixingratioof 0.62% 4 .Incontrast,profilesincludingtoodeepatropospherecanberejectedasgivingtoomuchweight to cold methane and leading to a line distribution inconsistentwith the data. Based on such fits, the maximum troposphericdepth is found to be 17 km (i.e. 0.85 pressure scale heights) and the E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 7 Fig.5.Ray-tracingcalculationsofoccultationlight-curvesforrepresentativetemperatureprofiles of Fig. 4. The shaded area near the bottom of the light-curve represents the range of residual flux(0.00-0.032)observedintheCFHTAugust21,2002occultation(Sicardyetal.2003),witha closestapproachtoshadowcentreof597km.(WeestimatethattheAATJune12,2006occultation light-curve (E. Young et al. 2008) consistently indicates a 0.01-0.03 residual flux). Red: light- curve for the thermal profile with 3 K/km stratospheric gradient of Fig. 4, extending to 9 µbar. This“stratosphere-only”modelisconsistentwithobservedlight-curves.Blue:light-curveforthe thermal profile with 15 K/km stratospheric gradient, and a 4-km deep troposphere at ∼36.5 K. Thisprofileproducesanunacceptablecausticsspike,causedbythesecondary(“farlimb”)image Green: light-curve for a thermal profile with 6 K/km gradient in the inversion layer, joining the N saturationvapourpressurewitha∼-0.1K/kmgradientinthetroposphere.Inthiscase,modest 2 causticsarestillproduced,buttheyappearnearthelight-curvekink. maximumsurfacepressure is24 µbar. Takingallconstraintstogether,Pluto’ssurfacepressurein 2008isintherange6.5-24µbar.Therangeofmethanecolumndensitiesis0.65-1.3cm-am.Deeper (i.e. colder) models require larger methane columns than shallower models, but since they also haveahighersurfacepressure,themethanemixingratioisaccuratelydeterminedtobe0.51±0.11 %. Constraints from the August 16 data are somewhat looser (a maximum surface pressure and tropospheredepthof32µbarand23km,respectively).TheminimumPlutoradiusimpliedbythe data is 1169-1172km (Fig. 4). This value holdsfor the nominalastrometric solutionsfor stellar occultations,typicallyuncertainby∼10km.Giventhisuncertainty,ourlowerlimitontheradiusis consistentwithmostinferencesfromthemutualevents(nominally1151-1178km,see Tholenet al.1997).Thetropospheredepthisfreefromthisuncertainty,andthereforebetterconstrainedthan Pluto’sradius. 8 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 4. Discussion 4.1.Methanemixingratioandpossiblesupersaturation Throughabsorptionofsolarinputinthenear-IRandradiationat7.7µm,methaneisthekeyheat- ing/coolingagentinPluto’satmosphere,andinparticularmustberesponsibleforitsthermalinver- sion.Detailedcalculations(Strobeletal.1996)showthat,eveninthepresenceofCOcoolingand foranassumed3µbar“surface”(i.e.baseoftheinversionlayer)pressure,a0.3%methanemixing ratio produces a 7 K/km “surface” gradient and a temperature increase of ∼36 K in the first 10 km.Althoughsuchcalculationswillneedtoberedoneinthelightofourresults,a0.5%methane mixingratioisclearlyadequatetoexplainthe∼6K/kmgradientindicatedbytheoccultationdata, furtherjustifyingourassumptiontoneglecthazeopacity. The presence of methane in Pluto’s stratosphere implies that it is not severely depleted by atmospheric condensation. Yet, a remarkable result is that for models including a troposphere, methaneappearstobesignificantlysupersaturated(Fig. 4),byasmuchasafactor∼30fora∼38 Ktropopause.GiventhatPluto’stroposphereisatmostshallow(lessthan1pressurescaleheight), thisplausiblyresultsfromconvectiveovershootassociatedwithdynamicalactivity,combinedwith apaucityofcondensationnucleiinaclearatmosphere. 4.2.Theoriginoftheelevatedmethaneabundance In agreementwith Younget al. (1997),the CH / N mixing ratio we deriveis ordersof magni- 4 2 tudelargerthanthe ratiooftheirvapourpressuresatanygiventemperature,andthe discrepancy isevenworseifoneconsidersthatmethaneisaminorcomponentonPluto’ssurface.Twoscenar- ios(Spenceretal.1997,Traftonetal.1997)havebeendescribedtoexplainthiselevatedmethane abundance(i)theformation,throughsurface-atmosphereexchanges,ofathinmethane-richsurface layer(theso-called“detailedbalancing”layer),whichinhibitsthesublimationoftheunderlying, dominantlyN , frost,andleadsto anatmospherewith the same compositionasthisfrost(ii)the 2 existenceofgeographicallyseparatedpatchesofpuremethane,warmerthannitrogen-richregions, andwhichundersublimationboosttheatmosphericmethanecontent.Interestingly,detailedanal- ysesof1.4-2.5µmand1-4µmmid-resolutionspectragiveobservationalcredittobothsituations. Itisnoteworthythatour0.5%atmosphericabundanceisidenticaltotheCH /N ratiointheN - 4 2 2 CH -COsubsurfacelayerofDoute´etal.(1999),consistentwiththedetailedbalancingmodel,and 4 agreesalsowiththesolidmethaneconcentrationinferredbyOlkinetal.(2007)(0.36%).Inthis framework,atypical15µbarsurfacepressurecouldbeexplainediftheN -CH -COsubsurface 2 4 layerisat40.5K(consistentwiththeN icetemperaturemeasurementsofTrykaetal.,1994)and 2 overlaid by a 80 % CH - 20 % N surface layer. On the other hand, and in favour of the alter- 4 2 natescenario,thermalIRlightcurves(Lellouchetal.2000)aswellassublimationmodelsforCH 4 (Stansberryetal.1996)indicatethatextendedpureCH patchesmayreachdaysidetemperatures 4 wellinexcessof50K;thisismorethansufficienttoexplainthe∼0.075µbarCH partialpressure 4 indicatedbyourdata. Discriminatingbetween the two cases may rely onthe time evolutionofthe N pressureand 2 CH mixingratio.Inparticular,thedecreaseofatmosphericCH withincreasingheliocentricdis- 4 4 tance is expected to lead to a drop of the CH abundance in the detailed balancing layer, which 4 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 9 maydelay the decreaseofthe N pressure(Traftonet al. 1998).AssumingT = 100K, Younget 2 al.(1997)reporteda0.33-4.35cm-ammethaneabundancein1992.Althoughtheirerrorbarsare verylarge,their bestfit value(1.2cm-am)islargerthanours(0.65cm-amforthis temperature). Combinedwith the factorof ∼2 pressureincreasebetween1988and2002,thissuggeststhatthe methane mixing ratio is currently declining. The ALICE and Rex instruments on New Horizons will measure Pluto’s surface pressure and methane abundancein 2015. Along with the data pre- sentedinthispaper,thiswillprovidenewkeysontheseasonalevolutionofPluto’satmosphereand thesurface-atmosphereinteractions. Acknowledgements. ThisworkisbasedonobservationsperformedattheEuropeanSouthernObservatory(ESO),proposal 381.C-0247.WethankDarrellStrobelforconstructivereviewing. References Brosch,N.1995,Mon.Not.R.Astron.Soc.276,571 Buie,M.W.,Tholen,D.J.&Wasserman,L.H.1997,Icarus,125,233-244 Doute´,S.etal.1999,Icarus,142,421 Elliot,J.L.etal.1989,Icarus77,148 Elliot,J.L.etal.2003,Nature424,165 Elliot,J.L.etal.2007,AstronJ.134,1-13 Fiorenza,C.&Formisano,V.2005,Planet.SpaceSci.,53,1009 Gao,B.,Kassi,S.&Campargue,A.2009,J.Mol.Spectro,253,55 Hubbard,W.B.,etal.1988,Nature336,452 Ka¨ufl,H.U.etal.2004,SPIE,5492,1218 Lellouch,E.1994,Icarus,108,225 Lellouch,E.etal.2000,Icarus,147,220 Olkin,C.B.etal.2007,AstronJ.133,420 Sicardy,B.etal.2003,Nature424,168 Spencer,J.R.,etal.1997,inPlutoandCharon,eds.S.A.Stern&D.J.Tholen(TheUniversityofArizonaPress),435 Stansberry,J.A.,Lunine,J.I.&Tomasko,M.G.1989,GRL,16,1221 Stansberry,J.A.,etal.1994,Icarus,111,503 Stansberry,J.A.etal.1996,Planet.SpaceSci.44,1051 Strobel,D.F.,Zhu,X.&Summers,M.E.1996,Icarus,120,266 Tholen,D.J.&Buie,M.W.1997,inPlutoandCharon,eds.S.A.Stern&D.J.Tholen(TheUniversityofArizonaPress), 193 Trafton,L.M.,Hunten,D.M.,Zanhle,K.J.&McNutt,R.L.1997,inPlutoandCharon,eds.S.A.Stern&D.J.Tholen(The UniversityofArizonaPress),475 Trafton,L.M,Matson,D.L.&StansberryJ.A.1998,inSolarSystemIces,eds.B.Schmitt,C.deBergh,andM.Festou (KluwerAcademicPublishers),773 Tryka,K.etal.1994,Icarus,112,513 Yelle,R.V.&Lunine,J.I.1989,Nature,399,288 Young,L.A.,etal.1997,Icarus127,258 Young,E.etal.2008,Astron.J.,136,1757 Young,L.etal.2008,Bull.Amer.Astron.Soc.40,461

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.