ebook img

Plasmon Resonance of Silver Nanoparticles as a Method of Increasing Their Antibacterial Action PDF

18 Pages·2017·3.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plasmon Resonance of Silver Nanoparticles as a Method of Increasing Their Antibacterial Action

antibiotics Article Plasmon Resonance of Silver Nanoparticles as a Method of Increasing Their Antibacterial Action AlexanderYu.Vasil’kov1,RuslanI.Dovnar2,* ID,SiarheiM.Smotryn2,NikolaiN.Iaskevich2 andAlexanderV.Naumkin1 ID 1 NesmeyanovInstituteofOrganoelementCompounds,RussianAcademyofSciences,28Vavilovst., Moscow119991,Russia;[email protected](A.Y.V.);[email protected](A.V.N.) 2 GrodnoStateMedicalUniversity,80GorkySt.,Grodno230009,Belarus;[email protected](S.M.S.); [email protected](N.N.I.) * Correspondence:[email protected];Tel.:+375-297-868-643 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:14July2018;Accepted:21August2018;Published:22August2018 Abstract: In this article, a series of silver-containing dressings are prepared by metal-vapor synthesis(MVS),andtheirantibacterialpropertiesareinvestigated. Theantibacterialactivityofthe dressingscontainingsilvernanoparticles(AgNPs)againstsomeGram-positive,andGram-negative microorganisms(Staphylococcusaureus,Staphylococcushaemolyticus,Pseudomonasaeruginosa,Klebsiella pneumoniae, Escherichia coli, Moraxella spp.) has been determined. Based on the plasmon resonance frequencyofthesenanoparticles,thefrequencyoflaserirradiationofthedressingwaschosen.Thegauze bandageexaminedshowedpronouncedantibacterialproperties,especiallytoStaphylococcusaureus strain.When470nmlaserradiation,withapowerof5mW,wasappliedfor5min,4hafterinoculating thePetridish,andplacingabandagecontainingsilvernanoparticlesonit,theantibacterialeffectof thelattersignificantlyincreased—bothagainstGram-positiveandGram-negativemicroorganisms. Thestructureandchemicalcompositionofthesilver-containingnanocompositewerestudiedby transmissionelectronmicroscopy(TEM),X-rayphotoelectronspectroscopy(XPS)andextendedX-ray absorptionfinestructure(EXAFS).ThesynthesizedAgNPsdemonstratenarrowandmonomodal particlesizedistributionwithanaveragesizeof1.75nm. AtomsofmetalinAg/bandagesystemare mainlyinAg0state,andtheoxidizedatomsareintheformofAg-Ag-Ogroups. Keywords: antibacterialeffect;laserirradiation;metal-vapourmethod;silvernanoparticles;TEM; XPS;EXAFS 1. Introduction Thewidespreaduseofantibioticsforthetreatmentandpreventionofbacterialdiseasesleadsto asignificantincreaseintheantibacterialresistanceofmicroorganismsthroughitsacquisitioneither throughexogenousresistancegenesorchromosomalmutations[1]. Thisstimulatesnotonlythesearch fornewantibacterialdrugs,butalsopossiblealternativestothelatter[2,3]. Thescientistsaretaskedto findsubstancesthateffectivelyactsimultaneouslyonGram-positive,Gram-negativemicroorganisms andfungi,whichareindependentoftheantibioticresistanceofthemicroorganism. Silveranditscompoundshavebeenusedinmedicinesinceancienttimes. Massapplicationof silverpreparationsbeganintheseventiesofthe19thcentury[4,5]. Sincethen,numerousconfirmations ofantiviral,antibacterial,andimmunomodulatingactivityofsilverpreparationshavebeenreceived[6]. Withtheinventionofantibiotics,whichhavemorepronouncedantibacterialproperties,interestin thetherapeuticpropertiesofsilverdramaticallydecreased. However,widespreaduseofantibiotics revealedbytheendofthe20thcenturyanumberoftheirshortcomingsandsilverpreparationswere againactivelystudiedandused[7]. Antibiotics2018,7,80;doi:10.3390/antibiotics7030080 www.mdpi.com/journal/antibiotics Antibiotics2018,7,80 2of18 The mechanism of antimicrobial effect of silver was carefully studied previously. It has now beenestablishedthatsilverionsareselectivelytoxicwithrespecttoprokaryoticmicroorganismswith aweakeffectoneukaryoticcells[6],includingcomparativelyminimaltoxicitytomammaliancells[8]. Thisisduetothefactthattheconcentrationofsilverionsorsilvernanoparticlesnecessaryforthe deathofprokaryoticcells(bacteria)ismuchlowerthantheconcentrationthatcausesthedeathof eukaryoticcells,includingcellsofthehumanbody[9]. Itshouldbenotedthatnewprospectsfortheuseofsilverinmedicineareopenedinconnection with the development of nanotechnology, an interdisciplinary field of science that deals with the creation, production and application of structures, devices and systems ranging in size from 1 to 1000nm,althoughinpracticetheyusethesizesrangingfrom1to100nmmoreoften[10]. Itisproved thatthemetalnanoparticleshaveuniqueproperties,oftendifferingfromthatofthesolidmetal[10]. Thisisduetothefactthatthesurface/bulkenergyratioofnanoparticlesismuchlargerthanthatof compactmetal[11]. As applied to medicine, this means that the nature of the interaction of a nanoparticle with a bacterium or fungus is significantly different from the impact of a compact metal on them and probablyenhancestheirbactericidalorfungicidalactivity[10]. Localized surface plasmon resonance is an optical phenomenon that is generated when light interactswithconductivenanoparticlesthataresmallerthantheincidentwavelength[12]. Fromthe pointofviewofantibacterialpropertiesof(silvernanoparticles)AgNPs,itisinterestingtostudyhow thesepropertieschangewhenplasmonresonanceeffectoccurs. Oneoftheecologicalandeffectivemethodsforproducingmono-andbi-metallicnanoparticles andmaterialsbasedonthemisthemetal-vaporsynthesis(MVS).Themethodwasusedforpreparation ofsilver-containingcompositematerialsformedicalapplications[13]. ItisassumedthatMVSwill be effective for the modification of wound dressings prepared from natural or synthetic materials withAgNPs. Inthisregard,thewideintroductionofdressingscontainingAgNPscorrectlycombinedwiththe plasmonresonanceeffectcanplayasignificantroleinimprovingtreatmentofpurulentwoundsinthe eraofincreasingantibioticresistanceofmicroorganisms. Theaimofthisresearchistostudytheantibacterialeffectofanewdressingmaterial,basedon gauzebandagecontainingAgNPspreparedbyMVS,andchangingthiseffectundertheinfluenceof laserradiation. 2. Results Thestructureandchemicalcompositionofthesilver-containingnanocompositewerestudiedby transmissionelectronmicroscopy(TEM),X-rayphotoelectronspectroscopy(XPS)andextendedX-ray absorptionfinestructure(EXAFS). TheTEMmicrographofthecottonfibreisshowninFigure1. Thephotographshowsamorphous extendedstructurewithadiameterintherangeof16–25nm, anddarkcrystallinenanostructures, thedensityofwhichishigherthanthatofcotton. Theenlargedimageoftheregionsoforderedatoms onasurfacemarkedwithasquareinFigure1isshowninFigure2. TheEDSspectraobtainedfromdarknanostructures(notshown)containthecharacteristicline AgLα=2.98keV,whichallowsattributedarknanostructurestoAgNPs. MostofAgNPsareinthe formofchainsandagglomerates,whichisacharacteristicfeatureofthesystemspreparedbyMVS. Theparticlesizedistributionisnarrowandmonomodal. Theaverageparticlesizeis1.75±0.25nm. SimulationoftheelectrondiffractionforthegroupoftheatomsselectedinFigure2isshownin Figure3. ItisseenfromFigures2and3thatgroupsofatomsformfaceswithinterplanardistances d1andd2. Calculatingtheratiod1/d2givesavalueof1.09. Theanglebetweend1andd2is52◦. Thevalues1.09and52◦ indicatethepresenceoffaces(111)and(200)ofaface-centeredcubic(fcc) structureinsilverparticles(foranidealfccstructure: d(111)/d(200)=1.15,theangleis55◦). Antibiotics2018,7,80 3of18 Antibiotics 2018, 7, x 3 of 19 Figure 1. Transmission electron microscopy (TEM) micrograph of Ag-cotton system. Figure1.Transmissionelectronmicroscopy(TEM)micrographofAg-cottonsystem. Based on the synthesis method and sample storage conditions, three models of the chemical compositionoftheparticlesurfacecanbeproposed: Ag0,Ag+,andAg0 +Ag+. Withahighdegree of probability, the mixed composition in crystalline form can be excluded from the consideration. Otherwise,“doublereflexes”shouldbeobservedinFigure3. Thefcclatticeconstants(a)forAg0and Ag Oare4.08Åand4.76Å,respectively. Calculationofabytheformulaa=d(hkl)×(h2+k2+l2)1/2, 2 whereh=1,k=1,l=1;d(hkl)=2.3Å,givesavalueof3.98Å.Consequently,thereisreasontobelieve thatthesurfaceofthecrystallineparticlesconsistsofmetallicsilver. However,presenceofAg+statein amorphousformcannotbeexcluded. Figure4showsthesurveyspectrumofAgblack. Alongwiththepeakscharacteristicofsilver atomstherearepeaksofimpuritycarbonandoxygenatoms. ThedeterminationofthechemicalstateofsilveratomsinnanoparticlesbytheXPSmethodis acomplextask. Thisisduetothefactthatthespectralcharacteristicsofthemetalparticlesandthe oxideparticlesarefairlyclose. AccordingtoNISTXPSDatabase[14]thebindingenergiesoftheAg 3d peak for Ag, Ag O and AgO are in the ranges 367.9–368.4, 367.7–368.4, and 367.3–368.1 eV, 5/2 2 respectively. OneofthesolutionstothisproblemistheuseoftheAugerparameter. However,asarule, theconcentrationofsilvernanoparticlesinmaterialsislow, whereastheregistrationoftheAuger spectrumrequiresasignificantlylongertimethantherecordingofthephotoelectronspectrum,which canleadtothereductionofsilverfromoxidesundertheactionofX-rayirradiation[15]. Antibiotics2018,7,80 4of18 Antibiotics 2018, 7, x 4 of 19 Ag(111) Ag(200) Figure 2. An enlarged image of the regions of ordered atoms on a surface, marked with a square in Figure2. Anenlargedimageoftheregionsoforderedatomsonasurface,markedwithasquarein Figure 1. Figure1. The EDS spectra obtained from dark nanostructures (not shown) contain the characteristic line AAgLnαot =h e2r.9a8p kperVoa, cwhhmicahy ablleowbass aetdtroibnucteo ndtarrokll endandoisfftreurecntutiraels cthoa ArggiNngP,si. nMwohsti cohf sAegpNarPast iaorne oinf stihgen als fromforrmeg oiof ncshawinitsh angdo oadggalnomdeproatoers,c wonhdicuhc itsi vai tcyhaisrapctoesrsisibtilce f.eIaftuthree oref gthioe nsyhsatesmasm preetpalalriecdc obny dMuVctSi.v ity andTihsei npagrtoioclde seilzeec dtriisctarilbcuotinotna cist nwairtrhowth aensda mmopnleomhoodldael.r T, thhee anveitradgoee psanrtoictlea cscizuem isu 1la.7t5e ±a 0c.2h5a nrgme. due to the emSiimssuiloantioonf osfe tchoen edleacrtyroenl edcitfrforancsti.onIn focro tnhter agsrto,uipn oaf trheeg iaotonmws istehlepcoteodr inco Fnigduurcet i2v iist ys,haowpno sinit ive Figure 3. It is seen from Figures 2 and 3 that groups of atoms form faces with interplanar distances chargeisusuallyaccumulated,thevalueofwhichdependsonthesecondaryemissioncoefficientand d1 and d2. Calculating the ratio d1/d2 gives a value of 1.09. The angle between d1 and d2 is 52°. The conductivity,anditleadstothedisplacementofphotoelectronpeaksintheregionofhighbinding values 1.09 and 52° indicate the presence of faces (111) and (200) of a face-centered cubic (fcc) energies. WhenapositivebiasvoltageU isapplied,thestrayelectronsflowtothesamplesurface structure in silver particles (for an ideal fbcc structure: d(111)/d (200) = 1.15, the angle is 55°). is increased and contributes to the compensation of the surface charge. In this case, narrowing of Based on the synthesis method and sample storage conditions, three models of the chemical thephotoelectronpeaksandtheirshifttowardhigherbindingenergiesareobserved. Photoelectron composition of the particle surface can be proposed: Ag0, Ag+, and Ag0 + Ag+. With a high degree of peakscorrespondingtoregionswithgoodconductivityshouldbeshiftedbyU theamountofapplied probability, the mixed composition in crystalline form can be excluded frobm the consideration. biasvoltage,whilefromareaswithaworseconductivitybyasmalleramount. Withanegativebias Otherwise, “double reflexes” should be observed in Figure 3. The fcc lattice constants (a) for Ag0 and voltAagge2O,t hareefl 4u.0x8 sÅtr aanyde l4e.7ct6r oÅn, sredsepcercetiavseelsy,. iCtalelcaudlsattioonin ocfr ae absye tihnec fhoarmrguinlag ao =n dn(ohnk-l)c o×n (dh2u +c tkin2 +g lr2e)1g/2i,o ns andwahnerien chr e=a 1s,e ki n= t1h, el =in 1te; rdv a(hlkbl)e t=w 2e.3e nÅp, geiavkess cao vrraeluspe oonf d3i.9n8g Åto. Csiognnsaeqlsuefrnotlmy, tthheerec oins dreuacstoinn gtoa nd nonb-ceolinevdeu cthtiantg threeg siuornfsa.ceIn otfh tihsec carsyes,ttahlleinseig pnaarltifcrloems ctohnesicsotsn dofu mctievtaellriecg siiolvnemr. uHsotwalesvoebr,e psrheisfetnedceb oyf U . b ATga+ ksitnatge iinnt oamacocropuhnotutsh feordmif fcearnennocet bine tehxecleuldeecdtr.i c alconductivityofmetallicsilveranditsoxides,we attemptedtoseparatesignalsfromregionscontainingsilveratomsinametalstateandotherchemical statesbycontrolleddifferentialcharging,changingthepotentialonthesampleholder. Thisapproach iswidelyusedtodeterminethepresenceofdifferentphasesinasample[16–21]. Antibiotics2018,7,80 5of18 Antibiotics 2018, 7, x 5 of 19 (111) (-111) d 1 (200) d 2 (-200) (1-1-1) (-1-1-1) Figure 3. Simulation of the electron diffraction pattern for the group of atoms circled in Figure 2 and Figure3.SimulationoftheelectrondiffractionpatternforthegroupofatomscircledinFigure2and Antibioticass 2s0ig18n,m 7,e xn t for face-centered cubic (fcc) structure. 6 of 19 assignmentforface-centeredcubic(fcc)structure. Figure 4 shows the survey spectrum of Ag black. Along with the peaks characteristic of silver atoms there are peaks of impurity carbon and oxygen atoms. Ag 3d 2 u. a. y, nsit O 1s C 1s e Ag 3p nt I 1 O KVV Ag MNN Ag 4sAg 4p C KVV 1000 800 600 400 200 Binding Energy, eV Figure4.X-rayphotoelectronspectroscopy(XPS)surveyspectrumofAgblack. Figure 4. X-ray photoelectron spectroscopy (XPS) survey spectrum of Ag black. The determination of the chemical state of silver atoms in nanoparticles by the XPS method is a complex task. This is due to the fact that the spectral characteristics of the metal particles and the oxide particles are fairly close. According to NIST XPS Database [14] the binding energies of the Ag 3d5/2 peak for Ag, Ag2O and AgO are in the ranges 367.9–368.4, 367.7–368.4, and 367.3–368.1 eV, respectively. One of the solutions to this problem is the use of the Auger parameter. However, as a rule, the concentration of silver nanoparticles in materials is low, whereas the registration of the Auger spectrum requires a significantly longer time than the recording of the photoelectron spectrum, which can lead to the reduction of silver from oxides under the action of X-ray irradiation [15]. Another approach may be based on controlled differential charging, in which separation of signals from regions with good and poor conductivity is possible. If the region has a metallic conductivity and is in good electrical contact with the sample holder, then it does not accumulate a charge due to the emission of secondary electrons. In contrast, in a region with poor conductivity, a positive charge is usually accumulated, the value of which depends on the secondary emission coefficient and conductivity, and it leads to the displacement of photoelectron peaks in the region of high binding energies. When a positive bias voltage Ub is applied, the stray electrons flow to the sample surface is increased and contributes to the compensation of the surface charge. In this case, narrowing of the photoelectron peaks and their shift toward higher binding energies are observed. Photoelectron peaks corresponding to regions with good conductivity should be shifted by Ub the amount of applied bias voltage, while from areas with a worse conductivity by a smaller amount. With a negative bias voltage, the flux stray electrons decreases, it leads to increase in charging on non-conducting regions and an increase in the interval between peaks corresponding to signals from the conducting and non-conducting regions. In this case, the signal from the conductive region must also be shifted by Ub. Taking into account the difference in the electrical conductivity of metallic silver and its oxides, we attempted to separate signals from regions containing silver atoms in a metal state and other chemical states by controlled differential charging, changing the potential on the sample holder. This approach is widely used to determine the presence of different phases in a sample [16–21]. To discriminate regions with different conductivities, or other words with different chemical states, a bias voltage Ub = ±7 V was supplied to the sample holder. Figure 5 shows the Ag 3d spectra of the Ag black measured at different bias voltage Ub applied to the sample holder. It is seen that binding energy of the Ag 3d5/2 and Ag 3d3/2 peaks is slightly depends on Ub. Table 1 presents the characterization of the Ag 3d spectra. The full widths at high maximum (FWHM) are rather different Antibiotics2018,7,80 6of18 To discriminate regions with different conductivities, or other words with different chemical states,abiasvoltageU =±7Vwassuppliedtothesampleholder. Figure5showstheAg3dspectra b oftheAgblackmeasuredatdifferentbiasvoltageU appliedtothesampleholder. Itisseenthat b binAdntiinbigotiecsn 2e0r18g,y 7, ox ftheAg3d andAg3d peaksisslightlydependsonU . Table1prese7n otf s19t he 5/2 3/2 b characterizationoftheAg3dspectra. Thefullwidthsathighmaximum(FWHM)areratherdifferent as well. Both the binding energies of the Ag 3d peaks and their FWHM values indicate that the aswell. BoththebindingenergiesoftheAg3dpeaksandtheirFWHMvaluesindicatethatthespectra consptaeicntrsao cmonetsatiant essomweit hstadtiefsf ewreintht cdoifnfedruecntti vciotniedsu.cCtiovnitsiieds.e rCinongstihdaetritnhge trheacto trhdein rgectohredAingg tOhea nAdg2AOg O 2 and AgO spectra is accompanied by the surface charging [22,23], one can assume the presence of the spectraisaccompaniedbythesurfacecharging[22,23],onecanassumethepresenceoftheAg+and/or Ag+ and/or Ag2+ state in the Ag black. To determine the characteristics of the Agδ+ state a subtraction Ag2+ state in the Ag black. To determine the characteristics of the Agδ+ state a subtraction of the of the spectrum measured at Ub = 7 V from the spectrum measured at Ub = −7 V was performed spectrummeasuredatU =7VfromthespectrummeasuredatU =−7Vwasperformedunderthe under the condition of btheir best coincidence in the high-energy rebgion. The difference spectrum is conditionoftheirbestcoincidenceinthehigh-energyregion. Thedifferencespectrumispresentedin presented in Figure 5. The binding energies of the Ag 3d5/2 and Ag 3d3/2 peaks 367.73 and 373.71 eV Figure5. ThebindingenergiesoftheAg3d andAg3d peaks367.73and373.71eVcorrespondto correspond to Ag2O state [22]. The relative5 /in2tensity of th3i/s2 state is no less than 0.27. This estimate is Ag Ostate[22]. Therelativeintensityofthisstateisnolessthan0.27. Thisestimateisbasedonthe b2ased on the fact that the spectrum measured at Ub = 7 V may contain Ag2O state. factthatthespectrummeasuredatU =7VmaycontainAg Ostate. b 2 Ag 3d 5/2 Ag 3d 4 3/2 u. a. 3 y, t si n 2 1 e nt I 2 1 3 0 4 378 376 374 372 370 368 366 364 Binding Energy, eV Figure5.TheAg3dphotoelectronspectraofAgblackmeasuredatdifferentU =+7(1),−7(2),0V(3), b anFtidgiuffreer e5n. Tcehes pAegct 3rudm ph(o2)to–(e1le).ctTrohne ssppeeccttrraa oafr eAcgo rbrleacctke dmfeoarsuUred. at different Ub = +7 (1), −7 (2), 0 V b (3), ant difference spectrum (2)–(1). The spectra are corrected for Ub. Table1.Bindingenergiesandfullwidthsathighmaximum(FWHMs)measuredbyXPS. Table 1. Binding energies and full widths at high maximum (FWHMs) measured by XPS. Ub Ub AAgg3 3dd5/52/2,, eeVV AgA 3gd33d/2,3 e/2V, eVAg 3dA5/2g F3WdH5/2MF,W eVH M,eV 0 V 368.17 374.17 1.3 0V 368.17 374.17 1.3 −7 V 368.09 374.11 1.4 −7V 368.09 374.11 1.4 +7 V 368.21 374.21 1.5 +7V 368.21 374.21 1.5 (−7V()−–7(+ V7)–V(+)7 V) 336677.7.733 3733.7731. 71 1.3 1.3 The C 1s and O 1s spectra of Ag black show a strong dependence on Ub (Figure 6) which indTichaeteC t1hsata nad laOrg1es psparetc torfa coafrAbognb alancdk oshxyogwena sist rohnasg ldoewp ecnodnednuccetiovnityU. bIt( Fsihgouurled6 b)ew nhoictehdi ntdhaicta te thabtinadlianrgg eenpearrgtyo focf athrbeo mnaainnd Co 1xsy gpeenaki smheaassluorwedc aotn Udub c=t i+v7i tVy. iIst 2s8h4o.u77ld ebVe, annodte cdotrhreastpboinnddsin tgo ethnaetr gy ofuthseedm foari nchCar1gse preefaekremnceea [s1u4r]e. d atUb =+7Vis284.77eV,andcorrespondstothatusedforcharge reference[14]. Itfollowsthatsomeofthecarbonatomshavegoodconductivity,orinotherwords,isinclose contact with silver atoms. To estimate this value, we use the fitting the C 1s spectrum measured atU = −7V,whenthebestseparationoftheelectronemissionfromregionswithgoodandpoor b conductivityisrealized. Whenthespectrumwasfittedwithsomecomponents,tworestrictionswere imposed: Thewidthofthelow-energypeakshoulddescribethelow-energysidebythebestway,and Antibiotics 2018, 7, x 8 of 19 4 O 1s C 1s 3 u. a. y, 2 1 sit n e Antibiotics2018,7,80 Int 1 2 7of18 3 theenergyintervalbetweenthelow-energypeakandthenextshouldnotbelessthanthatatU =+7V. 0 b Thesecondrestrictionisimposedbecauseofthepossiblemanifestationofdifferentialchargingfor 540 535 530 295 290 285 280 regionscontainingC-Ogroups. Thefractionofsuchcarbonatomsis0.47. Asimilarvalueof0.48was obtainedforthespectrummeasuredatU B=in0dVin,wg hEenreeragsyf,o erVthespectrummeasuredatU =+7Vit b b is0.77. Thisisduetoconductivityinducedwiththestrayelectrons,whichmakeconductingregions thatarenotindirectcontactwithsilvernanoparticles. Figure7showsfittingthecorrespondingC1s AntFibiigotuicrse 2 061. 8T, 7h,e x C 1s and O 1s photoelectron spectra of Ag black measured at different Ub = +7 (1),8 − o7f 19 spectra,andTable2containscorrespondingdata. (2), 0 V (3). 4 It follows that some of the carbon atoms have good conductivity, or in other words, is in close contact with silver atoms. To estimOa te1 sthis value, we use the fCitt i1nsg the C 1s spectrum measured at Ub = −7 V, when the best separation of the electron emission from regions with good and poor 3 conductivity is realized. When the spectrum was fitted with some components, two restrictions were imposed: The width ou.f the low-energy peak should describe the low-energy side by the best way, =a n+d7 t hVe. eTnheerg sye icnotnedrv arsity, a.le sbter2tiwctieoenn tihs ei mlopwo-seende rbgeyc paueaske1 aonf dt hthee pnoesxsti bshleo umlda nniofet sbtea tlieosns tohfa nd itfhfearte antt Uiabl charging for regions cnontaining C-O groups. The fraction of such carbon atoms is 0.47. A similar e value of 0.48 was obtIntain1ed for the spectrum measu2red at Ub = 0 V, whereas for the spectrum measured at Ub = +7 V it is 0.77. This is due to conductivity induced with the stray electrons, which make conducting regions that are not in direct cont3act with silver nanoparticles. Figure 7 shows fitting the corresponding C0 1s spectra, and Table 2 contains corresponding data. It should be noted that th5e4 f0itting5 3th5e C 513s0 spect2ra9 5with2 s9o0me c2o8m5pon2e8n0ts measured at Ub = −7 and 0 V, presented in Figure 7 is largely conditional and do not reflect the real relative Binding Energy, eV concentrations of COx groups. At the same time, applying a positive bias voltage Ub = +7 V practically compensates the surface charging, and Figure 7 (+7 V) reflects the real relative Figure6.TheC1sandO1sphotoelectronspectraofAgblackmeasuredatdifferentU =+7(1),−7(2), b conce0nVFtri(ag3ut)i.roen 6s. oThf eC CO 1x sg arnodu pOs 1. s photoelectron spectra of Ag black measured at different Ub = +7 (1), −7 (2), 0 V (3). 5 6 It follows that some of the carbon atoms have good conductivity, or in other words, is in close 6 +7 V contact w-7 iVth silver atoms. To estimate 5this 0v Value, we use the fitting the C 1s4 spectrum measured at Ub Intensity, a.u.c=imo 24n−p7do usVecdt, i:vw iTthyhe ein sw rteihdaelt ihzb eoedsf .t t Whseeh pleoanwr ath-teieon snepIntensity, a.u. rgeoc234yft rptuhemea k we lseahcsot fruiotltnde dde emwsiictsrhsiib soeon mt hfere o clmoomw rp-eeoIntensity, a.u.gnnieoe23rnngstys ,ws tiwditeho brgeyos totrhdiec taibonendsst wwpoeaoryer, 1 1 and the energy interval between the low-energy peak and the next should not be less than that at Ub 0 0 0 = +72 94V.2 92Th29e0 s28e8co28n6d2 8r4es28t2ric28t0ion is impo29s4ed29 2b2e90ca2u88se2 8o6f 28t4he28 2po28s0sible mani2f9e4st2a92tio29n0 2o8f8 d28i6ff2e8r4en28t2ia2l8 0 charging foBirnd inrge Egneirogyn, esV containin g C-O groups. TBinhdieng Efnreargcy, teiVon of such carbon atoms iBsin di0ng. 4En7er.g yA, eV similar vmaeluaseu roFFefidi gg0 uua.4rtre 8eU 77wb.. F=Fai ist+tt t7iionn Vbggt tatihthi neeise CC d0 1 .17sfso7 pp.r h hTotohhttoieose e lislesepc cdettrcruootenrnu t ssmopp ec ecomcttnrreadaa ousofucf AtrAievggdi tb bylala aticn ckUkd mumb ce=eeaa dss0u u wrrVeeid,td ha wa ttthhU Ueebr bs e==tar −−sa 7y7f, ,o0e0r la eantcnhtddre o7 7n sVVps.,.e wcthruicmh make conducting regions that are not in direct contact with silver nanoparticles. Figure 7 shows Table2.Bindingenergies(E ),peakwidths(W)andrelativeintensitiesofthepeaksdeconvolutedin b fitting the corresponding C 1s spectra, and Table 2 contains corresponding data. theC1sandO1sspectraofAgblack. It should be noted that the fitting the C 1s spectra with some components measured at Ub = −7 and 0 V, presented in Figure 7 is largely conditional and do not reflect the real relative C1s O1s concentrations of COx groups. At the same time, applying a positive bias voltage Ub = +7 V Ub C-C/ C-OH/ C=O/ C-OH/ practically compensates the surface Cc=hOargiCn(gO, )Oand AFgig-Oure 7 (+7 V) reflects theC (Ore*a)Ol reCla(Otiv)Oe * C-H C-O-C C(O*)O C-O-C concentrations of COx groups. E 284.7 286.2 287.6 289.8 530.6 532.5 533.5 534.7 b 0V W 1.45 1.50 1.51 1.58 1.42 1.65 1.80 1.85 6 Irel 0.48 0.35 60.10 0.07 0.18 0.21 5 +70 V.35 0.26 -7E Vb 284.6 286.2 2587.40 V 289.8 530.9 533.2 4 534.9 536.7 −7Intensity, a.u.V24 IEWrebl 2018..444.788 2018..15670.3 Intensity, a.u.2234018..727.367 2038..810.358 5013..027.467 5013..229.704Intensity, a.u. 23 5013..239.805 503.10.08 5013..319.008 +7V W 1.43 1.43 11.43 1.43 1.42 1.42 1 1.55 1.42 1.55 0 Irel 0.77 0.13 00.03 0.07 0.18 0.09 0 0.37 0.18 0.18 294 292 290 288 286 284 282 280 294 292 290 288 286 284 282 280 294 292 290 288 286 284 282 280 Binding Energy, eV Binding Energy, eV Binding Energy, eV Figure 7. Fitting the C 1s photoelectron spectra of Ag black measured at Ub = −7, 0 and 7 V. Antibiotics 2018, 7, x 9 of 19 Table 2. Binding energies (Eb), peak widths (W) and relative intensities of the peaks deconvoluted in the C 1s and O 1s spectra of Ag black. C 1s O 1s Ub Heading C-C/ C-OH/ C=O/ C-OH/ C=O C(O)O Ag-O C(O*)O C(O)O* C-H C-O-C C(O*)O C-O-C Eb 284.7 286.2 287.6 289.8 530.6 532.5 533.5 534.7 0 V W 1.45 1.50 1.51 1.58 1.42 1.65 1.80 1.85 Irel 0.48 0.35 0.10 0.07 0.18 0.21 0.35 0.26 Eb 284.6 286.2 287.4 289.8 530.9 533.2 534.9 536.7 −7 V W 1.48 1.50 1.76 3.05 1.76 1.90 1.90 1.90 Antibiotics2018,7,80 8of18 Irel 0.47 0.17 0.23 0.13 0.24 0.27 0.38 0.00 0.10 Eb 284.8 286.3 287.7 288.8 530.7 532.4 532.5 531.8 533.8 +It7 sVh ouldWbe noted1.4th3 atth1e.4fi3t ting1t.4h3e C11s.4s3p ectra1.w42i thso1m.4e2 comp1o.5n5e ntsm1e.4a2s ureda1t.5U5 =−7 b and0V,presenIrtele dinF0i.g7u7 re70is.1l3a rgel0y.0c3o ndit0i.o0n7 alan0d.1d8 onot0r.0e9fl ectth0e.3r7e alrela0t.1iv8e conc0e.n1t8r ations ofCO groups. Atthesametime,applyingapositivebiasvoltageU =+7Vpracticallycompensates x b thesuItr fwacaes cfohuarngdin tgh,aat ntdheF pigeuarkes 7in(+ t7heV )lorwefl-eenctesrtghye rreegailorne loaft ivtheec Oon 1ces nstpraectitoran,s mofeCasOuregdr oaut pUs.b = −7 x and 0I tVw (aFsigfouuren d8)t, hhaatvteh eclpoesea kbsininditnhge elonwer-geineesr agnydr eingtieonnsoitfietsh.e BOas1esds opne ctthrea ,rmefeeraesnucree ddaattaU [21=,2−2]7, b the binding energy of these peaks of about 530.8 eV cannot be attributed to C-O bonds. Therefore, and0V(Figure8),haveclosebindingenergiesandintensities. Basedonthereferencedata[21,22], tthheeyb isnhdoiunlgde bnee ragtytroibfuthteedse tpo etahkes Aofga-Obo buotn5d30s..8 AenVdc afrnonmot tbhee awttreiabku tdeedpteonCd-eOncbeo onfd Es.b Tahnedr eIfroelr oe,nt hUeby, oshnoeu cldanb eaassttirginb ubteinddtiontgh eenAegr-gOiebs oonfd s5.3A0.n6 dafnrdom 53th0.e9w eeVa ktod eApegn-Adegn-Oce ostfaEte. aTnhdeI Irelo nofU th,ios nsetactaen, b rel b dasestiegrnmbinineddi nfrgoemn ethrgei efisttoifn5g3 t0h.6e aOn d1s5 s3p0e.9cterVa mtoeAasgu-Aregd- Oats Utabt e=. −T7h,e 0I andof 7t hVis, astraet e0,.2d4e,t 0e.r1m8 iannedd f0r.o1m8, rel rthesepfietcttiinvgeltyh.e O1sspectrameasuredatU =−7,0and7V,are0.24,0.18and0.18,respectively. b IItt sshhoouulldd bbee ssttrreesssseedd ththaat trerelalatitvivee inintetnensistiiteise sofo CfOCO grgoruopusp isn itnheth Oe O1s 1spsescpteructmru mmemaseuarseudr eadt Uabt =U 7 V= 7coVrrceosrproenspdo tnhdosteh oosbetaoibnteadin ferdomfr othme trheelarteivlaet iCv e1Cs s1psescptreucmtru. Imt .mIteamnesa tnhsatt hthate tbhieasb ivaoslvtaogleta ogfe Uobf b = 7 V neutralize the surface charging. U =7Vneutralizethesurfacecharging. b 8 7 -7 V 8 0 V 5 +7 V Intensity, a.u. 23456 Intensity, a.u. 246 Intensity, a.u. 1234 1 0 0 0 540 538 536 534 532 530 528 540 538 536 534 532 530 528 540 538 536 534 532 530 528 Binding Energy, eV Binding Energy, eV Binding Energy, eV Figure8.FittingtheO1sphotoelectronspectrumofAgblackmeasuredatU =−7,0and7V. b Figure 8. Fitting the O 1s photoelectron spectrum of Ag black measured at Ub = −7, 0 and 7 V. Figure9showsthesurveyspectrumoftheAg/bandagesystem.Alongwiththepeakscharacteristic Antibiotics 2018, 7, x 10 of 19 ofsilFviegr,ucraer b9o nshaonwdso xtyhgee nsuthrevreeya rseppecetarkusmo foimf pthuer itAygsi/lbicaonndaatgoem ssy.stem. Along with the peaks characteristic of silver, carbon and oxygen there are peaks of impurity silicon atoms. 6000 C 1s u. O 1s a. sity, 4000 n e nt Ag 3d I O KVV 2000 C KVV Si 2s Si 2p 0 1200 800 400 0 Binding Energy, eV Figure9.SurveyspectrumoftheAg/bandagesystem. Figure 9. Survey spectrum of the Ag/bandage system. In case of the Ag/bandage system the charge referencing was done using the C 1s spectrum In case of the Ag/bandage system the charge referencing was done using the C 1s spectrum of ofcellulose. Thelatterwassimulatedusingthereferencedata[24]byconsideringthedifferencein cellulose. The latter was simulated using the reference data [24] by considering the difference in peakresolution. Thebindingenergyof286.7eVwasassignedtoC-OHstateofcellulose. Figure10 peak resolution. The binding energy of 286.7 eV was assigned to C-OH state of cellulose. Figure 10 sshhoowwss tthhee CC 11ss ssppeeccttrruumm ooff tthheeA Agg//bbaannddaaggee ssaammppllee ffiitttteedd wwiitthh ffoouurr GGaauussssiiaann ppeeaakkss aatt 228866..77,, 228888..11,, 228844..88 aanndd 228833..1133 eeVV.. TThhee fifirrsstta annddt thhees seeccoonndd ppeeaakkss aarreea assssiiggnneedd ttoo cceelllluulloossee [[2244]].. TThhee tthhiirrdd ppeeaakk iiss aassssiiggnneedd ttoo aaddvveennttiittiioouuss ccaarrbboonn,, wwhhiillee tthhee oorriiggiinn ooff tthhee ppeeaakk aatt 228833..11 eeVV iiss nnoott cclleeaarr bbeeccaauussee iitt ddooeess nnoott ccoorrrreessppoonndd ttoo rreeffeerreennccee ddaattaa ffoorr ppoollyymmeerrss [[2244]].. HHoowweevveerr,, iitt mmaayy bbee rreessuulltteedd eeiitthheerr ooff ddiiffffeerreennttiiaall charging or low-molecular weight species. Similar С 1s spectrum was recorded for Au/bandage system. It slightly differs in relative concentration of C-C/C-H peak and peak at 283.1 eV. The O 1s spectra of Ag/bandage and Au/bandage systems are practically indistinguishable. It means that the peak at 283.1 eV may be assigned to C-C/C-H state as well. 283.13 ? Au/bandage Ag/bandage 3 283.12 (1.64) 3434 C-C/C-H 2 284.80 (1.60) 1693 u. a. u. ntensity, 1 cellulose ensity, a. 2 I C-OH Int 1 O-C-O 0 0 292 290 288 286 284 282 280 292 290 288 286 284 282 280 Binding Energy, eV Binding Energy, eV Figure 10. The C 1s photoelectron spectra of Ag/bandage and Au/bandage systems. Figure 11 shows the C 1s spectra of Ag black and Ag/bandage system. It is clearly seen that the spectra are strongly different. The C 1s peak of the Ag/bandage system shifted to high binding energy region by 0.66 eV and its FWHM is 1 eV more than that of Ag black. These differences may be assigned to the size effect in photoelectron spectra which induces both energy shift to high binding energy and the peak broadening [25,26]. The transition from AgNPs in the Ag black, to their dispersion in the bandage followed with fairy large changes in size of AgNPs, and an increase of the proportion of the Ag0 state was observed. Apparently, there was a partial reduction of silver and its stabilization by a modified layer of cellulose. However, as follows from a comparison of the O 1s Antibiotics 2018, 7, x 10 of 19 6000 C 1s u. O 1s a. sity, 4000 n e nt Ag 3d I O KVV 2000 C KVV Si 2s Si 2p 0 1200 800 400 0 Binding Energy, eV Figure 9. Survey spectrum of the Ag/bandage system. In case of the Ag/bandage system the charge referencing was done using the C 1s spectrum of cellulose. The latter was simulated using the reference data [24] by considering the difference in peak resolution. The binding energy of 286.7 eV was assigned to C-OH state of cellulose. Figure 10 shows the C 1s spectrum of the Ag/bandage sample fitted with four Gaussian peaks at 286.7, 288.1, 284.8 and 283.13 eV. The first and the second peaks are assigned to cellulose [24]. The third peak is aAsnstiigbinoteicds 2t0o1 8a,d7,v8e0ntitious carbon, while the origin of the peak at 283.1 eV is not clear because it 9doofe1s8 not correspond to reference data for polymers [24]. However, it may be resulted either of differential charging or low-molecular weight species. Similar С 1s spectrum was recorded for Au/bandage charging or low-molecular weight species. Similar C 1s spectrum was recorded for Au/bandage system. It slightly differs in relative concentration of C-C/C-H peak and peak at 283.1 eV. The O 1s system. ItslightlydiffersinrelativeconcentrationofC-C/C-Hpeakandpeakat283.1eV.TheO1s spectra of Ag/bandage and Au/bandage systems are practically indistinguishable. It means that the spectraofAg/bandageandAu/bandagesystemsarepracticallyindistinguishable. Itmeansthatthe peak at 283.1 eV may be assigned to C-C/C-H state as well. peakat283.1eVmaybeassignedtoC-C/C-Hstateaswell. 283.13 ? Au/bandage Ag/bandage 3 283.12 (1.64) 3434 C-C/C-H 2 284.80 (1.60) 1693 u. a. u. ntensity, 1 cellulose ensity, a. 2 I C-OH Int 1 O-C-O 0 0 292 290 288 286 284 282 280 292 290 288 286 284 282 280 Binding Energy, eV Binding Energy, eV Figure10.TheC1sphotoelectronspectraofAg/bandageandAu/bandagesystems. Figure 10. The C 1s photoelectron spectra of Ag/bandage and Au/bandage systems. FFiigguurree 1111 sshhoowwss tthhee CC 11ss ssppeeccttrraa ooff AAgg bbllaacckk aanndd AAgg//bbaannddaaggee ssyysstteemm.. IItt iiss cclleeaarrllyy sseeeenn tthhaatt tthhee ssppeeccttrraa aarree ssttrroonngglylyd dififfefreernetn.tT. hTehCe 1Cs p1se apkeoafkt hoef Athge/ bAagn/dbaagnedsaygset esmyssthemift esdhtioftehdig htob hinigdhin gbienndeirnggy ernegeriogny breyg0i.o6n6 beVy 0a.n6d6 eitVs FaWndH iMts FisW1HeVMm iso 1re etVh amnotrhea tthoafnA tghabtl aocfk A.gT hbelaseckd.i Tffhereesnec deisffmeraeynbceesa mssaigyn beed atosstihgenesdiz etoe ftfheec tsiinzep ehfofetocte lienc tprhoontsopeelecctrtraown hsipcehcitnrad uwcheiscbho itnhdeunceersg byosthhi fetnteorhgiyg hshbifint dtoin hgigehn ebrignydainngd etnheerpgeya kanbdr otahdee npienagk [2b5r,o2a6d].enTihnegt r[a2n5s,2it6i]o. nTfhroe mtraAngsNitiPosn infrtohme AAggNblPacsk i,nt oththee iArgd ibsplaecrks,i otno inthtehire dbiasnpdearsgieonfo ilnlo twhee dbawnidthagfea ifroyllloawrgeedc hwainthg efasiirny sliazregeo fcAhagnNgPess ,inan sdizaen oifn AcrgeNasPeso, afnthde apnr oinpcorretaiosen ooff tthhee Antibiotics 2018, 7, x 11 of 19 pArgo0postratitoenw oafs thoeb sAergv0 esdta.teA wppaas roebnstelyr,vtehde.r Aepwpaasreanptlayr,t itahlerreed wuactsi oan poarftsiaillv reerdauncdtioitns osft asbilivliezra atinodn ibtsy ssatpamebciotlridzaia fioteifo dtnhl aeb yyAe gra obmflaoccedklil fuaielnodds elAa.ygHe/bro awonfed vcaeeglrle,u aslsoyssfeote.l lmHow o(Fwsigfervuoermre, 1aa2sc) ,of otmhllepo awlorisws of-renonmoefr gtahy ce soOimdep1 saorfsi psthoeecnt lroaaft totehfre tmh Oeig A1hsgt bbela acsksiagnndedA tgo/ tbhaen Adagg-Aegsy-Ost egmro(uFpig. u re12),thelow-energysideofthelattermightbeassignedtothe Ag-Ag-Ogroup. 368.83 3 368.17 AgO 2 2 u. a. y, 2 sit n 1 e nt I 1 0 378 376 374 372 370 368 366 364 Binding Energy, eV Figure11.TheC1sphotoelectronspectraofAgblack(1)andAg/bandagesystem(2). Figure 11. The C 1s photoelectron spectra of Ag black (1) and Ag/bandage system (2). 2 530.68 u. a. sity, 1 n e nt 1 I 2 3 0 538 536 534 532 530 528 526 Binding Energy, eV Figure 12. The O 1s photoelectron spectra of Ag black (1), Ag/bandage (2), and Au/bandage systems (3). But, given the almost complete coincidence of the O 1s spectra of Ag/bandage and Au/bandage systems, this conclusion should be rejected. Thus, one can conclude that the basic state of Ag atoms in Ag/bandage system is Ag0 state, whereas the oxidized silver is in the form of Ag-Ag-O groups, and, as follows from Figure 12 the proportion of oxidized state is small. This is in accordance with EXAFS and TEM data which indicate that silver atoms are mainly in Ag0 state. It should be noted that EXAFS is not a surface-sensitive method as XPS and electron diffraction may be recorded only from the ordered regions. Table 3 shows the number of colony-forming units (CFU) of the studied microbes along the perimeter of the bandage at a distance equal to the diameter of one colony on both sides of the edge Antibiotics 2018, 7, x 11 of 19 spectra of the Ag black and Ag/bandage system (Figure 12), the low-energy side of the latter might be assigned to the Ag-Ag-O group. 368.83 3 368.17 AgO 2 2 u. a. y, 2 sit n 1 e nt I 1 0 378 376 374 372 370 368 366 364 Binding Energy, eV Antibiotics2018F,i7g,u80re 11. The C 1s photoelectron spectra of Ag black (1) and Ag/bandage system (2). 10of18 2 530.68 u. a. sity, 1 n e nt 1 I 2 3 0 538 536 534 532 530 528 526 Binding Energy, eV Figure 12. The O 1s photoelectron spectra of Ag black (1), Ag/bandage (2), and Au/bandage Figure 12. The O 1s photoelectron spectra of Ag black (1), Ag/bandage (2), and Au/bandage systems (3). systems(3). But, given the almost complete coincidence of the O 1s spectra of Ag/bandage and Au/bandage But,giventhealmostcompletecoincidenceoftheO1sspectraofAg/bandageandAu/bandage systems, this conclusion should be rejected. Thus, one can conclude that the basic state of Ag atoms systems,thisconclusionshouldberejected. Thus,onecanconcludethatthebasicstateofAgatoms in Ag/bandage system is Ag0 state, whereas the oxidized silver is in the form of Ag-Ag-O groups, inAg/bandagesystemisAg0 state,whereastheoxidizedsilverisintheformofAg-Ag-Ogroups, and, as follows from Figure 12 the proportion of oxidized state is small. This is in accordance with and,asfollowsfromFigure12theproportionofoxidizedstateissmall. Thisisinaccordancewith EXAFS and TEM data which indicate that silver atoms are mainly in Ag0 state. It should be noted EXAFSandTEMdatawhichindicatethatsilveratomsaremainlyinAg0state. Itshouldbenotedthat that EXAFS is not a surface-sensitive method as XPS and electron diffraction may be recorded only EXAFSisnotasurface-sensitivemethodasXPSandelectrondiffractionmayberecordedonlyfrom from the ordered regions. theorderedregions. Table 3 shows the number of colony-forming units (CFU) of the studied microbes along the Table 3 shows the number of colony-forming units (CFU) of the studied microbes along the perimeter of the bandage at a distance equal to the diameter of one colony on both sides of the edge perimeterofthebandageatadistanceequaltothediameterofonecolonyonbothsidesoftheedge intheformMe(Q ;Q ),togetherwiththelevelofstatisticalsignificance,whereMeisthemedian, 1 3 Q —lowerquartile,Q —upperquartile. 1 3 Table3.Thenumberofcolony-formingunits(CFU)ofthestudiedmicroorganismsalongtheedgeof thebandageatadistancetobothsidesoftheedgeequaltothediameterofonecolony(Me(Q ;Q )) 1 3 andthelevelofstatisticalsignificance(p)betweencontrolgroupsandgauzewithAgNPs. StrainofMicroorganism Control(NormalBandage) AgNPs-ContainingBandage p Staphylococcusaureus 7.0(6.0;8.0) 0.0(0.0;1.0) <0.001 Staphylococcushaemolyticus 11.0(7.5;14.5) 7.5(6.0;8.0) 0.049 Pseudomonasaeruginosa 5.0(5.0;6.0) 2.0(1.0;3.0) <0.001 Klebsiellapneumoniae 6.5(6.0;7.0) 2.0(1.0;3.0) <0.001 Escherichiacoli 16.0(13.5;17.5) 6.0(4.0;7.0) <0.001 Moraxellaspp. 8.0(5.0;8.5) 3.0(2.5;4.0) 0.002 Duetothefactthatthedataofthecontrolgroupsofdifferentstrainsdiffer,inordertocompare theantibacterialeffectoftheAgNPs-containingbandagewithrespecttodifferentmicroorganisms,we calculatedthepercentagereductionfactor. Table4presentstheresultsofthestudyofthepercentage reductionofCFU. Theresultsofthechangeintheantibacterialpropertiesoftheordinarymedicalgauzebandage undertheinfluenceoflaserirradiationarepresentedinTable5,intheformMe(Q ;Q ),whereMeis 1 3 themedian,Q isthelowerquartile,Q istheupperquartile. 1 3

Description:
Localized surface plasmon resonance is an optical phenomenon that is generated these properties change when plasmon resonance effect occurs.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.