ebook img

Plasma-Producing Structures at Current Implosion PDF

15 Pages·1.447 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plasma-Producing Structures at Current Implosion

Contrib.PlasmaPhys.45,No.8,553–567(2005)/DOI10.1002/ctpp.200510061 Heterogeneous Plasma-Producing Structures at Current Implo- sion of a Wire Array E. V. Grabovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin∗,andI.N.Frolov SRCRFTRINITI,142190,Troitsk,MoscowReg. Received23March2004,accepted7April2005 Publishedonline25November2005 Keywords Explodingwires,heterogeneousstructures. PACS 52.80.Qj,52.70.La,64.75.+9 Characteristicproperties of the plasma production process have been considered for thecase of megampere currentsflowingthrough hollow cylindrical wirearraysof theAngara-5-1 facility. In3-4nanoseconds after voltage applying to the wire surfaces there appear a plasma layer. The system becomes heterogeneous, i.e. consistingofakernel ofmetalwiresandaplasmalayer. Inseveralnanoseconds thecurrent flowgoesfrom metaltoplasma,whichresultsinreducingtheelectricfieldstrengthalongthewire. TheJoule heat energy delivered to themetal before the moment of complete current trapping by plasma isinsufficientforthewholemasstransitiontoahotplasmastate. TheX-rayradiographytechniquesmadeit possibletodetectandstudydenseclustersofsubstanceof∼1g/cm3atadevelopeddischargestage.Theradial expansionvelocityof∼104 cm/smeasuredatthe70-thnanosecondafterthecurrentstartallowstreatingthe densecoreatalatestageintheformofasubmicronheterogeneousstructurefromitsliquidandslightlyionized gasphase. (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 1 Introduction Theimplosionofcylindricalarraysfrommicron-sizetungstenandaluminumwires(liners)undertheactionof nanosecondcurrentpulseshasbeeninvestigatedearlier[1,2]andisstillunderstudy[3,4]. Asaresultofcurrent compressionofawirearraymaterialaZ-pinchdevelops. Atitsfinalstagethereappeara high-powerpulseof soft X-radiation, that is of importancefor CTF [5], the investigationsinto fundamentalpropertiesof matter in extremeconditions[6],etc. Inearlyworkswithwirearraysaphenomenonofcarryingalow-denseplasmaandcurrenttowardsthecenter of the system when affected by the Lorentz force has been revealed [1]. The process was considered to be interferingin compactcompressinga wire liner by a collective magneticfield because of the transfer of a part ofcurrentandmasstothecenterandthepre-pinchformation. Itwassupposed,thatforagreatnumberofwires anynegativeconsequencescouldbemoderatedduetoafastformationofacontinuosandnearlyhomogeneous shellofanimplodedwireplasma[7]. Itwasalsoconsidered,thattheself-magneticfieldofthecurrentflowing throughthewirewashighenoughtocompensateaheatpressureandtolimittheplasmalayerradiusaroundthe wireinthearray[8]. Abetterunderstandingofthespatial-timestructureofplasmafluxesandmaterialdistributioninthemultiwire array has been gained in [9,10]. A concept of a prolonged plasma production process, as an alternative to a 0-dimensionalmodeland shellmodelsforwire arrays, is presentedas a dependenceof the plasma velocityon thefixedinnersurfaceofthelineruponthefullcurrentJandthevelocityoftheplasmainflowdm/dttotheinner volume[11]. Therelationexpressesthelawofconservationofmomentum,complimentedwithaconditionfor Machnumber(MA=1)forathindissipativeboundarylayer(ohmic). There still exist an uncertain role of the electron emission at a fast Joule heat up in both arising a primary plasma on the wire surface [12, 13] and subsequent producing of plasma from the products of electric wire ∗ Correspondingauthor:e-mail:[email protected] (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 554 E.V.Grabovsky,K.N.Mitrofanov,andS.L.Nedoseevetal.:Heterogeneousplasma-producingstructuresat... implosion. Astothelatter,naturalenergysourcestoionizeacoldsubstanceare: athermalenergy(transferred byheatconduction)ofaplasmaflux[11],anenergyofpre-pinchradiation[15]andanenergyoftheelectricfield inthepointofthewirelocation. Themodelwithheatconductiongivesadependenceofdm/dtonJ,thatistrue onlyforaninitialdischargephase. Aconstantofproportionality,whichincludestheenergyvalueofionization (priceofplasmaproduction),canbedeterminedfromthecomparisonwiththeexperiment. Forthefirsttime,theheterogeneousstructureoftheexplosivewirecorewasdetectedusinganX-raydiagnos- tics with an X-pinchtechniquefor botha single wire [16]andan array[17]. The spatial(r, z)-structureof the plasmashellandthecoreoftungstenandtitaniumwiresinaself-magneticfieldissimulatednumericallywithin thesystemofequationsoftwo-dimensionalradiationmagneto-hydrodynamics,onpassingashockwavethrough adesigneddiscontinuityofthedensity(1:50)onthedisturbedcylindricalborderoftheplasmaandtheone-phase liquidcore[18]. Recently,theelectricexplosionofasinglethinwireatahighrateofcurrentrisehasbecomeasubjectofan active experimentalstudy [19, 20, 37]. The expansionvelocity of the explodingwire rangingfrom 0.2 µm/ns (titanium)to5µm/ns(zinc)isgivenin[19],dependentonthespecificresistanceofthematerialandtheenergy inputatthestageofJouleheatingin∼50-60nsatacurrentdensityriseof∼4MAcm−2/ns. Forasignificantly fasterdischarge(∼50MAcm−2/ns)theexpansionvelocityofthetungstenwire0.6µm/ns[20]isnearlytwice aslargeasthatin[19](0.35µm/ns). Nevertheless,ontheAngara-5-1facilityintheexperimentswithmultiwiretungstenarrays[21]forfirst10ns thecurrentdensityderivativeisaround500MAcm−2/nsthatisbyanorderofmagnitudegreaterthanin[20]. Fromthecomparisonofthedatain[19and20](inthelogarithmicscale),itfollowsthat,foroperationconditions of[21],theexpansionvelocityshouldincreasetwotimesandachieve∼1.2µm/ns. Averificationofthisestimate ofthecoreexpansionvelocityseemstobeespeciallyurgentduetothepresenceofastrongcollectivemagnetic field,whichdisturbsacylindricalsymmetryofasinglewire. Notonlyquantitativedifferencescanbeexpected, but, first of all, qualitative ones, since the interaction between the core and the plasma that drifts towards the centerundertheLorentsforceprovestobemuchslighterthanthatintheexperimentwithasinglewire. AtthecurrentcompressionofnestedwirearraysanattainableZ-pinchstateischaracterizedbyregularityof itsreproducibilityandabetter,asagainstasinglearray,uniformity[22-25]. Atpresent,attentionisfocusedon the study of the inner and outer array interaction[26]. The magnetic field measurementstaken outside, inside andbetweenthearraysontheAngara-5-1facilityenableustoelucidatesomedetailsofthisinteraction,whilethe visualizationofwirekernelsusinganX-rayradiographytechniquemakesitpossibletoelicittheirinnerstructure. 2 Experimental design Cylindricalsingleanddoublewirearrays8-20mmindiameterand10-15mmhighwereusedaswirelinersinthe presentwork. Thediameterofthetungstenwiresrangedfrom4to10µm. Thearrayswereplacedinavacuum chamberoftheAngara-5-1facility[17]. Thechamberwaspumpeddownto10−5torrwithadiffusionoil-vapor pump. Apre-pulseofthegeneratorwassuppressedbyapre-pulsesparkgaplocatedjustinfrontoftheliner. At thepre-dischargestagethefieldstrengthonthearraywasnotinexcessof10V/cm,thetemperatureincreaseof thewireswaslessthan10oCforthistime. Theresultsoftwoexperimentalrunsaregiveninthework.Inoneoftherunsamagnitudeoftheelectricfield onthewiresurfacewasstudiedforthefirst∼5-15nsperiodofthecurrentflowthroughthearray. Inthesecond runoftheexperimentsdensecoreswerestudiedin60-80nsafterthecurrentstart. 2.1 Initialcurrentflowstage Thelinercomprising8(or16)wireswasincludedintheAngara-5-1facility. Withtheaimofstudyinganinitial discharge phase current and voltage were simultaneously measured directly in the array. A shunt with a time resolutionof5nswasusedtotakecurrent.Tomeasurevoltagearesistivedividerwascoaxiallyconnectedtothe anodeand,byuseofametalrod0.1cmindiameterplacedstrictlyalongthelineraxis,tothecathode(Fig. 1). Thetimeresolutionofthedividerwas2ns. The voltage on the divider differs from that on the wire in question by having an inductive componentfor the contour formed by this wire and conductors connecting the divider. The peculiarity is that the inductive componentissmallandmaybeneglected. TheopticframesystembasedonanMKPcameraintendedtodetect (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Contrib.PlasmaPhys.45,No.8(2005)/www.cpp-journal.org 555 thewirearrayimagehada10nstimegate.Thespatialresolutionontheobjectwas40µmwithadepthoffocus ofabout2mm. Thedynamicdetectionrangeofthesystemwas∼20. 10 mm Fig.1 Circuitdiagramofthewirearrayandthevoltagedivider. 1-anode,2-wires,3-metallicrodtoconnectvoltagedividerto cathode,4-cathode,5-cathodeelectrodeofwirearray. 2.2 Wireradiographyatthedevelopedstageofimplosion In the second run of the experimentsthe probingof the nested arrayswas performedby makinguse of the X- pinchradiationontheAngara-5-11facilityatacurrentdischargeof∼3MA[28]. Adoublecoaxialarrayfrom identicaltungstenwires6µmindiameterwasunderstudy. Thediametersoftheouterarrayof40wiresandthe innerarrayof120wireswere20mmand12mm,respectively. The scheme of the experiment on probing multiwire nested arrays is shown in Fig. 2. Passed through the objectinquestiontheX-pinchradiationwasdetectedbyaphotographicfilm. Theadjustmentwasmadeinsuch away,thatanimageoftheinnerandouterareasoftheinnerarrayappearedonthefilm. Thefilmwas1.2mfrom theX-pinch. Test wires X-pinch Arrays Shields Films Fig.2 Layoutoftechniquesforradiographicmeasurements. The X-pinch looked like four symmetrically crossed in the middle molybdenum wires 20 µm in diameter. The X-pinchsubstitutedone ofthe eightreversecurrentleadsat the distanceof 45 mmfromthe axis andwas connectedinserieswiththeliner[29]. TheenergyoftheX-pinchradiationintheX-rangeexceeded200mJper pulse. The radiation was detected by films RF-3, UF-SC. A 10 µm aluminumfilter was placed in frontof the films. Animagewasformedinquantawithanenergyof>1.5keV. For the purpose of transiting from film blackening to the density of the tungsten liner a step attenuator of tungstenfilterswiththeirdensityfrom300to1300µg/cm2 wasplacedinfrontofthefilm. Theshadowsfrom thefiltersweredetectedonthesamefilmsastheonesfromthelinerintheX-rayquanta. Thespatialresolution ofthetechniquewaslimitedbyadiffractiondivergencyandequaledto4µm. Withtheaimofcontrolsometest wires5µmindiameterwithnocurrentwereplacednearthelinerandreliablydetected(Fig. 2). (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 556 E.V.Grabovsky,K.N.Mitrofanov,andS.L.Nedoseevetal.:Heterogeneousplasma-producingstructuresat... 3 Experimental Results 3.1 Break-downalongthewiresurface ThetemporalvoltageprofilesontheaxisaregiveninFig. 3forseveralshotswithtungstenwirearraysandone no-loadrun(withnoarray). Intheabsenceoftheloadfor50nsthevoltageisequaltotheoutputvoltageofthe generator. Detectedforfirst20nsthemaximumvoltagevaluevariedwithin5to18kVforvariousliners,which differedintheirdiameterandthenumberanddiameterofwires. Thevaluesofmaximumvoltageprovedtobe considerablyless,andthepulselengthsshorter,thanthosemeasuredatnoload. U, [V] 0 -2000 -4000 -6000 -8000 -10000 -12000 -14000 -16000 Without wires -18000 (no-load shot) 660 680 700 720 740 ns Fig.3 VoltageonthelineraxisU(t)forseveralshotswiththewirearrayandforoneshotofno-loadcondition. Fig.4 MaximumamplitudeofvoltageU onthelineraxisagainstdiameteroftung- stenwiresinthearray. Fig. 4showsthemaximumvoltageonthearrayagainstthetungstenwirediameter. Ifouterupperpointsbe takenintoaccount,onecanstate,thatmaximumvoltageamplitudesincreasewiththewirediameter. In all the experimentsperformedthe load resistance for first 10 nsprovesto be a on monotonicfunctionof time. Itsmaximumvaluecalculatedintermsofthevoltageandcurrentmeasuredwasalwaysseveraltimesless, thanthelinerresistanceatthetungstenmeltingtemperature. Thehighconductivitycanbeeasilyexplainedbya shuntingeffectofanear-surfaceplasma[12].AtypicaltemporaldependenceofthevoltageU(t)ontheaxisand thecurrentJ(t)referredtoasinglewireisgiveninFig. 5(thelinerofeighttungstenwires∅10µm,1cmhigh, and8mmindiameter). ThebottompartofthisFigureshows,intermofasinglewire,theloadresistanceU/J, thecalculatedwireresistanceRw andthenear-surfaceplasmalayer(shunt)resistanceRpl=(J/U-1/Rw)−1. The temporalwireresistanceRw(t)wascalculatedfortheinitialradiusandlengthofthewireintermsofa known temperaturedependenceofthespecificresistanceoftungstenandthemeasuredvoltageU(t). Thecurrentandvoltageontheloadmakeitpossibleto calculatethe energyinputtothe wiredueto Ohmic heatingforfirst2-3ns.Thetungstentemperatureobtainedatthetimemomentdeterminedbydivergencybetween (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Contrib.PlasmaPhys.45,No.8(2005)/www.cpp-journal.org 557 Fig.5 (a) Waveforms of the voltage U(t) across an 8- mm diameter wire array consisting of eight 10-µm tung- stenwiresandthecurrentthroughonewireJ(t).(b)Time evolutionoftheresistances(peronewire)calculatedfrom thevoltageandcurrentwaveforms:thetotalloadresistance U(t)/J(t),thewireresistanceRw(t),andtheresistanceof thesurfaceplasmaRp(t). the load resistance and the calculated one does not exceed 2000oC for the majority of the shots. The given temperatureislowerthanthatoftungstenmelting(3380oC). Takingintoaccount,thatthetungstenresistanceatapowerfulelectricheatupofthewiredependsuponnon- controlledandinsufficientlyinvestigatedprocesses,onecanpositivelystatethefactofplasmaappearanceatthe momentoftheresistancemaximumachieved(Fig. 5). Theplasmaappearanceisduetoevaporationofsurface impurities with a small atomic weight [31], and, likely, with presence of oil traces on the wire surface [9]. A preliminary liner heat up in vacuum up to red glow did not practically affect the wire array impedance at the dischargestart. Abreak-downoftheformedgaslayercanbeinfluencedbyelectronemissionamplifiedbythefactthatona certainpartofathinwireforacertainelectrodeconfigurationtheradialelectricfieldcanbe10-100timesashigh astheaxialfield[32]. 3.2 Wireradiographyintheprocessofimplosion Fig.6presentssynchronizedsignalsofcurrentthroughliner,softX-radiationofZ-pinchandX-pinchflash. The flash of the probing radiation occurred 80 ns before the maximum Z-pinch radiation. The results of probing the wire arrayby X- pinchraysare givenin Fig.7. In its upperpartFig.7showsa fragmentof a shadowgraph obtainedasaresultofthisprobing.ThinslopinglightlinesinrightbottomcorneroftheFigureisashadowfrom thetestwire6µmindiameter. Fig.6 Oscillograms: 1 - discharge current (1 MA/div), 2 - profile of Z-pinch SXR (a.u.), 3 - profile of X-pinch radiation(a.u.). (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 558 E.V.Grabovsky,K.N.Mitrofanov,andS.L.Nedoseevetal.:Heterogeneousplasma-producingstructuresat... Theshadowgraphsofthestepattenuatorfromtungstenwithaknownarealdensityallowtheplasmadensity invariouslinerpointstobeevaluated.Further,therewillbeusedsuchacharacteristicofthemassdistributionas thearealdensityρl[µg/cm2],thatisequaltotheintegralofvolumetricdensityalongtheprobingray. Fig.7 Radiography data. At the top - shadow- graph of part of theouter and inner arrays Atthe bottomleft:plotofintegralalongtheprobingbeam plasmadensity. InthebottompartofFig.7thetreatmentresultsofthewirearrayshadowgraphintheprocessofimplosionare presented. Theradialprofileof thearealdensityρlfora straightline a)was calculatedusingthe detectedfilm blackeningdensityintheupperpartofFig. 7. TheabscissainthebottompartofFig. 7isorientedfromleftto rightontheradiusfromthesystemcenter. The0-coordinatecorrespondswiththeborderoftheinnerarrayand thecoordinateofitsaxisis-0.6cm. Thesharppeaksinthedistributionofthearealdensity(Fig.7)correspondwithdensecores.Totherightfrom theinnerarrayborderasmallpartoftheouterarrayplasmaisseen. Thegivendetectedplasmaextendsfromthe wires of the outer arrayin the directionof the axisat a distance of ∼800µm. The plasma borderof the inner arrayisdistantnotmorethan150µmfromthewires(inaverage)intheradialdirectiontowardsthecenter. Fig.8givesanamplifiedimageofthecoresoftheouterandinnerarrays.Thesecoreshavethesamediameters. However,in contrastwith the wire coresof theinnerarray, the corefromthe outerarrayhasa more“spongy” structure.Thecoreoftheouterarrayarecutintheaxialdirectionwithanintervalof∼20µm.Thesamestructure ofcoreswasobservedatimplosionofsinglearrays. Adetailedprofileofthearealplasmadensityinthevicinity ofoneofthedensecoresoftheinnerlinerisshowninFig. 9. Themajorfractionofthesubstancefromtheinner arraywires(∼80%)isinsidethedensecore. Theother20%aredistributedintheregion∼80-90µmthick. As totheouterarray,thecorecontainsabout60%oftheinitialwiremass. Inspiteofastrongaxialnon-uniformityanddiversedegreesofmassexhaustion,thedetected(byquantawith energies∼3keV)coresoftheinnerandouterlinershavethesamediameter∼20µm.Anincreaseinthediameter from6µmto20µmcorresponds,atleast,a10-foldfallofthedensity. (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Contrib.PlasmaPhys.45,No.8(2005)/www.cpp-journal.org 559 Fig.8 Shadowgraphofpartofwirecores: left-fromthe innerarray,right-fromtheouterarray. Fig.9 Profileofarealplasmadensitynearonecoreofthe innercascadehighlightedfromimageinFigure7. 3.3 Spatialnon-uniformityofbreakdownandheterogeneityofcores Toinvestigatetheuniformityoftheinitialdischargestage(breakdown)framephotographyofasingletungsten linerwastakenintheX-ray(Fig. 10a,[43])andinthevisiblespectrum(Fig.10b). The earlier wire glow detected in the X-ray range at the ∼2-nd nanosecondis non-uniformboth in the az- imuthalandaxialdirection(Fig. 10a). Onlyabout5wiresof48witha5µmdiametercanbeseeninthearray. Atthismomentthecurrentvalueforasinglewireinthearrayis100A,andforoneglowingwireitequals1kA. The characteristicsize of the plasma formationaroundthe wire in the azimuthaldirectionis ∼300µm, thatis less,thanthespacebetweenthewiresinthearraywhichisequalto800µm. Theimageoftheeightwirearraywiththewirediameterof7,5µmdetectedatthemomentwhenthecurrent attained∼3kA/wireispresentedinFig. 10b. Acharacteristicpropertyisaparticularlypronouncedlarge-scale axial non-uniformityof emittance distribution along the wires. The images of separate wires are also greatly different. A non-uniform energy input to a wire at an initial cold stage predetermines, later, a not uniform exhaustionofvariouspartsofthecore.Suchacorewitha∼1mmsizeofitsnon-uniformityisgiveninFig. 11. Thecoreexhaustionnon-uniformitydevelopsnotonlyalongtheaxis,butalsofordifferentwiresinthearray. So,Fig.12demonstratesanobtainedin[33]profileofthearealplasmadensityρlnearanouterradiusofasingle array. TheX-axisin Fig. 12is radiallydirectedfromrightto leftto thearraycenter,X=0atthe arraysurface. In the middle on the plot of the areal density ρl (Fig. 12) one can see two narrow peaks (at X=220 µm and X=550µm)around25µmwide,whichcorrespondwiththeshadowsfromtwodensecores.Totherightfromthe dense corestwo feeblymarkedhumps, which arecorrespondstwo othercoreswith substancein a low-density (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 560 E.V.Grabovsky,K.N.Mitrofanov,andS.L.Nedoseevetal.:Heterogeneousplasma-producingstructuresat... (a) (b) Fig.10 (a)X-rayimageat2ns.Linerwithdiameter12mmandheight15mm.FortyeightwiresØ5µm.Resolutionis200 µmforhv∼200eV.(b)Imagedetectedbyopticframechamber. Currentis24kA.Linerwithdiameter8mmandheight10 mm.EightwiresØ7.5µm. Fig.11 ShadowgraphinX-rayofthepartfrominnerarray. Fig.12 Densityofplasmanearthesurfaceofasinglearray.X- Attime40nsbeforemaximumofX-radiation. Energyof axisisorientedalongradiusfromrighttolefttowardstheliner X-pinchquantais1-1.5keV. axis.X=0onthewirearrayradius. plasmastate.Thewireexhaustionatonemomentoftimeisdifferent,thatalsoevidencesthedifferenceintherate ofplasmaproductionandislikelyduetoanon-uniformcurrentdistributionoverwiresinthelinerattheinitial stage. 4 Plasmasurrounding ofwireinthe linerataninitialdischargestage The temporal dependencies of the current and voltage on the liner make possible the estimation of produced plasma parameters. Let us consider a cylindrical plasma column around a wire with a Spitzer conductivity (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Contrib.PlasmaPhys.45,No.8(2005)/www.cpp-journal.org 561 dependenton a temperatureTe and an average ion charge Z∼T0e.5. Assume also that the plasma expandsinto vacuumwithavelocityofionsound. Thismodelwellagreeswiththedetectedvoltageandcurrentthroughthe arrayfor∼10nsforthetungstenplasmawithatemperaturefallingintimefrom30to20eV.Fig. 13showstwo resistancevaluesdividedbyaninitialresistanceofthelinerdependingontime. Oneofthem,theexperimental one,iscalculatedonthebasisofthedetectedvoltageandcurrent(shownbycircles),thesecondisobtainedfrom the given model for the tungsten plasma with Te∼24 eV.The plasma channel resistance is equal to the initial resistanceofthewireatthetimemomentof∼5.5ns. Inthemodelpresentedthevelocityofplasmaexpansionis 0.9·106 cm/s. Accordingly,in10nsafterplasmaappearanceonthesurfacetheplasmacolumnradiusachieves ∼100µm. Note,thegivenvaluesareindependentontheplasmamassofthecurrentchannelandnotrelatedwith theequationofenergy,thatcorrespondswiththemodelofpointexplosion. The counterpressureshould be taken into account, which is of importancewhen the plasma radius exceeds the skin-layerthickness. However,sincethe modelconsideredagreeswiththe experimentupto 1kAperwire onecanobtainalowerborderfortheplasmamassanddensitybyequatingtheexpansionvelocityofthevisible glowborder(0.9·106cm/s)totheAlfvenvelocity. Thenin10nsafterbreakdowntheplasmamassperonewire exceeds∼10−8g/cmandtheconcentrationismorethan∼1017cm−3. The collective magnetic field in the array is much lower than that of a separate wire on its surface: their ratio is Nrw/R (cid:3)1, where N is the number of wires, rw is the wire radius and R is the liner radius. As the pressure of the plasma exceedsthat of the self magnetic field, the collective magnetic field does not affectthe plasma columnexpansion,atleast, forfirstten nanoseconds. In accordancewith theprobemeasurements[19] thecurrentappearsonthelineraxis(prepinch)in30-40nsafterthedischargestart. Thevelocityoftheplasma flowtowardsthecenter,∼107cm/s,attributedtothecollectivemagneticfieldisbyanorderofmagnitudegreater thanthatoftheplasmacolumnexpansionofasinglewire[32]. What is the cause of a large-scale non-uniformplasma distribution over wires detected in the optical range andaviolatedazimuthalsymmetrybetweenthem(Fig. 10)isnotclear. Nevertheless,themodelgivenmakesit possible,onthebasisofthemeasuredcurrent-voltagecharacteristics,toevaluatethetemperature,thelowermass borderandthetungstenionconcentrationinthenear-wireplasma(r∼0.01cm). Fig.13 Resistanceof cylindrical plasma layer near wire relatedtoresistanceofwireat300K.Circlesisexperiment, solidline-plasmamodelwithTe varyingintimefrom30 to20eV. 5 Dense cores ata developeddischarge stage The data on the core expansionvelocity, 104 cm/s, obtained by X-ray probingthe wire array with an X-pinch technique [21,23], permits drawing conclusions about the structure of a dense part of tungsten at a rather late time moment(40-70ns) afterthe currentstart. The valueof the averagedensity ρK of the coresubstanceis 1 g/cm3, thatislessthanthecriticaltungstendensityρCP =4.5g/cm3 [34].Thesmallexpansionvelocity∼104 cm/spreventsconsideringthecoreasahomogeneousstateofavapour,asthecorrespondingpointinthephase diagramhasatemperatureof>12000Kandathermalvelocityof>8·104 cm/s[34]. Undertheseconditionsit isnaturaltoconsiderthecoretobeaheterogeneousmedium,i.e. amixtureofliquid(drops)andvapour. Note (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 562 E.V.Grabovsky,K.N.Mitrofanov,andS.L.Nedoseevetal.:Heterogeneousplasma-producingstructuresat... thevelocityofcoreexpansion,observedinthewirearray∼0.1µm/ns,lessthanintheexperimentswithasingle wiremorethanone[19,20]. Letusconsideramodeltakingaccountofevaporationfromthesurfaceoftheliquidphaseandthemassloss byvapouroutflowfromthecoreborder.TheohmicheatingbycurrentJ,whichflowsthroughanionizedvapour in the core at a specified electric field on the liner “surface”, will be taken as an energy source. The electric fieldstrengthisevaluatedintermsofthemodelofprolongedplasmaproductionwithathindissipativeboundary layer [11], whichseparatesthe dense coresand the hotacceleratedplasma of ideal√conductivity. Assume, that withinthislayertheelectricfieldstrengthisconstantandequalsE =2·10−9VJL/ 3RL ∼50(kV/cm).Here, JL ∼ 2(MA)isthefullcurrent,RL ∼ 0.5(cm)thelinerradiusandV∼ 107(cm/s)theplasmavelocity. Nowweconsideracylindricalcloudofliquiddrops,characterizedbyaverageradius rLandadensityρLwith anumberofdropsNL perunitlengthofcore. Thelineardensityofaliquidphaseshouldnotbeinexcessofthe correspondingcoredensity.Alimitationonthedropconcentration nL =NL/πrK2 followsfromtheopacityof a heterogeneousstructureforX-rayprobing: thepathlengthlimitedbyabsorptionindropislessthanthecore radius-NLrL2 > rK. So,assumingρL > 10(g/cm3),weobtainarelationbetweensizesanddensitiesofthe dropsandthecore: rLρL < rKρK = 9(µg/cm3) ⇒ rL < 0.9(µm),NL > 1.1·105 (1/cm). In terms of the initial wire with its initial radiusrw = 2.5 µm the volumetricconcentrationof liquid drops, 0.55·1012(cm−3),iscomparablewiththatofdefectsinmetal,i.e. 1012(cm−3)[36]. Thebalanceequationsofmass-mL,gas-mG andenergy-mLεL+mGεG oftheliquidinthecylindrical core,ontheassumptionoftheequalityofliquidandvaportemperatures,areasfollows: (cid:1) mL/ρL + mG/ρG = πrK2 , rL = 3 0.75mL/(πNLρL), (1) (cid:1) uT = kBT/2πM, V˙ =2πrKuT, (2) dmL/dt=−4πrL2 NLuT(ρV(T)−ρG), d(mL+mG)/dt= −ρGV˙, (3) mL (dεL/dt) + mG (dεG/dt) − (dmL/dt) (εG − εL) + PGV˙ = JE. (4) Here,ρV(T)isthedensityofthesaturatedvapourinthecore.Thegivensystemiscompletedwiththeequation of state [34,35]. The equilibrium degree of gas ionization was calculated with due account of corrections for plasma non-ideality [37], and the core conductivitywithin the model of an effective Coulomb logarithm[38]. The influence of the liquid disperse phase on the currentflow in the tungsten plasma [39] was neglected, that imposes,inparticular,restrictionontheliquidandgasvolume-mL/ρL < mG/ρG. Fig.14 Massofliquidandgasphase(left),temperatureandcurrentofcore(right). NL=3·105 cm−1,rK=10µm, E=30 kV/cm. Fig.14presentstheresultsofsimulationthedynamicsofaheterogeneouscoreintheframesoftheequation system (1-4)at constantvaluesof radiusrK=10 µm and field strengthE = 30 kV/cm and at initial conditions (cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.