ebook img

Plasma Formulary 2016 PDF PDF

71 Pages·2016·0.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plasma Formulary 2016 PDF

2016 NRL PLASMA FORMULARY J.D. Huba Beam Physics Branch Plasma Physics Division Naval Research Laboratory Washington, DC 20375 Supported by The Office of Naval Research 1 CONTENTS Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . . 3 Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . 4 Differential Operators in Curvilinear Coordinates . . . . . . . . . . . 6 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 10 International System (SI) Nomenclature . . . . . . . . . . . . . . . 13 Metric Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . . 14 Physical Constants (cgs) . . . . . . . . . . . . . . . . . . . . . 16 Formula Conversion . . . . . . . . . . . . . . . . . . . . . . . 18 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 19 Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . 20 Electromagnetic Frequency/Wavelength Bands . . . . . . . . . . . . 21 AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . . 23 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fundamental Plasma Parameters . . . . . . . . . . . . . . . . . . 28 Plasma Dispersion Function . . . . . . . . . . . . . . . . . . . . 30 Collisions and Transport . . . . . . . . . . . . . . . . . . . . . 31 Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . . 40 Ionospheric Parameters . . . . . . . . . . . . . . . . . . . . . . 42 Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . . 43 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 44 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 46 Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 48 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . . 53 Atomic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 59 Complex (Dusty) Plasmas . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Afterword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2 NUMERICAL AND ALGEBRAIC Gain in decibels of P relative to P 2 1 G = 10log (P /P ). 10 2 1 To within two percent 1/2 2 3 10 3 (2π) 2.5; π 10; e 20; 2 10 . ≈ ≈ ≈ ≈ Euler-Mascheroni constant1 γ = 0.57722 Gamma Function Γ(x + 1) = xΓ(x): Γ(1/6) = 5.5663 Γ(3/5) = 1.4892 Γ(1/5) = 4.5908 Γ(2/3) = 1.3541 Γ(1/4) = 3.6256 Γ(3/4) = 1.2254 Γ(1/3) = 2.6789 Γ(4/5) = 1.1642 Γ(2/5) = 2.2182 Γ(5/6) = 1.1288 Γ(1/2) = 1.7725 = √π Γ(1) = 1.0 Binomial Theorem (good for x < 1 or α = positive integer): | | ∞ α α(α 1) α(α 1)(α 2) α k 2 3 (1 + x) = x 1 + αx + − x + − − x + .... k ≡ 2! 3! X(cid:0) (cid:1) k=0 Rothe-Hagen identity2 (good for all complex x, y, z except when singular): n x x + kz y y + (n k)z − x + kz k y + (n k)z n k X (cid:0) (cid:1) − (cid:0) − (cid:1) k=0 x + y x + y + nz = . x + y + nz n (cid:0) (cid:1) Newberger’s summation formula3 [good for µ nonintegral, Re(α + β) > 1]: − ∞ ( 1)nJ (z)J (z) π α γn β+γn − − = J (z)J (z). α+γµ β γµ n + µ sinµπ − X n= −∞ 3 VECTOR IDENTITIES4 T I Notation: f, g, are scalars; A, B, etc., are vectors; is a tensor; is the unit dyad. (1) A B C = A B C = B C A = B C A = C A B = C A B · × × · · × × · · × × · (2) A (B C) = (C B) A = (A C)B (A B)C × × × × · − · (3) A (B C) + B (C A) + C (A B) = 0 × × × × × × (4) (A B) (C D) = (A C)(B D) (A D)(B C) × · × · · − · · (5) (A B) (C D) = (A B D)C (A B C)D × × × × · − × · (6) (fg) = (gf) = f g + g f ∇ ∇ ∇ ∇ (7) (fA) = f A + A f ∇ · ∇ · · ∇ (8) (fA) = f A + f A ∇ × ∇ × ∇ × (9) (A B) = B A A B ∇ · × · ∇ × − · ∇ × (10) (A B) = A( B) B( A) + (B )A (A )B ∇ × × ∇ · − ∇ · · ∇ − · ∇ (11) A ( B) = ( B) A (A )B × ∇ × ∇ · − · ∇ (12) (A B) = A ( B) + B ( A) + (A )B + (B )A ∇ · × ∇ × × ∇ × · ∇ · ∇ (13) 2f = f ∇ ∇ · ∇ (14) 2A = ( A) A ∇ ∇ ∇ · − ∇ × ∇ × (15) f = 0 ∇ × ∇ (16) A = 0 ∇ · ∇ × T If e , e , e are orthonormal unit vectors, a second-order tensor can be 1 2 3 written in the dyadic form T (17) = T e e ij i j i,j P In cartesian coordinates the divergence of a tensor is a vector with components T (18) ( ) = (∂T /∂x ) i ji j ∇· j P [This definition is required for consistency with Eq. (29)]. In general (19) (AB) = ( A)B + (A )B ∇ · ∇ · · ∇ T T T (20) (f ) = f +f ∇ · ∇ · ∇· 4 Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to the point x,y,z. Then (21) r = 3 ∇ · (22) r = 0 ∇ × (23) r = r/r ∇ (24) (1/r) = r/r3 ∇ − (25) (r/r3) = 4πδ(r) ∇ · I (26) r = ∇ If V is a volume enclosed by a surface S and dS = ndS, where n is the unit normal outward from V, (27) dV f = dSf Z ∇ Z V S (28) dV A = dS A Z ∇ · Z · V S T T (29) dV = dS Z ∇· Z · V S (30) dV A = dS A Z ∇ × Z × V S 2 2 (31) dV(f g g f) = dS (f g g f) Z ∇ − ∇ Z · ∇ − ∇ V S (32) dV(A B B A) Z · ∇ × ∇ × − · ∇ × ∇ × V = dS (B A A B) Z · × ∇ × − × ∇ × S If S is an open surface bounded by the contour C, of which the line element is dl, (33) dS f = dlf Z × ∇ I S C 5 (34) dS A = dl A Z · ∇ × I · S C (35) (dS ) A = dl A Z × ∇ × I × S C (36) dS ( f g) = fdg = gdf Z · ∇ × ∇ I −I S C C DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES5 Cylindrical Coordinates Divergence 1 ∂ 1 ∂A ∂A φ z A = (rA ) + + r ∇ · r ∂r r ∂φ ∂z Gradient ∂f 1 ∂f ∂f ( f) = ; ( f) = ; ( f) = r φ z ∇ ∂r ∇ r ∂φ ∇ ∂z Curl 1 ∂A ∂A z φ ( A) = r ∇ × r ∂φ − ∂z ∂A ∂A r z ( A) = φ ∇ × ∂z − ∂r 1 ∂ 1 ∂A r ( A) = (rA ) z φ ∇ × r ∂r − r ∂φ Laplacian 1 ∂ ∂f 1 ∂2f ∂2f 2 f = r + + ∇ r ∂r ∂r r2 ∂φ2 ∂z2 (cid:16) (cid:17) 6 Laplacian of a vector 2 ∂A A 2 2 φ r ( A) = A r r ∇ ∇ − r2 ∂φ − r2 2 ∂A A 2 2 r φ ( A) = A + φ φ ∇ ∇ r2 ∂φ − r2 2 2 ( A) = A z z ∇ ∇ Components of (A )B · ∇ ∂B A ∂B ∂B A B r φ r r φ φ (A B) = A + + A r r z · ∇ ∂r r ∂φ ∂z − r ∂B A ∂B ∂B A B φ φ φ φ φ r (A B) = A + + A + φ r z · ∇ ∂r r ∂φ ∂z r ∂B A ∂B ∂B z φ z z (A B) = A + + A z r z · ∇ ∂r r ∂φ ∂z Divergence of a tensor 1 ∂ 1 ∂T ∂T T T φr zr φφ ( ) = (rT ) + + r rr ∇ · r ∂r r ∂φ ∂z − r 1 ∂ 1 ∂T ∂T T T φφ zφ φr ( ) = (rT ) + + + φ rφ ∇ · r ∂r r ∂φ ∂z r 1 ∂ 1 ∂T ∂T T φz zz ( ) = (rT ) + + z rz ∇ · r ∂r r ∂φ ∂z 7 Spherical Coordinates Divergence 1 ∂ 1 ∂ 1 ∂A 2 φ A = (r A ) + (sinθA ) + r θ ∇ · r2 ∂r rsinθ ∂θ rsinθ ∂φ Gradient ∂f 1 ∂f 1 ∂f ( f) = ; ( f) = ; ( f) = r θ φ ∇ ∂r ∇ r ∂θ ∇ rsinθ ∂φ Curl 1 ∂ 1 ∂A θ ( A) = (sinθA ) r φ ∇ × rsinθ ∂θ − rsinθ ∂φ 1 ∂A 1 ∂ r ( A) = (rA ) θ φ ∇ × rsinθ ∂φ − r ∂r 1 ∂ 1 ∂A r ( A) = (rA ) φ θ ∇ × r ∂r − r ∂θ Laplacian 1 ∂ ∂f 1 ∂ ∂f 1 ∂2f 2 2 f = r + sinθ + ∇ r2 ∂r ∂r r2 sinθ ∂θ ∂θ r2 sin2 θ ∂φ2 (cid:16) (cid:17) (cid:16) (cid:17) Laplacian of a vector 2A 2 ∂A 2cotθA 2 ∂A 2 2 r θ θ φ ( A) = A r r ∇ ∇ − r2 − r2 ∂θ − r2 − r2 sinθ ∂φ 2 ∂A A 2cosθ ∂A 2 2 r θ φ ( A) = A + θ θ ∇ ∇ r2 ∂θ − r2 sin2 θ − r2 sin2 θ ∂φ A 2 ∂A 2cosθ ∂A 2 2 φ r θ ( A) = A + + φ φ ∇ ∇ − r2 sin2 θ r2 sinθ ∂φ r2 sin2 θ ∂φ 8 Components of (A )B · ∇ ∂B A ∂B A ∂B A B + A B r θ r φ r θ θ φ φ (A B) = A + + r r · ∇ ∂r r ∂θ rsinθ ∂φ − r ∂B A ∂B A ∂B A B cotθA B θ θ θ φ θ θ r φ φ (A B) = A + + + θ r · ∇ ∂r r ∂θ rsinθ ∂φ r − r ∂B A ∂B A ∂B A B cotθA B φ θ φ φ φ φ r φ θ (A B) = A + + + + φ r · ∇ ∂r r ∂θ rsinθ ∂φ r r Divergence of a tensor 1 ∂ 1 ∂ T 2 ( ) = (r T ) + (sinθT ) r rr θr ∇ · r2 ∂r rsinθ ∂θ 1 ∂T T + T φr θθ φφ + rsinθ ∂φ − r 1 ∂ 1 ∂ T 2 ( ) = (r T ) + (sinθT ) θ rθ θθ ∇ · r2 ∂r rsinθ ∂θ 1 ∂T T cotθT φθ θr φφ + + rsinθ ∂φ r − r 1 ∂ 1 ∂ T 2 ( ) = (r T ) + (sinθT ) φ rφ θφ ∇ · r2 ∂r rsinθ ∂θ 1 ∂T T cotθT φφ φr φθ + + + rsinθ ∂φ r r 9 DIMENSIONS AND UNITS To get the value of a quantity in Gaussian units, multiply the value ex- pressed in SI units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light c = 2.9979 1010 cm/sec × 3 1010 cm/sec. ≈ × Dimensions Physical Sym- SI Conversion Gaussian Quantity bol SI Gaussian Units Factor Units t2q2 Capacitance C l farad 9 1011 cm ml2 × m1/2l3/2 Charge q q coulomb 3 109 statcoulomb t × q m1/2 Charge ρ coulomb 3 103 statcoulomb density l3 l3/2t /m3 × /cm3 tq2 l Conductance siemens 9 1011 cm/sec ml2 t × tq2 1 Conductivity σ siemens 9 109 sec 1 − ml3 t × /m q m1/2l3/2 Current I,i ampere 3 109 statampere t t2 × q m1/2 Current J,j ampere 3 105 statampere density l2t l1/2t2 /m2 × /cm2 m m Density ρ kg/m3 10 3 g/cm3 − l3 l3 q m1/2 Displacement D coulomb 12π 105 statcoulomb l2 l1/2t /m2 × /cm2 ml m1/2 1 4 Electric field E volt/m 10− statvolt/cm t2q l1/2t 3 × ml2 m1/2l1/2 1 2 Electro- , volt 10− statvolt E t2q t 3 × motance Emf ml2 ml2 Energy U,W joule 107 erg t2 t2 m m Energy w,ǫ joule/m3 10 erg/cm3 lt2 lt2 density 10

Description:
Maxwell's Equations . Electromagnetic Frequency/Wavelength Bands 21. ACCircuits . Afterword . statvolt motance. Emf. Energy. U, W ml2 t2 ml2 t2 joule. 10. 7 erg. Energy w, ǫ m lt2 m lt2.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.