ebook img

Plant intelligence based metaheuristic optimization algorithms PDF

46 Pages·2016·2.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plant intelligence based metaheuristic optimization algorithms

ArtifIntellRev(2017)47:417–462 DOI10.1007/s10462-016-9486-6 Plant intelligence based metaheuristic optimization algorithms SinemAkyol1 · BilalAlatas2 Publishedonline:30May2016 ©SpringerScience+BusinessMediaDordrecht2016 Abstract Classical optimization algorithms are insufficient in large scale combinatorial problems and in nonlinear problems. Hence, metaheuristic optimization algorithms have been proposed. General purpose metaheuristic methods are evaluated in nine different groups: biology-based, physics-based, social-based, music-based, chemical-based, sport- based, mathematics-based, swarm-based, and hybrid methods which are combinations of these.Studiesonplantsinrecentyearshaveshowedthatplantsexhibitintelligentbehaviors. Accordingly,itisthoughtthatplantshavenervoussystem.Inthiswork,allofthealgorithms andapplicationsaboutplantintelligencehavebeenfirstlycollectedandsearched.Information isgivenaboutplantintelligencealgorithmssuchasFlowerPollinationAlgorithm,Invasive WeedOptimization,PaddyFieldAlgorithm,RootMassOptimizationAlgorithm,Artificial PlantOptimizationAlgorithm,SaplingGrowingupAlgorithm,PhotosyntheticAlgorithm, PlantGrowthOptimization,RootGrowthAlgorithm,StrawberryAlgorithmasPlantProp- agation Algorithm, Runner Root Algorithm, Path Planning Algorithm, and Rooted Tree Optimization. Keywords Plantintelligence·Globaloptimization·Metaheuristicmethods 1 Introduction Mostof theoptimization algorithms needmathematical modelsfor systemmodelling and objectivefunction.Establishmentofamathematicalmodelismostlyhardforcomplexsys- tems.Eventhoughthemodelisestablished,itcannotbeusedduetohighcostofsolution B SinemAkyol [email protected] BilalAlatas balatas@firat.edu.tr 1 DepartmentofComputerEngineering,TunceliUniversity,Tunceli,Turkey 2 DepartmentofSoftwareEngineering,FiratUniversity,Elazig,Turkey 123 418 S.Akyol,B.Alatas time.Classicaloptimizationalgorithmsareinsufficientinlarge-scalecombinationalandnon- linearproblems.Suchalgorithmsarenoteffectiveinadaptationasolutionalgorithmfora given problem. In most cases, this requires some assumptions whose approval of validity canbedifficult.Generally,becauseofnaturalsolutionmechanismofclassicalalgorithms, significantproblemismodeledthewaythatalgorithmcanhandleit.Solutionstrategyofclas- sicaloptimizationalgorithmsgenerallydependsontypeofobjectiveandconstraints(linear, non-linearetc.)anddependsontypeofvariables(integer,real)usedinmodellingofprob- lem.Furthermore,effectivenessoftheclassicalalgorithmshighlydependsonsolutionspace (convex,non-convexetc.),thenumberofdecisionvariable,andthenumberofconstraintsin problemmodelling. Another important deficiency is that; if there are different types of decision variables, objectives,andconstraints,generalsolutionstrategyisnotpresentedforimplementedprob- lemformulation.Inotherwords,mostofalgorithmssolvemodelswhichhavecertaintypeof objectfunctionorconstraints.However,optimizationproblemsinmanydifferentareassuch asmanagementscience,computer,andengineeringrequireconcurrentlydifferenttypesof decision variables, object function, and constraints in their formulation. Therefore, meta- heuristic optimization algorithms are proposed. These algorithms become quite popular methods in recent years, due to their good computation power and easy conversion. In other words, a metaheuristic program, written for a specific problem with a single objec- tivefunction,canbeadaptedeasilytoamultiobjectiveversionofthisproblemoradifferent problem. Studiesinrecentyearsindicatethatplantsalsoexhibitintelligentbehaviors.According tothis,itisthoughtthatplantshavenervoussystem.Forexample,inroots,importedlight andpoisoninformationaretransmittedtogrowthcenterinroottipsandtherootsperform orientationaccordingtothat.Additionally,itisthoughtthatplantsmakecontactwithexternal worldusingelectriccurrent.Anexampleforthisisdefensemechanismwhichisshownagainst toaphidorcaterpillarbyplants.Afterthefirstdevelopedattack,plantsproducesecretions whichcanmakeworsetasteorwhichcanpoisontheirenemy. Inspiringbytheflowpollinationprocessoffloweryplants,FlowerPollinationAlgorithm (FPA), has been developed in 2012 by Yang (2012). Invasive Weed Optimization (IWO), inspiredfromthephenomenonofcolonizationofinvasiveweedsinnature,hasbeenproposed by Mehrabian and Lucas (2006). It is based on ecology and weed biology. Paddy Field Algorithm (PFA), which simulates growth process of paddy fields, is another plant based metaheuristic algorithm and has been proposed by Premaratne et al. (2009). Root Mass Optimization (RMO) is based on the process of root growth and has been proposed by Qi et al. 2013. Artificial Plant Optimization Algorithm (APOA) simulates growth model of plants which includes photosynthesis and phototropism mechanism (Zhao et al. 2011). Sapling Growing up Algorithm (SGuA) is a computational method based on cultivating, growingup,andmatingofsaplingsanditisdevelopedforefficientsolutionstosearchand optimizationproblems(Karci2007a). Photosynthetic Algorithm (PA) is based on the processes of Calvin–Benson cycle and photorespiration cycle for the plants (Murase 2000). Plant Growth Optimization (PGO) is proposed to simulate plant growth with a realistic way considering the spatial occupancy, accountbranching,phototropism,andleafgrowth.Themainpurposeofthemodelistoselect activepointbycomparingthemorphogenconcentrationforincreasingtheL-system(Caietal. 2008).RootGrowthAlgorithm(RGA)isanotherplantbasedmetaheuristicalgorithmand simulatesrootgrowthofplantsbasedonL-system(Zhangetal.2014). StrawberryalgorithmhasbeenproposedasanexemplarofPlantPropagationAlgorithm (PPA).Itmapsanoptimizationproblemontosurvivaloptimizationproblemofstrawberry 123 Plantintelligencebasedmetaheuristicoptimizationalgorithms 419 plantandadoptsstrategyofsurvivalintheenvironmentforsearchingpointsinthesearch spacewhichgivethebestvaluesandultimatelythebestvalue(SalhiandFraga2011).Runner RootAlgorithm(RRA)isinspiredbyplantssuchasstrawberryandspiderplantswhichare spread through their runners and also which develop roots and root hairs for local search formineralsandwaterresources(Merrikh-Bayat2015).PathPlanningAlgorithmisbased onplantgrowthmechanism(PGPP)whichusesphototropism,negativegeotropism,apical dominance,andbranchingasbasicrules(Zhouetal.2016).Oneofthemostrecentplantbased algorithmisRootedTreeOptimization(RTO)anditisbasedontheintelligentbehaviorsof rootswhichselecttheirorientationaccordingtothewetness(Labbietal.2016).Researches aboutnewversionsandapplicationsofthesealgorithmsincrementallycontinue. Inthiswork,inthesecondpart,theinformationisgivenaboutmetaheuristicoptimization and it is mentioned that why metaheuristic algorithms are needed. In the third part, plant intelligenceismentioned;optimizationalgorithmsdevelopedinspiredbyplantintelligence areexaminedandrelatedworkswiththesealgorithmsaredescribed.FPA,IWO,PFA,RMO Algorithm, APOA, SGuA, PA, PGO, RGA, Strawberry Algorithm as PPA, RRA, PGPP, and RTO are explained. In the fourth part, discussions about general evaluations of these algorithmsarepresentedandinthefifthpart,theworkisconcludedalongwithfutureworks. 2 Metaheuristicoptimization Inmostofthereallifeproblems,solutionspaceoftheproblemisinfiniteoritistoolarge forassessmentofallthesolutions.Therefore,withevaluatingsolutions,agoodsolutionis neededtobefoundinacceptabletime.Actually,forsuchproblems,evaluatingsolutionsin acceptabletimehasthesamemeaningwithevaluating“somesolutions”inthewholesolution space. Selection of some solutions depending on what and how they are selected changes accordingtometaheuristicmethod.Itcannotbeguaranteedthatoptimalsolutionisincluded inthesolutionswhichgetinvolvedintheevaluation.Therefore,thesolution,proposedby metaheuristicmethodsforanoptimizationproblem,mustbeperceivedasagoodsolution, notasanoptimalsolution(Cura2008). They are criteria or computer methods identified in order to decide effective ones of variousalternativemovementsforachievinganypurposeorthegoal.Suchalgorithmshave convergenceproperty,buttheycannotguaranteeexactsolution,theycanonlyguaranteea solutionwhichclosestoexactsolution. Thereasonsofwhymetaheuristicalgorithmsareneededareasfollows: (a) Optimizationproblemcanhaveastructurethattheprocessoffindingtheexactsolution cannotbedefined (b) Metaheuristicalgorithmscanbemuchsimplerfromthepointofdecisionmaker,interms ofcomprehensibility. (c) Metaheuristicalgorithmscanbeusedasapartofprocessoffindingtheexactsolution, andlearningpurpose. (d) Generally,themostdifficultpartsofrealworldproblems(whichpurposesandwhich restrictionsmustbeused,whichalternativesmustbetested,howproblemsdatamustbe collected)areneglectedinthedefinitionsmadewithmathematicalformulas.Faultiness of the data used in process of determining model parameters can cause much larger errorsthansub-optimalsolutionproducedbymetaheuristicapproach(Karabog˘a2011). General purposed metaheuristic methods are evaluated in eight different groups which arebiologybased,physicbased,swarmbased,socialbased,musicbased,chemistrybased, 123 420 S.Akyol,B.Alatas sport based, and math based. Furthermore, there are hybrid methods which are combina- tion of these. These mentioned methods are presented in Fig. 1. Genetic Algorithm (GA) (Holland1975),differentialevolutionalgorithm(StornandPrice1995),andbiogeography- basedoptimization(Simon2008)arebiologybased;parliamentaryoptimizationalgorithm (Borji2007),teaching-learning-basedoptimization(Ghasemietal.2015;Raoetal.2011), andimperialistcompetitivealgorithm(Atashpaz-GargariandLucas2007a,b;Ghasemietal. 2014) are social based; artificial chemical reaction optimization algorithm (Alatas 2011a) andchemicalreactionoptimization(LamandLi2010)arechemistrybased;harmonysearch algorithm(Geemetal.2001)ismusicbased;gravitationalsearchalgorithm(Rashedietal. 2009),intelligentwaterdropsalgorithm(Shah-Hosseini2009),andchargedsystemsearch (KavehandTalatahari2010)arephysicsbased;ParticleSwarmOptimization(PSO)algo- rithm(KennedyandEberhart1995),catswarmoptimization(Chuetal.2006),antcolony algorithm (Dorigo et al. 1991), monarch butterfly optimization (Wang et al. 2015), group searchoptimizer(Heetal.2006, 2009),andcuckoosearchviaLevyflights(YangandSuash 2009)areswarmbased;leaguechampionshipalgorithm(Kashan2009)issportbased;and base optimization algorithm (Salem 2012), and Matheuristics (Maniezzo et al. 2009) are mathbasedalgorithmsandmethods.Culturalalgorithm(JinandReynolds1999)andcolo- nialcompetitivedifferentialevolution(Ghasemietal.2016)canbeclassifiedasbothbiology basedandsocialbasedalgorithm. Althoughtherearemanysuccessfulsearchandoptimizationalgorithmsandtechniques intheliterature;design,development,andimplementationofnewtechniquesisanimportant task under the philosophy of improvement in the scientific field and always searching to designbetter.Thebestalgorithmthatgivesthebestresultsforalltheproblemshasnotyet beendesigned,thatiswhyconstantlynewartificialintelligenceoptimizationalgorithmsare proposedorsomeefficientadditionsormodificationshavebeenperformedtotheexisting algorithms. 3 Plantintelligenceoptimizationalgorithms Asaresultofpreviousstudies,itisobservedthatplantshavegenderidentityandimmune system.Furthermore,recentstudiesshowthatplantsexhibitintelligentbehavior.According tothis,itisthoughtthatplantshavenervoussystem.Forexample,inroots,importedlight andpoisondataaretransmittedtogrowthcentersinroottips,androotsperformorientation accordingtothis.Asanotherconsideration,plantsareconsideredtobecontactingwiththe externalworldbyelectriccurrents.Defensemechanism,whichisshownagainsttoaphidor caterpillarbyplants,canbeshownasanexampleforthis.Afterthefirstattacktakesplace, plantswillworsentheirtasteorproducesecretionswhichcanpoisontheirenemy. Themetaheuristicoptimizationalgorithmswhicharedevelopedbyinspirationfromplant intelligencehavebeenshowninFig.2andexplainedinsubsections. 3.1 FlowerPollinationAlgorithm(FPA) 3.1.1 Characteristicofflowerpollination Itisestimatedthat,innature,thereareoveraquarterofamilliontypesoffloweryplants. Approximately80%ofallplantspeciesarefloweryplant.Floweryplantshavebeenevolv- ingformorethan125millionyears.Themainobjectiveofaplantisreproducingthrough pollination.About90%ofpollensaretransferredbybioticpollinatorssuchasanimalsand 123 Plantintelligencebasedmetaheuristicoptimizationalgorithms 421 Metaheuristic Methods Physics Social Music Swarm Chemistry Biology Sports Math Hybrid Based Based Based Based Based Based Based Based Single-Point Multi-Point Fixed Variable Objective Objective Function Function Single Variable Neighborhood Neighborhood Structured Structured Memory Memoryless Fig.1 Metaheuristicmethods Plant Intelligence Optimization Algorithms InOvpatsimiveiz aWtieoend PAaldgdoyr itFhimeld ORApotlgiomot irMzitahatmsiosn AOrAtpifltigicmoiarizilt ahPtmliaonnt GArSolgawopirnliitnghg mu p PhAotlgoosyrinththmetic POlapntimt Gizraotwiotnh RAoolgt oGrirtohwmth PArolgPpoalargintahtt mion RAunlgnoerrit hRmoot PAoFlglllooinwraitethirom n ROopotitmeidz aTtrioene PaAthlg Porlaitnhnming Fig.2 Plantintelligencemetaheuristicoptimizationalgorithms insectsandabout10%ofpollensaretransferredbyabioticpollinatorssuchaswind.Biotic pollinatorsvisitonlysometypesofflowers.Therefore,pollentransferofsametypesofflow- erswillbemaximum.Thisprovidesadvantagesforpollinatorsintermsofresearchcostand limitedmemory.Focusingonsomeunpredictablebutpotentiallymorerewardingnewflower speciescangivebetterresults(Yangetal.2013). Pollinationcanbeachievedbycross-pollinationorself-pollination.Cross-pollination,or hybridizationcanoccurfromaflowersplantofadifferentplant.Self-pollinationoccursfrom thesameflowerspollenordifferentflowersofthesameplant.Bioticcross-pollinationcan occurinlong-distance,becauseoflongdistanceflightofbirds,bats,bees,etc.Thus,thisis 123 422 S.Akyol,B.Alatas consideredasglobalpollination.Inadditiontothis,beesandbirdsareabletomovewiththe Levyflightbehavior(Yangetal.2013). 3.1.2 FPA FPA,inspiredbytheflowpollinationprocessoffloweryplants,wasdevelopedin2012by Yang(2012).Thefollowing4rulesareusedasamatterofconvenience. (1) Biotic cross-pollination can be thought as global pollination process. Pollen-carrying pollinatorsmoveaccordingtoaLevyflightprocess(Rule1). (2) Self-pollinationandlocalpollinationareusedforlocalpollination(Rule2). (3) Pollinatorssuchasbirdsandbeescandevelopflowerpersistence(Rule3). (4) Aswitchprobability p ∈[0,1],whichisslightlybiasedtowardslocalpollination,can controltheswitchingorinteractionofglobalandlocalpollination(Rule4). Theaboverulesmustbeconvertedtoappropriateupdatingequationsforformulationof updatingformulas.Forexample,flowerpollengametesaremovedbypollinatorssuchasbirds and bees in the global pollination process. Pollen can be transferred over a long distance, becausepollinatorscanoftenflyandmoveoveramuchlongerrange.Therefore,Rule1and Rule3(flowerpersistence)canberepresentedmathematicallyas(1). (cid:2) (cid:3) xit+1 =xit +γL(λ) g∗−xit (1) xt,isthepolleni,orx solutionvectoriniterationt,γ isascalefactortocontrolthestep i i size. L(λ)istheparametercorrespondingtothepollinationpower,morespeciallyitisthe Levy-flights based step size, g∗ is the current best solution found among all solutions at thecurrentiteration/generation.Levyflightcanbeusedeffectivelytosimulatepollinators’ movements(Yangetal.2013). λ(cid:4)(λ)sin(πλ/2) 1 L ∼ ,(s (cid:5)s >0) (2) π s1+λ 0 Here(cid:4)(λ)isthestandardgammafunctionandthisdistributionisvalidforlargestepss >0. Itmustbe|s (cid:5)0|intheory,butinpractice,s canbeassmallas0.1.However,itisnottrivial 0 0 togeneratepseudo-randomstepsizeswhichconformtotheLevydistribution.Thereareafew methodsfordrawingthesetypepseudo-randomnumbers.Oneofthemostefficientmethods isusingtwoGaussiandistributionsU andV,whichistheso-calledMantegnaalgorithmfor drawingstepsizes. U (cid:2) (cid:3) s = ,U ∼ N 0,σ2 , V ∼ N(0,1) (3) |V|1/λ (cid:2) (cid:3) In(3),U ∼ 0,σ2 meansthatthesamplesaredrawnfromaGaussiannormaldistribution withavarianceofσ2 andazeromean.Thevariancecanbecalculatedas(4)(Yangetal. 2013). (cid:4) (cid:5) (cid:4)(1+λ) sin(πλ/2) 1/λ σ2 = . (4) λ(cid:4)[(1+λ)/2] 2(λ−1)/2 Thisformulaseemscomplicated,butforagivenλvalueitisonlyaconstant.Forexample, ifλ=1,thanthegammafunctionsbecome(cid:4)(1+λ)=1,(cid:4)([1+λ/2])=1. (cid:4) (cid:5) 1 sin(πx1/2) 1/1 σ2 = . =1 (5) 1x1 20 123 Plantintelligencebasedmetaheuristicoptimizationalgorithms 423 Flower Pollination Algorithm Objective function min or max f(x), x=(x, x, ..., x ) 1 2 d Initialize a population of n flower/pollen gametes with random solutions. Find the best solution in the population Define a switch probability Define a stopping criterion While () For i=1 : n (all n flowers in the population) If rand<p, Draw a (d-dimensional) step vector L which obeys Levy distribution Do global pollination via Eq. (1) Else Draw from a uniform distribution in [0,1] Do local pollination via Eq. (6) End If Evaluate new solutions If new solutions are better, than update them in the population Find current best solution End While Output is the best solution found Fig.3 PseudocodeofFPA It is proved mathematically that Mantegna algorithm can produce random samples which obeytherequireddistribution(2)correctly(Yangetal.2013). Bothofrules(2)and(3)canberepresentedas(6)forlocalpollination. (cid:6) (cid:7) xt+1 =xt+∈ xt −xt (6) i i j k Here xt and xt are pollens in different flowers of the same plant species. This essentially j k mimicsflowerconstancyinalimitedneighborhood.Mathematically,ifxt andxt areselected j k fromthesamepopulationorcomefromthesamespecies;thisequivalentlybecomesalocal randomwalkif∈isdrawnfromauniformdistributionin[0,1]. Inprinciple,flowerpollinationactivitiescanoccurbothatlocalandgloballevels,atall scales.However,substantially,theflowersinthenot-far-awayoradjacentflowerpatchesare morelikelytobepollinatedbylocalflowerpollenthanthosefaraway.Therefore,valueof theswitchprobabilitycanbetakenas p=0.8.ThepseudocodeofFPAisshowninFig.3. 3.1.3 StudieswithFPA Yangetal.(2013, 2014)usedFPAforsolvingmulti-objectiveoptimizationproblems.Pro- posed algorithm was tested in multi-objective test functions and it has been seemed that this algorithm has a better convergence speed compared to other algorithms Lenin (2014) proposedahybridalgorithm,whichisacombinationofchaoticharmonysearchalgorithm andFPA,forsolvingreactivepowerdispatchproblem.StandardFPAwasintegratedwiththe harmonysearchalgorithmtoimprovethesearchaccuracy. WangandZhou(2014)proposeddimensionbydimensionimprovementbasedFPA,for multi-objective optimization problem. They also applied local neighborhood search strat- egyinthisimprovedalgorithmforenhancingthelocalsearchingability.Yangetal.(2013) 123 424 S.Akyol,B.Alatas indicated that, it is important to balance exploration and exploitation for any metaheuris- tic algorithm. Because, interaction of these two components could significantly affect the efficiency.Therefore,theystudiedFPAwithEagleStrategy. Abdel-Raouf et al. (2014a) used FPA with chaos theory for solving definite integral. Additionally, they proposed a hybrid method which was a combination of FPA and PSO forimprovingsearchaccuracy.Theyuseditforsolvingconstrainedoptimizationproblems (Abdel-Raoufetal.2014b).TheyalsoproposedanewhybridalgorithmcombinedwithFPA andchaoticharmonysearchalgorithm,tosolveSudokupuzzles(Abdel-Raoufetal.2014c). Sundareswaran et al. proposed a modification for steps of traditional GA, used for PVM inverter,byimitatingflowerpollinationandsubsequentseedproductioninplants(Sulaiman et al. 2014). Prathiba et al. set the real power generations using FPA, for minimizing the fuelcost,ineconomicloaddispatch,whichisthemainoptimizationtaskinpowersystem operation(Prathibaetal.2014). ŁukasikandKowalski(2015)studiedFPAforcontinuousoptimizationandtheycompared solutions with PSO. Platt used FPA in the calculation of dew point pressures of a system exhibiting double retrograde vaporization. The main idea was to apply a new algorithmic structureinahardnonlinearalgebraicsystemarisingfromreal-worldsituations(Platt2014). KanagasabaiandRavindhranathReddy(2014)proposedacombinationofFPAandPSOfor solvingoptimalreactivepowerdispatchproblem.Sakibetal.2014comparedFPAwithBat Algorithm. They tested these two algorithms on both unimodal and multimodal, low and highdimensionalcontinuousfunctionsandtheyobservedthatFPAgavebetterresults. 3.2 InvasiveWeedOptimization(IWO) 3.2.1 Theinspirationphenomenon IWO,inspiredfromthephenomenonofcolonizationofinvasiveweedsinnature,isproposed byMehrabianandLucas(2006).IWOisbasedonecologyandweedbiology.Itwasseemed that mimicking invasive weeds properties, leads a powerful optimization algorithm. In a croppingfield,weedcolonization’sbehaviorcanbeexplainedasfollows: Weeds invade a cropping system by the way of disperse. They occupy suitable fields betweenplants.Eachinvasiveweedtakestheunusedresourcesinthefield,andbecomesa floweringplant,andproducesnewinvasiveweedsindependently.Numberofnewinvasive weedproducedbyeachfloweringherbdependsonfitnessoffloweringplantsinthecolony. Theseweedsprovidebetteradaptationtotheenvironmentandgrowfasterbytakingmore unusedresourcesandproducemoreseeds.Thenewproducedweedsrandomlyspreadover thefieldandgrowtofloweringplants.Thisprocesscontinuesuntilreachingthemaximum numberofweedinthefieldbecauseoflimitedresources.Weedswithbetterfitnesscanonly surviveandcanproducenewplants.Thecompetitionbetweenweedscausesthemtobecome welladaptedandevolvedovertime(KarimkashiandKishk2010). 3.2.2 Algorithm Thenewkeytermsusedforexplainingthisalgorithmshouldbeintroduced,beforeconsid- eringthealgorithmprocess.SomeofthesetermsareshowninTable1.Eachindividualor agentiscalledasaseed,orasetcontainingavalueofeachoptimizationvariable.Eachseed grows to a flowering plant in colony. The meaning of a plant is an individual or an agent afterevaluatingitsfitness.Therefore,growingaseedtoaplantcorrespondstoevaluatingthe fitnessofanagent(KarimkashiandKishk2010). 123 Plantintelligencebasedmetaheuristicoptimizationalgorithms 425 Table1 SomeofthekeytermsusedinIWO Agent/seed Eachindividualcontainingavalueofeachoptimization variableinthecolony Fitness Avaluerepresentingthegoodnessofsolutionforeachseed Plant Aseedafterevaluatingitsfitness Colony allseedsorindividuals Sizeofpopulation Numberofplantsinthecolony Maximumnumberofplants Themaximumnumberofplantsallowedtoproducenewseed inthecolony Forsimulatingthecolonizingbehaviorofweedsfollowingstepsareacceptedandflow- chartofthesimulationisshowninFig.4. 1. Primarily, N parameters(variable)thatneedtobeoptimizedmustbeselected.Then,in N-dimensionalsolutionspace,amaximumandaminimumvaluemustbeassignedfor eachofthesevariables(Definingthesolutionspace)(KarimkashiandKishk2010). 2. A finite number of seeds are distributed randomly on the defined solution space. In another words, each seed randomly takes position in N-dimensional solution space. Positionofeachseedisaninitialsolution,whichcontainsN valuesfortheN variables, ofoptimizationproblem(Initializingapopulation). 3. Eachofinitialseedgrowstoafloweringplant.Thefitnessfunction,definedforrepre- sentinggoodnessofthesolution,returnsafitnessvalueforeachseed.Seediscalledas aplant,afterassigningthefitnessvaluetothecorrespondingseed(Evaluatefitnessof eachindividual)(KarimkashiandKishk2010). 4. Flowering plants are ranked according to fitness value assigned to them, before they producenewseeds.Then,eachfloweringplantproducesseedsaccordingtoitsranking inthecolony.Inotherwords,thenumberofseedproductionofeachplantdependson itsfitnessvalueorrankinganditincreasesfromtheminimumpossibleseeds(S )to min maximumpossibleseeds(S ).Theseseeds,whichsolvetheproblembettercorrespond max theplantswhicharemoreadaptedtothecolonyandtherefore,theyproducemoreseed. Thisstep,byallowingalloftheplantstoparticipateinthereproductioncontest,adds animportantpropertytothealgorithm(Rankingpopulationandproducingnewseeds) (KarimkashiandKishk2010). 5. Inthisstep,producedseedsarespreadtolocationofproducedplantwithequal-average bynormallydistributedrandomnumbersonthesearchspace.Atthepresenttimestep, thestandarddeviation(SD)canbeexpressedby(7). (iter −iter)n (cid:2) (cid:3) σ = max σ −σ +σ (7) iter (iter )n iinitial final final max Here,iter isnumberofmaximumiteration.σ andσ areinitialandfinal max iinitial final standarddeviation respectively, andn is nonlinear modulation index.Algorithm starts withahighinitialSDwhichcanbeexploredbyoptimizerthroughthewholesolution space.Byincreasingthenumberofiterations,forfindingtheglobaloptimalsolution,SD valueisdecreasedgraduallytosearcharoundthelocalminimumormaximum(Disper- sion)(KarimkashiandKishk2010). 6. New seeds grow to flowering plant, after all seeds have found their positions on the searchspace,andthen,theyarerankedwiththeirparents.Theplantsinlowrankingsin 123 426 S.Akyol,B.Alatas Start Finish Define the solution space Keep the best individual Create the initial population Yes No Finished? Evaluate the fitness of each individual and rank the population Evaluate the fitness of each individual Eliminate the individuals with low and rank the population fitness for reaching the maximum number of plants Reproduce each individual Disperse the new seeds over according to its rank the solution space Fig.4 FlowchartofIWOalgorithm thecolonyareeliminatedforreachingnumberofmaximumplantinthecolony(P ). max Thenumberoffitnessevaluation,populationsize,ismorethanthemaximumnumberof plantsinthecolony(Competitiveexclusion)(KarimkashiandKishk2010). 7. Survivedplantsproducenewseedsaccordingtotheirrankinginthecolony.Theprocess isrepeatedatstep3,untilthemaximumnumberofiterationisreachedorfitnesscriterion ismet(Repeat)(KarimkashiandKishk2010). 3.2.3 Selectionofcontrolparametervalues Threeparametersamongallparametersaffecttheconvergenceofthealgorithm;initialSS, σ , final SS, σ , and nonlinear modulation index, n, must be tuned carefully for iinitial final 123

Description:
is given about plant intelligence algorithms such as Flower Pollination Algorithm, Invasive. Weed Optimization . (c) Metaheuristic algorithms can be used as a part of process of finding the exact solution, Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.