Kostya (Ken) Ostrikov Plasma Nanoscience Related Titles E.L. Wolf R. d'Agostino, P. Favia, C. Oehr, M.R. Wertheimer (Eds.) Nanophysics and Plasma Processes and Nanotechnology Polymers An Introduction to Modern Concepts in Nanoscience 16th International Symposium on Plasma Chemistry, 2006 Taormina/Italy June 22–27, 2003 ISBN: 978-3-527-40651-7 2005 ISBN: 978-3-527-40487-2 G. Wilkening, L. Koenders Nanoscale Calibration S. Reich, C. Thomsen, Standards and Methods J. Maultzsch Dimensional and Related Carbon Nanotubes Measurements in the Micro- and Basic Concepts and Physical Nanometer Range Properties 2005 2004 ISBN: 978-3-527-40502-2 ISBN: 978-3-527-40386-8 R. Kelsall, I.W. Hamley, G. Schmid (Ed.) M. Geoghegan (Eds.) Nanoparticles Nanoscale Science and From Theory to Application Technology 2004 2005 ISBN: 978-3-527-30507-0 ISBN: 978-0-470-85086-2 Kostya (Ken) Ostrikov Plasma Nanoscience Basic Concepts and Applications of Deterministic Nanofabrication WILEY-VCH Verlag GmbH & Co. KGaA The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the Prof. Kostya (Ken) Ostrikov information contained in these books, The University of Sydney including this book, to be free of errors. School of Physics Readers are advised to keep in mind that Sydney, Australia statements, data, illustrations, procedural details or other items may inadvertently be and inaccurate. Plasma Nanoscience Centre Australia (PNCA) Library of Congress Card No.: applied for CSIRO Materials Science and Engineering Lindfield, Australia British Library Cataloguing-in-Publication Data A catalogue record for this book is available from Cover illustration the British Library. This figure summarizes the Plasma Nanoscience effort to understand and use Bibliographic information published by plasma-related effects such as electric the Deutsche Nationalbibliothek charges and fields for the creation of Die Deutsche Nationalbibliothek lists this building blocks of the Universe, nano- publication in the Deutsche Nationalbibliografie; technology and, possibly, life. detailed bibliographic data are available in the Internet at http://dnb.d-nb.de (cid:164) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Printed in the Federal Republic of Germany Printed on acid-free paper Composition Da-TeX Gerd Blumenstein, Leipzig Printing Strauss GmbH, Mörlenbach Bookbinding Litges & Dopf Buchbinderei GmbH, Heppenheim ISBN: 978-3-527-40740-8 ToTina,withloveandappreciation VII Contents Preface XI Acronyms XXIII 1 Introduction 1 1.1 MainConceptsandIssues 2 1.2 Self-OrganizedNanoworld,CommonsenseScienceoftheSmall andSocio-EconomicPush 7 1.3 Nature’sPlasmaNanofabandNanotechnologyResearch Directions 21 1.4 DeterministicNanofabricationandPlasmaNanoscience 28 1.5 StructureoftheMonographandAdvicetotheReader 43 2 WhatMakesLow-TemperaturePlasmasaVersatileNanotool? 49 2.1 BasicIdeasandMajorIssues 50 2.2 PlasmaNanofabricationConcept 55 2.3 UsefulPlasmaFeaturesforNanoscaleFabrication 66 2.4 ChoiceandGenerationofBuildingandWorkingUnits 72 2.5 EffectofthePlasmaSheath 81 2.6 HowPlasmasAffectElementarySurfaceProcesses 97 2.7 ConcludingRemarks 105 3 SpecificExamplesandPracticalFramework 107 3.1 SemiconductingNanofilmsandNanostructures 107 3.2 Carbon-BasedNanofilmsandNanostructures 117 3.3 PracticalFramework–BridgingNineOrdersofMagnitude 133 3.4 ConcludingRemarks 140 4 GenerationofBuildingandWorkingUnits 145 4.1 SpeciesinMethane-BasedPlasmasforSynthesisofCarbon Nanostructures 146 PlasmaNanoscience:BasicConceptsandApplicationsofDeterministicNanofabrication Kostya(Ken)Ostrikov Copyright(cid:1)c 2008WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-40740-8 VIII Contents 4.1.1 ExperimentalDetails 149 4.1.2 BasicAssumptionsoftheModel 152 4.1.3 ParticleandPowerBalanceinPlasmaDischarge 153 4.1.4 DensitiesofNeutralandChargedSpecies 155 4.1.4.1 EffectofRFPower 156 4.1.4.2 EffectofArgonandMethaneDilution 158 4.1.5 DepositedNeutralandIonFluxes 159 4.1.6 MostImportantPointsandSummary 162 4.2 SpeciesinAcetylene-BasedPlasmasforSynthesisof CarbonNanostructures 164 4.2.1 FormulationoftheProblem 165 4.2.2 NumberDensitiesoftheMainDischargeSpecies 167 4.2.3 FluxesofBuildingandWorkingUnits 171 4.3 NanoclusterandNanoparticleBuildingUnits 177 4.3.1 Nano-SizedBuildingUnitsfromReactivePlasmas 177 4.3.2 NanoparticleGeneration: OtherExamples 182 4.4 ConcludingRemarks 194 5 Transport,ManipulationandDepositionofBuildingand WorkingUnits 199 5.1 MicroscopicIonFluxesDuringNanoassemblyProcesses 200 5.1.1 FormulationandModel 202 5.1.2 NumericalResults 204 5.1.3 InterpretationofNumericalResults 209 5.2 NanoparticleManipulationintheSynthesisofCarbon Nanostructures 213 5.2.1 NanoparticleManipulation: ExperimentalResults 215 5.2.2 NanoparticleManipulation: NumericalModel 220 5.3 Selected-AreaNanoparticleDepositionOntoMicrostructured Surfaces 227 5.3.1 NumericalModelandSimulationParameters 228 5.3.2 Selected-AreaNanoparticleDeposition 231 5.3.3 PracticalImplementationFramework 237 5.4 ElectrostaticNanoparticleFilter 239 5.5 ConcludingRemarks 244 6 SurfaceScienceofPlasma-ExposedSurfacesand Self-OrganizationProcesses 249 K.OstrikovandI.Levchenko 6.1 SynthesisofSelf-OrganizingArraysofQuantumDots: ObjectivesandApproach 251 Contents IX 6.2 InitialStageofGe/SiNanodotFormationUsingNanocluster Fluxes 272 6.2.1 PhysicalModelandNumericalDetails 273 6.2.2 PhysicalInterpretationandRelevantExperimentalData 277 6.3 BinarySi C QuantumDotSystems: InitialGrowthStage 282 x 1-x 6.3.1 AdatomFluxesatInitialGrowthStagesofSi C Quantum x 1–x Dots 282 6.3.2 ControlofCore-ShellStructureandElementalComposition ofSi C QuantumDots 294 x 1-x 6.4 Self-OrganizationinGe/SiNanodotArraysatAdvanced GrowthStages 301 6.4.1 ModelofNanopatternDevelopment 303 6.4.2 Ge/SiQDSizeandPositionalUniformity 307 6.4.3 Self-OrganizationinGe/SiQDPatterns: DrivingForcesand Features 310 6.5 Self-OrganizedNanodotArrays: Plasma-SpecificEffects 314 6.5.1 MatchingBalanceandSupplyofBUs: aRequirementfor DeterministicNanoassembly 315 6.5.2 OtherGeneralConsiderations 317 6.5.3 Plasma-RelatedEffectsatInitialGrowthStages 319 6.5.4 SeparateGrowthofIndividualNanostructures 321 6.5.5 Self-OrganizationinLargeNanostructureArrays 327 6.6 ConcludingRemarks 332 7 Ion-FocusingNanoscaleObjects 341 7.1 GeneralConsiderationsandElementaryProcesses 343 7.2 Plasma-SpecificEffectsontheGrowthofCarbonNanotubes andRelatedNanostructures 356 7.2.1 Plasma-RelatedEffectsonCarbonNanofibers 357 7.2.2 EffectsofIonsandAtomicHydrogenontheGrowthof SWCNTs 364 7.3 Plasma-ControlledReshapingofCarbonNanostructures 373 7.3.1 Self-SharpeningofPlatelet-StructuredNanocones 373 7.3.2 Plasma-BasedDeterministicShapeControlinNanotip Assembly 380 7.4 Self-OrganizationofLargeNanotipArrays 385 7.5 FromNon-UniformCatalystIslandstoUniform Nanoarrays 391 7.5.1 ExperimentandFilmCharacterization 393 7.5.2 GrowthModelandNumericalSimulations 397 7.6 OtherIon-FocusingNanostructures 402 7.7 ConcludingRemarks 407 X Contents 8 BuildingandWorkingUnitsatWork: Applications 415 8.1 Plasma-BasedPost-ProcessingofNanoarrays 416 8.1.1 Post-ProcessingofNanotubeArrays 418 8.1.2 FunctionalMonolayerCoatingofNanorodArrays 422 8.2 i-PVDofMetalNanodotArraysUsingNanoporous Templates 427 8.3 MetalOxideNanostructures: Plasma-GeneratedBUsCreate OtherBUsontheSurface 434 8.4 BiocompatibleTiO Films: HowBuildingUnitsWork 440 2 8.4.1 TiO FilmDepositionandCharacterization 442 2 8.4.2 InVitroApatiteFormation 446 8.4.3 GrowthKinetics: BuildingUnitsatWork 448 8.4.4 BuildingUnitsInVitro: InducingBiomimeticResponse 453 8.5 ConcludingRemarks 456 9 ConclusionsandOutlook 461 9.1 DeterminismandHigherComplexity 464 9.2 Plasma-RelatedFeaturesandAreasofCompetitive Advantage 467 9.3 OutlookfortheFuture 470 9.4 FinalRemarks 479 10 AppendixA.ReactionsandRateEquations 483 10.1 PlasmasofAr+H +CH GasMixtures(Section4.1) 483 2 4 10.2 PlasmasofAr+H +C H GasMixtures(Section4.2) 486 2 2 2 11 AppendixB.WhyPlasma-basedNanoassembly: FurtherReasons 491 11.1 CarbonNanotubesandRelatedStructures 491 11.2 SemiconductorNanostructuresandNanomaterials 493 11.3 OtherNanostructuresandNanoscaleObjects 494 11.4 MaterialswithNanoscaleFeatures 496 11.5 Plasma-RelatedIssuesandFabricationTechniques 497 References 499 Index 529 XI Preface Applications of low-temperature plasmas for nanofabrication is a very newandquicklyemergingareaatthefrontierofphysicsandchemistry of plasmas and gas discharges, nanoscience and nanotechnology, solid- statephysics,andmaterialsscience.Suchplasmasystemscontainawide rangeofneutralandcharged,reactiveandnon-reactivespecieswiththe chemical structure and other properties that make them indispensable fornanoscalefabricationofexoticarchitecturesofdifferentdimensional- ity and functional thin films and places uniquely among other existing nanofabricationtools. Bynanoscales,itistypicallyimpliedthatthespa- tialscalesconcernedareabove1nm(= 10−9m)andbelowfewhundred nm. Inthelastdecade,therehasbeenastrongtrendtowardsanincreasing useofvariousplasma-basedtoolsfornumerousprocessesatnanoscales, includingplasma-aidednanoassemblyofindividualnanostructuresand their intricate nanopatterns, deposition of nanostructured functional materials (including biomaterials), nanopatterns and interlayers, syn- thesis of quantum confinement structures of different dimensionality (e.g.,zero-dimensionalquantumdots,one-dimensionalnanowires,two- dimensional nanowalls and nanowells, and intricate three-dimensional nanostructures), surface profiling and structuring with nanoscale fea- tures, functionalization of nanostructured surfaces and nanoarrays, ultra-high precision plasma-assisted reactive chemical etching of sub- 100nm-wideandhigh-aspect-ratiotrenchesandseveralothers. In many applications (such as in commonly used plasma-assisted re- active chemical etching of semiconductor wafers in microelectronics), plasma-based nanotools have shown superior performance compared to techniques primarily based on neutral gas chemistry such as chemi- cal vapor deposition (CVD). However, compared to neutral gas routes, in low-temperature plasmas there appears another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas PlasmaNanoscience:BasicConceptsandApplicationsofDeterministicNanofabrication Kostya(Ken)Ostrikov Copyright(cid:1)c 2008WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-40740-8