Ajit Varma Swati Tripathi Ram Prasad Editors Plant Microbiome Paradigm Plant Microbiome Paradigm (cid:129) (cid:129) Ajit Varma Swati Tripathi Ram Prasad Editors Plant Microbiome Paradigm Editors AjitVarma SwatiTripathi AmityInstituteofMicrobialTechnology AmityInstituteofMicrobialTechnology AmityUniversity AmityUniversity Noida,UttarPradesh,India Noida,UttarPradesh,India RamPrasad DepartmentofBotany MahatmaGandhiCentralUniversity Motihari,Bihar,India ISBN978-3-030-50394-9 ISBN978-3-030-50395-6 (eBook) https://doi.org/10.1007/978-3-030-50395-6 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 InteractionofEpiphyllicBacteriawithPlantCuticles. . . . . . . . . . . 1 FilipFuchs,CharlottePetruschke,andLukasSchreiber 2 PlantMicrobiomeandItsImportantinStressfulAgriculture. . . . . 13 BahmanKhoshru,SajjadMoharramnejad, NahidHosseinzadehGharajeh,BehnamAsgariLajayer, andMansourGhorbanpour 3 Plant-MicrobeInteractions:ApplicationsforPlant-Growth PromotionandInSituAgri-wasteManagement. . . . . . . . . . . . . . . 49 AnuKaliaandJayeshSingh 4 Plant-Microbe-MetalInteractions:ABiochemicalandMolecular AnalysisforPhytoremediation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 NamrataBudhiraja,PriyanshiSrivastava,SakshiAgrahari, DivyanshuShukla,BhawnaMudgil,ShikhaSaxena,RajeshDahiya, andSiddharthVats 5 EcosystemDiversityasaFunctionofPlantandSoil-Microbe Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SanjuktaDey,SoumaryyaBhattacharyya, andRabindranathBhattacharyya 6 PlantGrowth-PromotingPotentialsofEndophyticFungi fortheManagementofAgriculturalCropsandGrasses. . . . . . . . . 105 SivaSundaraKumarDurairajan,SuchitraRakesh, BarkaviDurairajan,KaushikRajaram,NagarathinamArunkumar, andRajeshJeewon 7 BiologicalControlofPlantDiseases:Opportunities andLimitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 AkankshaSingh,VipinKumarSingh,AbhishekKumarDwivedy, Deepika,ShikhaTiwari,AwanindraDwivedi, andNawalKishoreDubey v vi Contents 8 CircadianRedoxRhythmsPlayanImportantRole inPlant-PathogenInteraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SnigdhaTiwari,SiddarthN.Rahul,AlkaSehrawat,andBeenaRawat 9 RhizosphericMicroorganismsfortheRemediation ofContaminantsforEcologicalRestoration. . . . . . . . . . . . . . . . . . 163 AshitaRai,JyotiFulekar,andM.H.Fulekar 10 TheRhizosphereMicrobiome:MicrobialCommunitiesandPlant Health. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SandeepJain,JyotiJain,andJayeshSingh 11 OnthePossibilityofAcceleratingSuccessionbyManipulating SoilMicroorganisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 VirgilIordache 12 CompositionandDynamicsofMicrobialCommunitiesinFly Ash-AmendedSoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 AyushiVarshney,SumedhaMohan,andPraveenDahiya 13 MolecularInsightintoPlant-FungalPathogenInteraction: EmergingTrendsandImplicationinDesigningClimate-Smart FieldCrops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 RichaKamboj,ManojNath,BhavnaThakur,TapanKumarMondal, DeepeshBhatt,andDeepakSinghBisht 14 BiochemicalDynamicsofPlant-MicrobeInteractions. . . . . . . . . . . 267 PriyankaLonakadi,RenittaJobby,NitinDesai,andPamelaJha 15 EndophyticSecondaryMetabolitesforBiologicalControl: ALatestPerspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 G.V.S.BhanuPrakashandT.Srinivasan Chapter 1 Interaction of Epiphyllic Bacteria with Plant Cuticles FilipFuchs,CharlottePetruschke,andLukasSchreiber Abstract Thephyllosphereisoneofthelargestecologicalnichesonourplanet.Itis formedbytheplantcuticle,whichisahighlyimpermeable,hydrophobicbiopolymer coveringallprimaryabovegroundplantorgansprotectingthemagainstdesiccation. Althoughlivingconditionsinthephyllosphereareconsideredharsh,agreatvariety of microorganisms can live within this habitat. Commensals as well as pathogenic canbefoundontheplantsurfacecompetingfornichesandrarenutrientsources.It wasfoundthatthephysicochemicalpropertiesofthecuticlearemodifiedactivelyby epiphyllic microorganisms. This modification by microorganisms can lead to enhanced wetting of the leaf surface. This is promoted by the secretion of biosurfactants by epiphyllic bacteria promoting and as a consequence leaching of solutesfromtheapoplasttotheplantsurfacecanbeenhanced. 1.1 Introduction Withtheriseofthelandplantsapproximately500millionyearsago,anewcomplex and versatile ecological niche appeared, the phyllosphere, consisting of all green abovegroundpartsofplants.Itisestimatedthatthephyllosphereisapproximatelyas big as the surface of the whole planet which displays it as the greatest biological surfaceonearth(KenrickandCrane1997;LindowandBrandl2003).Mostofthis areaiscolonizedbyadifferentmixtureofmicrobialspecies,predominantlybacteria, yeast,andfilamentousfungiandtosomeextendprotozoaandevenalgaeandmosses (Morrisetal.2002;Singhetal.2019).Thedegreeofcolonizationstronglydepends onvariousfactorsstartingwiththeplantspecies,thehabitatofthehostplant(e.g., tropical rain forest, coniferous woodland, or grassland), and the age of the leaf (Kinkel 1997). Additionally to these rather constant factors, the phyllosphere and itsinhabitantsareaffectedbyrapidlychangingclimaticconditionssuchastemper- ature, humidity, and irradiation. Over the course of a day or with fast changes of F.Fuchs·C.Petruschke·L.Schreiber(*) InstituteofCellularandMolecularBotany(IZMB),UniversityofBonn,Bonn,Germany e-mail:s6fi[email protected];[email protected];[email protected] ©SpringerNatureSwitzerlandAG2020 1 A.Varmaetal.(eds.),PlantMicrobiomeParadigm, https://doi.org/10.1007/978-3-030-50395-6_1 2 F.Fuchsetal. Fig.1.1 Schematicviewonleafcrosssectionandsurface:bacterialconglomeratespreferentially settling above cell-cell junctions and at the base of trichomes. Stomata may serve as possible infiltration sites for pathogenic microorganisms. Arrows (blue and red) indicate the potential exchangeofmolecules(water,irons,sugars,hormones)betweenbacteriaandleavestakingplace acrosstheplantcuticle.Intheupperrightpartofthescheme,amagnifiedbacterialcellproduces extrapolymericsubstanceswhichtogetherwithmotilityarecrucialforsurvivalinthephyllosphere weatherconditions,thosefluctuationsarerapidlyfollowedbychangesinthedensity and number of microorganisms colonizing the leaf surface (Leben 1965). Bacteria aredominatingthephyllospherebyfarinbothnumberanddiversitywithupto106– 107 bacteria per cm2. It is assumed that 96% of those bacteria live as commensals withnoeffectontheirhostplants’healthorfitness,whereas2%arebelievedtobe pathogens, and another 2% can be referred to as plant growth-promoting bacteria (PGPB) (Lindow and Leveau 2002). These PGPBs could contribute to the overall fitnessoftheirhostplantsbyinducingsystemicresistance,activelyproducingplant growthhormonessuchasauxin,orsuppressingpathogensbyproducingantimicro- bial compounds (Brandl et al. 1996; Vorholt 2012; Prasad et al. 2015). The most abundant forms of colonization in the phyllosphere are biofilms or aggregates on hydrophobicleafsurfaces(LindowandLeveau2002).Thevastmajorityofbacterial cells on leaves are clustered and embedded in extra polymeric substances (EPS), covering as a thin layer the outer surface of the plant cuticle, preferentially above cell-celljunctionsoratthebaseoftrichomes(Fig.1.1)(MonierandLindow2004). The cuticular membrane (CM) is a lipophilic, extracellular biopolymer covering outerepidermalcellwallsofleavesandfruitswhichareexposedtotheatmosphere (Schönherr 1982). The cuticle was the evolutionary answer to the biggest problem plants hadtofacewhen theyconqueredlandhabitats:desiccation.Ononesidethe greatly enlarged surface area of plants results in a more efficient absorption of photosyntheticactiveradiation(PAR)andpromotesarapidgasexchangeofcarbon dioxide and oxygen; on the other side, due to an ubiquitous gradient in water potential between atmosphere (low) and leaf (high), a bigger surface is coercively connectedwith anincreaseinwaterloss(SchreiberandSchönherr2009).TheCM 1 InteractionofEpiphyllicBacteriawithPlantCuticles 3 serves as an efficient transport barrier for the passive diffusion of water and ulti- matelyprotectstheplantfromrapiddesiccation(Schönherr1982). In the past the main focus of research in plant microbe interaction was dealing withthehiddenhalfofplants,theso-calledrhizospherewhereuptakeandallocation ofwateraswellasmineralsbytheplantrootsystemtakeplace(Varmaetal.2019, 2020). A tremendous amount of plant/microbe interactions is taking place in the rhizosphere (Hiltner 1904; Whipps 2001; Prasad et al. 2020). In recent years microbiologyofthephyllospheregainedincreasingsignificance,anditisnolonger neglected. To describe and understand the underlying mechanisms in water and solutetransportwithinthephyllosphereandtheentanglementofplantandmicrobe physiology, combining classical plant ecophysiology with microbiological approachesrepresentthemainresearchquestionsinthisfield. 1.2 The Hydrophobic Plant Cuticle as Interface Between Epiphyllic Bacteria and Plants The bulk of terrestrial biomass is produced by plants via photosynthesis (GroombridgeandJenkins2002).Toimproveefficiencyacommontrendinevolu- tionistheenlargementofsurface area, whichultimately leadstotheriseofspatial twodimensionalleafsstructuresasweknowthemtoday.Thesuccessoflandplants goesalongwiththeirabilitytoprotectthemselvesfromdesiccation.Thisisensured bytheplantcuticlewhichcoversallprimaryabovegroundplantorgans(Schönherr 1982).Thecuticleisanextracellularlipidpolymerofhydroxyfattyacids,whichare esterified and in addition often linked by ether bonds and direct carbon–carbon bondsbetweenthemonomers(Pollardetal.2008;Villenaetal.1999).Additionally polysaccharideslikecelluloseandpectinscouldbedetectedwithintheCM,mainly at the inner side of the CM facing the primary epidermal cell wall. There they are emanatingfromtheepidermalcellwallintothecutinpolymerandthuscontributeto thestructureoftheCMoritsattachmenttothecellwall(Guzmanetal.2014;Segado etal.2016).Ithasbeensuggestedthatthesepolarpolymersformaqueouspathsof transport within the lipophilic cutin polymer thus promoting the diffusion of polar and charged solutes and ions across the CM (Schreiber and Schönherr 2009). Togetherwithintracuticularandepicuticularwax,thecutinpolymerformsahydro- phobichighlyimpermeablebarrier(Tukey1970;Schönherr1982).Cuticularwaxes are diverse in their chemical composition (Buschhaus and Jetter 2011) consisting mainly of two fractions namely monomeric linear long-chain aliphatic compounds andpentacyclictriterpenoids.Thosewaxesaresolidandpartiallycrystallineatroom temperature(ReynhardtandRiederer1994).Duetothishighlyorderedstructureof cuticular waxes on the molecular level, they seal the plant cuticle and make it not only the main barrier for passive diffusion of water into the atmosphere but also hinder dissolved organic and inorganic solutes to pass (Schreiber and Schönherr 2009).Whereaswaxesareresponsibleforestablishingthediffusionbarrier,thecutin polymer serves as a stable matrix for wax deposition (Kolattukudy 1984; Nawrath 4 F.Fuchsetal. 2006). Epicuticular waxes on the surface can form different kinds of three- dimensional structures such as scales, platelets, and spikes depending on their diversechemicalcompositions(Barthlottetal.1998).Thesemicroscopicstructures inthenanometerrangesignificantlyincreasetheleafsurfaceroughnessandconse- quently impede the attachment of bacteria, fungal spores, and other microscopic invaders. The increased roughness also promotes the self-cleaning “lotus effect,” whenwaterdropletscannotattachtoaleafsurfaceandrollofftheleaftakingdust particles with them (Barthlott and Neinhuis 1997). However, with increasing leaf age,thesurfaceroughnessdecreasesduetoerosionoftheepicuticularwaxcrystals, and roughness becomes less decisive for the attachment of epiphyllic microorgan- isms(NeinhuisandBarthlot1998).Theprevalentconditionsontheleafsurfaceare aridity, lack of nutrients, and rapidly changing temperatures. Due to these circum- stances,thephyllosphereisconsideredanuninvitingandharshhabitatformicroor- ganisms. To cope with these various stresses, bacteria evolved different strategies suchasgrowingasabiofilmorproducingbiosurfactants.Biofilmsarethepredom- inant form of bacterial living on the planet (Flemming and Wingender 2010). A biofilmisaconglomerateofbacterialcellssurroundedbyEPSwhichisattachedto anyinertorlivingsurface.Therearebiofilmsattheinterfaceofasolidphaseandthe atmosphere or at the interface of a solid and a liquid phase or even between two liquid phases (Jenkinson and Lappin-Scott 2001). In most cases biofilms harbor multiple species, in different niches within the biofilm (Xavier and Foster 2007). There are physiological dependencies between different bacteria but also competi- tionamongthemmakingabiofilmaverycomplexanddiversehabitatformicroor- ganisms.Thebulkmassofabiofilmconsistsofextracellularmatrix(ECM),actively segregated by their inhabitants. The majority of the ECM consists of EPS. Poly- saccharides as well as extracellular DNA (eDNA) form the largest proportion of EPS, followed by proteins and various lipid compounds, mostly phospholipids or lipopolysaccharides (Branda et al. 2005). This highly hydrated periphery forms a slimymatrixinwhichthebacterialcellsareembedded.Thebiofilmlifestyleonaleaf surfacehasmanyadvantagesfortheirinhabitants.ThehydratedECMpreventsthe bacteria from desiccation and can serve as a sink for toxic metabolites. In case of starvation, some components can be used as carbon or energy source (Sutherland 2001). Pigments can accumulate in the ECM protecting the bacteria from strong irradiation,andadditionallythebiofilmdisplaysacertainprotectionagainstgrazing protozoa (Flemming and Wingender 2010). Biofilm formation often starts with singlemotilebacteriapropagatedbywindandrainsplash(Lindow1996).Theinitial interaction between a bacterial cell and a surface is defined by the cell surface hydrophobicity, nonspecific van der Waals, and electrostatic forces. This loose contact is reinforced by surface/host-specific adhesins, located on the cell surface or on bacterial appendages such as pili and fimbriae (Romantschuk 1992; Vorholt 2012).Thisresultsintheirreversibleattachmentofthebacterialcelltothesurface. Onceabacterialcellhassuccessfullyattachedtotheleafsurface,itstartsmultiplying and forms small aggregates or microcolonies embedded in EPS. Those aggregates growandeventuallyfusewithothercellaggregatestoformamaturebiofilm(Ramey etal.2004).Thefinal,yetimportantstageofbiofilmdevelopmentisthedispersalof pioneercells.Single“swarming”cellsdetachfromthebiofilmandactivelymoveto