ebook img

Plasma-Material Interaction in Controlled Fusion PDF

278 Pages·2006·5.602 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plasma-Material Interaction in Controlled Fusion

SpringerSerieson atomic, optical, and plasma physics 39 SpringerSerieson atomic, optical, and plasma physics TheSpringerSeriesonAtomic,Optical,andPlasmaPhysicscoversinacompre- hensivemannertheoryandexperimentintheentirefieldofatomsandmolecules andtheirinteractionwithelectromagneticradiation.Booksintheseriesprovide arichsourceofnewideasandtechniqueswithwideapplicationsinfieldssuchas chemistry,materialsscience,astrophysics,surfacescience,plasmatechnology,ad- vancedoptics,aeronomy,andengineering.Laserphysicsisaparticularconnecting themethathasprovidedmuchofthecontinuingimpetusfornewdevelopments inthefield.Thepurposeoftheseriesistocoverthegapbetweenstandardunder- graduatetextbooksandtheresearchliteraturewithemphasisonthefundamental ideas,methods,techniques,andresultsinthefield. 27 QuantumSqueezing ByP.D.DrumondandZ.Ficek 28 Atom,Molecule,andClusterBeamsI BasicTheory,ProductionandDetectionofThermalEnergyBeams ByH.Pauly 29 Polarization,AlignmentandOrientationinAtomicCollisions ByN.AndersenandK.Bartschat 30 PhysicsofSolid-StateLaserPhysics ByR.C.Powell (PublishedintheformerSeriesonAtomic,Molecular,andOpticalPhysics) 31 PlasmaKineticsinAtmosphericGases ByM.Capitelli,C.M.Ferreira,B.F.Gordiets,A.I.Osipov 32 Atom,Molecule,andClusterBeamsII ClusterBeams,FastandSlowBeams,AccessoryEquipmentandApplications ByH.Pauly 33 AtomOptics ByP.Meystre 34 LaserPhysicsatRelativisticIntensities ByA.V.Borovsky,A.L.Galkin,O.B.Shiryaev,T.Auguste 35 Many-ParticleQuantumDynamicsinAtomicandMolecularFragmentation Editors:J.UllrichandV.P.Shevelko 36 AtomTunnelingPhenomenainPhysics,ChemistryandBiology Editor:T.Miyazaki 37 ChargedParticleTraps PhysicsandTechniquesofChargedParticleFieldConfinement ByV.N.Gheorghe,F.G.Major,G.Werth 38 PlasmaPhysicsandControlledNuclearFusion ByK.Miyamoto 39 Plasma-MaterialInteractioninControlledFusion ByD.Naujoks Vols.1–26oftheformerSpringerSeriesonAtomsandPlasmasarelistedattheendofthebook D. Naujoks Plasma-Material Interaction in Controlled Fusion With54Figures and 11 Tables 123 Dr.DirkNaujoks Max-Planck-Institutfu¨rPlasmaphysik TeilinstitutGreifswald 17491Greifswald,Germany E-mail:[email protected] ISSN1615-5653 ISBN-103-540-32148-9SpringerBerlinHeidelbergNewYork ISBN-13978-3-540-32148-4SpringerBerlinHeidelbergNewYork LibraryofCongressControlNumber:2006927044 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,inits currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsareliable toprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia. springer.com ©Springer-VerlagBerlinHeidelberg2006 PrintedinThe Netherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Typesetting by the authorsandSPiusing aS pringerLATEXmacropackage CoverconceptbyeStudioCalmarSteinen Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:11531203 57/3141/SPI-543210 to Natalie Preface Nuclear fusion has the potential to provide a major part of mankind’s energy needs for many millennia. On the way to controlled thermonuclear fusion on our planet, the principal goals—from the physical point of view—are firstly to obtain a sufficiently stable plasma, secondly, to heat this plasma to igni- tiontemperature,andfinally,toavoidexcessiveinteractionofthehotplasma with the solid wall of the containing vessel. With respect to the foreseen use of a fusion reactor as an energy-producing device, an ideal plasma confine- ment is unattainable nor is it desired. The generated energy together with the helium particles (fusion “ash”) must be removed from the central region and conducted to the energy exchanging facilities (blanket), as well as to the gas exhausting and purifying systems—at the rate they are produced. The so-called first wall, the border between the hot plasma with sun-like parame- ters (and beyond) and the “cool earth”, should be able to withstand the high energy and particle fluxes with little or no maintenance. During the last few decades a large number of dedicated experimental results as well as theoretical and simulation studies have been performed— thankstotheeffortofscientistsfrommanycountriesparticipatinginthistruly international project of controlled fusion. Several aspects of plasma–surface interaction have been reviewed in various publications [1–5] as well as in pro- ceedings of conferences such as the series of Plasma Surface Interaction and FusionReactorMaterials conferences.Acomprehensive“DataCompendium” related to atomic processes taking place in plasma–surface interactions and material questions is given in special supplements issued by the journal Nu- clear Fusion [6–9]. Itriedtoprovideanin-depthlookatthemulti-facetedaspectsofplasma– surface interaction in controlled fusion, to give a comprehensive analysis of the main processes and the main parameters ruling them, together with an assessmentofthemostcriticalquestionsandopenpointsthatdemandfurther investigation.Ihopethiscanassistthereaderbyperformingtheirownestima- tionsandassessmentsofrelevantphysicalprocessesandproblems.Forfurther VIII Preface studies,referencestoselectedpapersaregiven.Acomprehensivereviewofthe enormousexperimentalworkdoneinthisfieldisoutofthescopeofthisbook, but can be found in the references given above. A more detailed quantitative analysis can be acquired by applying simulation techniques, which are pre- sented shortly, used together with special data compilations. Sincetheinvolvedprocessesareidentical,thebookmightalsobeofinterest in the fast-paced field of surface modification by means of plasma technology. Whetherthinlayersaredepositedonmaterialsinordertoimprovethesurface characteristics or whether plasma ions are implanted into the depth using biased targets, the underlying physics is the same as in fusion experiments. IwouldliketothankProf.V.N.Afanas’evforconductingmyinitialsteps into scientific work in the field of particle interaction with solids, who has encouraged me to combine experimental, theoretical, and simulation studies wherever it seems possible. He suffered, but dealt gracefully with my poor Russian during my stay in Moscow. IammuchobligedtoDr.R.Behrisch,whohasintroducedmetotheworld of plasma–surface interaction. He allowed me to benefit from his wide expe- rience and pushed me to make things clear and simple without unessential elaborating—not always with success I am afraid. I have also learned from him to fight for each discharge against the persistent fear of the operators of how a rather small surface probe would harm the device by exposing it into the plasma. Iam thankful to Prof. G. Fussmann, who surprisedme with ana- lytical descriptions of effects, which I thought were studied only by computer simulation, and who showed me, in detail, that the complexity of particle– surface interaction is quite negligible compared to the situation in another topic—in plasma physics. The suggestions and corrections made by both of themareveryappreciatedandhelpedtoimprovethemanuscriptsignificantly. Thanks to all colleagues I worked with in the inspiring and challenging atmosphere of the international fusion community. IamgratefultoDr.Ascheronforhisencouragementandsupporttopublish this book with Springer, and in particular, to Ms. Blanck for her excellent technical assistance. Many thanks to Ms. Dewitz for most of the drawings and illustrations. Greifswald, May 2006 Dirk Naujoks Contents 1 Introduction............................................... 1 Part I Fusion as Energy Source 2 Energy Problem and Related Safety Aspects .............. 5 3 Fusion Fuel ................................................ 9 3.1 Fusion Reactions ........................................ 9 3.2 Ignition and Burn Criteria................................ 12 4 Fusion Concepts ........................................... 19 4.1 Inertial Plasma Confinement.............................. 19 4.2 Magnetic Plasma Confinement ............................ 20 4.3 Stellarator Concept...................................... 20 4.4 Tokamak Concept ....................................... 22 4.5 Design of the First Wall.................................. 23 4.5.1 Limiter .......................................... 25 4.5.2 Divertor.......................................... 26 Part II The Plasma-Material Interface 5 The Plasma State.......................................... 31 5.1 Ionization Degree and Coupling Constant................... 32 5.2 Debye Length........................................... 34 5.3 Plasma Frequency ....................................... 35 5.4 Collisions in Plasmas .................................... 36 5.5 Transport Processes in Plasmas ........................... 41 5.5.1 Transport by Binary Collisions...................... 42 5.5.2 Neoclassical Diffusion .............................. 43 5.5.3 Anomalous Transport.............................. 44 X Contents 5.6 The Vlasov Equation .................................... 45 5.7 The Poisson Equation.................................... 46 6 Particle Coupling.......................................... 51 6.1 Binary Collisions ........................................ 52 6.1.1 Scattering Angle α ................................ 55 6.1.2 Scattering in the Coulomb Field, U(r)=C/r ......... 57 6.1.3 Cross-Section ..................................... 57 6.1.4 Interaction Potential U(r) .......................... 59 6.1.5 Binary Collision: General Case ...................... 62 6.2 Particle Transport in Matter.............................. 65 6.2.1 Definitions and Main Parameters.................... 66 6.2.2 Elastic Energy Loss................................ 68 6.2.3 Inelastic Energy Loss .............................. 70 6.3 Material Modification by Ion Beams ....................... 74 6.4 Retention and Tritium Inventory Control ................... 77 6.5 Impurity Generation ..................................... 78 6.5.1 Physical Sputtering................................ 79 6.5.2 Chemical Erosion.................................. 85 6.5.3 Radiation-Enhanced Sublimation.................... 87 6.5.4 Thermal Evaporation .............................. 88 6.5.5 Blistering ........................................ 89 6.6 Charge Effects .......................................... 90 6.7 Diffusion-Controlled Sputtering ........................... 91 6.8 Backscattering .......................................... 93 6.8.1 One-Collision Model ............................... 95 6.8.2 The Diffusion Model............................... 96 6.8.3 Approximations ................................... 97 6.9 Electron Emission ....................................... 98 6.9.1 Secondary Electron Emission (SEE) ................. 99 6.9.2 Thermionic Electron Emission ......................100 6.9.3 Electron Emission by the Application of an Electric Field ............................................101 6.10 Modeling of Particle–Solid Interaction......................102 6.10.1 Molecular Dynamics ...............................102 6.10.2 Monte Carlo Methods..............................103 7 Electrical Coupling ........................................109 7.1 Electron Flux Density....................................110 7.2 Ion Flux Density ........................................111 7.3 Bohm Criterion with the “=” Sign.........................112 7.4 Space Charge Limited Currents ...........................116 7.5 Effect of Magnetic Field Geometry.........................118 Contents XI 7.6 Modeling of the Electric Sheath ...........................120 7.6.1 Principles of PIC Simulations .......................120 7.6.2 Boundary Conditions ..............................123 7.6.3 Choice of Time Step and Spatial Resolution ..........124 8 Power Coupling ...........................................127 8.1 Heat Flux Densities......................................127 8.2 Change of Surface Temperature ...........................129 8.2.1 Heat Conduction in a Half-Infinite Medium...........130 8.2.2 Point-like Heat Load...............................131 8.2.3 Heat Conduction and Diffusion......................131 8.3 Power Removal..........................................132 8.4 Thermal Stress..........................................133 9 Impurity Problems in Fusion Experiments .................135 9.1 Impurity Radiation ......................................135 9.1.1 Line Radiation....................................136 9.1.2 Bremsstrahlung ...................................136 9.1.3 Cyclotron Radiation ...............................138 9.1.4 Radiation Phenomena..............................138 9.1.5 Benefits of Radiation ..............................139 9.2 Erosion Phenomena in Fusion Experiments .................141 9.2.1 Plasma Disruption.................................142 9.2.2 Edge Localized Modes (ELMs)......................143 9.2.3 Runaway Electrons ................................144 9.2.4 Erosion by Energetic Alpha Particles ................145 9.2.5 Hot Spots or Carbon “Blooming” ...................146 9.2.6 Flake and Dust Production .........................147 9.2.7 Erosion by Charge-Exchange Neutrals................147 9.2.8 Erosion by Arcing .................................148 9.2.9 Non-Linear Erosion due to Impurities ................149 9.3 Impurity Transport ......................................154 9.3.1 Spatial Distributions of Neutrals ....................156 9.3.2 Atomic Processes in Impure Plasmas.................161 9.3.3 Prompt Redeposition ..............................163 9.3.4 SOL Screening Efficiency ...........................166 9.3.5 Accumulation of High-Z Impurities ..................167 9.3.6 Transport Barriers.................................167 9.3.7 Sawteeth as Plasma Cleaner ........................168 9.3.8 Deposition of Impurities............................169 9.3.9 Modeling of Erosion and Redeposition ...............172 9.4 Critical Impurity Concentration ...........................176

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.