2016 NRL PLASMA FORMULARY J.D. Huba Beam Physics Branch Plasma Physics Division Naval Research Laboratory Washington, DC 20375 Supported by The Office of Naval Research 1 CONTENTS Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . . 3 Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . 4 Differential Operators in Curvilinear Coordinates . . . . . . . . . . . 6 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 10 International System (SI) Nomenclature . . . . . . . . . . . . . . . 13 Metric Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . . 14 Physical Constants (cgs) . . . . . . . . . . . . . . . . . . . . . 16 Formula Conversion . . . . . . . . . . . . . . . . . . . . . . . 18 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 19 Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . 20 Electromagnetic Frequency/Wavelength Bands . . . . . . . . . . . . 21 AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . . 23 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fundamental Plasma Parameters . . . . . . . . . . . . . . . . . . 28 Plasma Dispersion Function . . . . . . . . . . . . . . . . . . . . 30 Collisions and Transport . . . . . . . . . . . . . . . . . . . . . 31 Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . . 40 Ionospheric Parameters . . . . . . . . . . . . . . . . . . . . . . 42 Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . . 43 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 44 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 46 Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 48 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . . 53 Atomic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 59 Complex (Dusty) Plasmas . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Afterword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2 NUMERICAL AND ALGEBRAIC Gain in decibels of P relative to P 2 1 G = 10log (P /P ). 10 2 1 To within two percent 1/2 2 3 10 3 (2π) 2.5; π 10; e 20; 2 10 . ≈ ≈ ≈ ≈ Euler-Mascheroni constant1 γ = 0.57722 Gamma Function Γ(x + 1) = xΓ(x): Γ(1/6) = 5.5663 Γ(3/5) = 1.4892 Γ(1/5) = 4.5908 Γ(2/3) = 1.3541 Γ(1/4) = 3.6256 Γ(3/4) = 1.2254 Γ(1/3) = 2.6789 Γ(4/5) = 1.1642 Γ(2/5) = 2.2182 Γ(5/6) = 1.1288 Γ(1/2) = 1.7725 = √π Γ(1) = 1.0 Binomial Theorem (good for x < 1 or α = positive integer): | | ∞ α α(α 1) α(α 1)(α 2) α k 2 3 (1 + x) = x 1 + αx + − x + − − x + .... k ≡ 2! 3! X(cid:0) (cid:1) k=0 Rothe-Hagen identity2 (good for all complex x, y, z except when singular): n x x + kz y y + (n k)z − x + kz k y + (n k)z n k X (cid:0) (cid:1) − (cid:0) − (cid:1) k=0 x + y x + y + nz = . x + y + nz n (cid:0) (cid:1) Newberger’s summation formula3 [good for µ nonintegral, Re(α + β) > 1]: − ∞ ( 1)nJ (z)J (z) π α γn β+γn − − = J (z)J (z). α+γµ β γµ n + µ sinµπ − X n= −∞ 3 VECTOR IDENTITIES4 T I Notation: f, g, are scalars; A, B, etc., are vectors; is a tensor; is the unit dyad. (1) A B C = A B C = B C A = B C A = C A B = C A B · × × · · × × · · × × · (2) A (B C) = (C B) A = (A C)B (A B)C × × × × · − · (3) A (B C) + B (C A) + C (A B) = 0 × × × × × × (4) (A B) (C D) = (A C)(B D) (A D)(B C) × · × · · − · · (5) (A B) (C D) = (A B D)C (A B C)D × × × × · − × · (6) (fg) = (gf) = f g + g f ∇ ∇ ∇ ∇ (7) (fA) = f A + A f ∇ · ∇ · · ∇ (8) (fA) = f A + f A ∇ × ∇ × ∇ × (9) (A B) = B A A B ∇ · × · ∇ × − · ∇ × (10) (A B) = A( B) B( A) + (B )A (A )B ∇ × × ∇ · − ∇ · · ∇ − · ∇ (11) A ( B) = ( B) A (A )B × ∇ × ∇ · − · ∇ (12) (A B) = A ( B) + B ( A) + (A )B + (B )A ∇ · × ∇ × × ∇ × · ∇ · ∇ (13) 2f = f ∇ ∇ · ∇ (14) 2A = ( A) A ∇ ∇ ∇ · − ∇ × ∇ × (15) f = 0 ∇ × ∇ (16) A = 0 ∇ · ∇ × T If e , e , e are orthonormal unit vectors, a second-order tensor can be 1 2 3 written in the dyadic form T (17) = T e e ij i j i,j P In cartesian coordinates the divergence of a tensor is a vector with components T (18) ( ) = (∂T /∂x ) i ji j ∇· j P [This definition is required for consistency with Eq. (29)]. In general (19) (AB) = ( A)B + (A )B ∇ · ∇ · · ∇ T T T (20) (f ) = f +f ∇ · ∇ · ∇· 4 Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to the point x,y,z. Then (21) r = 3 ∇ · (22) r = 0 ∇ × (23) r = r/r ∇ (24) (1/r) = r/r3 ∇ − (25) (r/r3) = 4πδ(r) ∇ · I (26) r = ∇ If V is a volume enclosed by a surface S and dS = ndS, where n is the unit normal outward from V, (27) dV f = dSf Z ∇ Z V S (28) dV A = dS A Z ∇ · Z · V S T T (29) dV = dS Z ∇· Z · V S (30) dV A = dS A Z ∇ × Z × V S 2 2 (31) dV(f g g f) = dS (f g g f) Z ∇ − ∇ Z · ∇ − ∇ V S (32) dV(A B B A) Z · ∇ × ∇ × − · ∇ × ∇ × V = dS (B A A B) Z · × ∇ × − × ∇ × S If S is an open surface bounded by the contour C, of which the line element is dl, (33) dS f = dlf Z × ∇ I S C 5 (34) dS A = dl A Z · ∇ × I · S C (35) (dS ) A = dl A Z × ∇ × I × S C (36) dS ( f g) = fdg = gdf Z · ∇ × ∇ I −I S C C DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES5 Cylindrical Coordinates Divergence 1 ∂ 1 ∂A ∂A φ z A = (rA ) + + r ∇ · r ∂r r ∂φ ∂z Gradient ∂f 1 ∂f ∂f ( f) = ; ( f) = ; ( f) = r φ z ∇ ∂r ∇ r ∂φ ∇ ∂z Curl 1 ∂A ∂A z φ ( A) = r ∇ × r ∂φ − ∂z ∂A ∂A r z ( A) = φ ∇ × ∂z − ∂r 1 ∂ 1 ∂A r ( A) = (rA ) z φ ∇ × r ∂r − r ∂φ Laplacian 1 ∂ ∂f 1 ∂2f ∂2f 2 f = r + + ∇ r ∂r ∂r r2 ∂φ2 ∂z2 (cid:16) (cid:17) 6 Laplacian of a vector 2 ∂A A 2 2 φ r ( A) = A r r ∇ ∇ − r2 ∂φ − r2 2 ∂A A 2 2 r φ ( A) = A + φ φ ∇ ∇ r2 ∂φ − r2 2 2 ( A) = A z z ∇ ∇ Components of (A )B · ∇ ∂B A ∂B ∂B A B r φ r r φ φ (A B) = A + + A r r z · ∇ ∂r r ∂φ ∂z − r ∂B A ∂B ∂B A B φ φ φ φ φ r (A B) = A + + A + φ r z · ∇ ∂r r ∂φ ∂z r ∂B A ∂B ∂B z φ z z (A B) = A + + A z r z · ∇ ∂r r ∂φ ∂z Divergence of a tensor 1 ∂ 1 ∂T ∂T T T φr zr φφ ( ) = (rT ) + + r rr ∇ · r ∂r r ∂φ ∂z − r 1 ∂ 1 ∂T ∂T T T φφ zφ φr ( ) = (rT ) + + + φ rφ ∇ · r ∂r r ∂φ ∂z r 1 ∂ 1 ∂T ∂T T φz zz ( ) = (rT ) + + z rz ∇ · r ∂r r ∂φ ∂z 7 Spherical Coordinates Divergence 1 ∂ 1 ∂ 1 ∂A 2 φ A = (r A ) + (sinθA ) + r θ ∇ · r2 ∂r rsinθ ∂θ rsinθ ∂φ Gradient ∂f 1 ∂f 1 ∂f ( f) = ; ( f) = ; ( f) = r θ φ ∇ ∂r ∇ r ∂θ ∇ rsinθ ∂φ Curl 1 ∂ 1 ∂A θ ( A) = (sinθA ) r φ ∇ × rsinθ ∂θ − rsinθ ∂φ 1 ∂A 1 ∂ r ( A) = (rA ) θ φ ∇ × rsinθ ∂φ − r ∂r 1 ∂ 1 ∂A r ( A) = (rA ) φ θ ∇ × r ∂r − r ∂θ Laplacian 1 ∂ ∂f 1 ∂ ∂f 1 ∂2f 2 2 f = r + sinθ + ∇ r2 ∂r ∂r r2 sinθ ∂θ ∂θ r2 sin2 θ ∂φ2 (cid:16) (cid:17) (cid:16) (cid:17) Laplacian of a vector 2A 2 ∂A 2cotθA 2 ∂A 2 2 r θ θ φ ( A) = A r r ∇ ∇ − r2 − r2 ∂θ − r2 − r2 sinθ ∂φ 2 ∂A A 2cosθ ∂A 2 2 r θ φ ( A) = A + θ θ ∇ ∇ r2 ∂θ − r2 sin2 θ − r2 sin2 θ ∂φ A 2 ∂A 2cosθ ∂A 2 2 φ r θ ( A) = A + + φ φ ∇ ∇ − r2 sin2 θ r2 sinθ ∂φ r2 sin2 θ ∂φ 8 Components of (A )B · ∇ ∂B A ∂B A ∂B A B + A B r θ r φ r θ θ φ φ (A B) = A + + r r · ∇ ∂r r ∂θ rsinθ ∂φ − r ∂B A ∂B A ∂B A B cotθA B θ θ θ φ θ θ r φ φ (A B) = A + + + θ r · ∇ ∂r r ∂θ rsinθ ∂φ r − r ∂B A ∂B A ∂B A B cotθA B φ θ φ φ φ φ r φ θ (A B) = A + + + + φ r · ∇ ∂r r ∂θ rsinθ ∂φ r r Divergence of a tensor 1 ∂ 1 ∂ T 2 ( ) = (r T ) + (sinθT ) r rr θr ∇ · r2 ∂r rsinθ ∂θ 1 ∂T T + T φr θθ φφ + rsinθ ∂φ − r 1 ∂ 1 ∂ T 2 ( ) = (r T ) + (sinθT ) θ rθ θθ ∇ · r2 ∂r rsinθ ∂θ 1 ∂T T cotθT φθ θr φφ + + rsinθ ∂φ r − r 1 ∂ 1 ∂ T 2 ( ) = (r T ) + (sinθT ) φ rφ θφ ∇ · r2 ∂r rsinθ ∂θ 1 ∂T T cotθT φφ φr φθ + + + rsinθ ∂φ r r 9 DIMENSIONS AND UNITS To get the value of a quantity in Gaussian units, multiply the value ex- pressed in SI units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light c = 2.9979 1010 cm/sec × 3 1010 cm/sec. ≈ × Dimensions Physical Sym- SI Conversion Gaussian Quantity bol SI Gaussian Units Factor Units t2q2 Capacitance C l farad 9 1011 cm ml2 × m1/2l3/2 Charge q q coulomb 3 109 statcoulomb t × q m1/2 Charge ρ coulomb 3 103 statcoulomb density l3 l3/2t /m3 × /cm3 tq2 l Conductance siemens 9 1011 cm/sec ml2 t × tq2 1 Conductivity σ siemens 9 109 sec 1 − ml3 t × /m q m1/2l3/2 Current I,i ampere 3 109 statampere t t2 × q m1/2 Current J,j ampere 3 105 statampere density l2t l1/2t2 /m2 × /cm2 m m Density ρ kg/m3 10 3 g/cm3 − l3 l3 q m1/2 Displacement D coulomb 12π 105 statcoulomb l2 l1/2t /m2 × /cm2 ml m1/2 1 4 Electric field E volt/m 10− statvolt/cm t2q l1/2t 3 × ml2 m1/2l1/2 1 2 Electro- , volt 10− statvolt E t2q t 3 × motance Emf ml2 ml2 Energy U,W joule 107 erg t2 t2 m m Energy w,ǫ joule/m3 10 erg/cm3 lt2 lt2 density 10
Description: