ebook img

Plant Hormone Signaling Systems in Plant Innate Immunity PDF

473 Pages·2015·10.65 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plant Hormone Signaling Systems in Plant Innate Immunity

Signaling and Communication in Plants P. Vidhyasekaran Plant Hormone Signaling Systems in Plant Innate Immunity Signaling and Communication in Plants Volume 2 Series Editor František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany More information about this series at http://www.springer.com/series/8094 P. Vidhyasekaran Plant Hormone Signaling Systems in Plant Innate Immunity P. Vidhyasekaran Plant Pathology Tamil Nadu Agricultural University Coimbatore , Tamil Nadu , India ISSN 1867-9048 ISSN 1867-9056 (electronic) ISBN 978-94-017-9284-4 ISBN 978-94-017-9285-1 (eBook) DOI 10.1007/978-94-017-9285-1 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2014950145 © Springer Science+Business Media Dordrecht 2015 T his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. T he use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents 1 Introduction ............................................................................................... 1 1.1 Plant Innate Immunity ...................................................................... 2 1.2 Salicylic Acid Signaling ................................................................... 2 1.3 Jasmonate Signaling ......................................................................... 4 1.4 Ethylene Signaling ........................................................................... 5 1.5 Abscisic Acid Signaling ................................................................... 6 1.6 Auxin Signaling ............................................................................... 7 1.7 Cytokinins ........................................................................................ 8 1.8 Gibberellins ...................................................................................... 8 1.9 Brassinosteroids ............................................................................... 9 1.10 Plant Hormone Signaling Network .................................................. 10 1.11 Can Molecular Manipulation of Plant Hormone Signaling Network Help the Plant to Win the War Against Pathogens? .......... 12 References ................................................................................................... 13 2 Salicylic Acid Signaling in Plant Innate Immunity ................................ 27 2.1 Salicylic Acid as an Endogenous Immune Signal in Plants ............. 29 2.2 Biosynthesis of Salicylic Acid in Plants .......................................... 29 2.2.1 Phenylalanine Pathway ...................................................... 29 2.2.2 Isochorismate Pathway ....................................................... 31 2.2.3 Role of Regulatory Proteins (EDS1, EDS4, PAD4, EDS5, SID2) in Salicylic Acid Biosynthesis ..................... 31 2.2.4 An RNA-Binding Protein (RBP) May Be Involved in SA Biosynthesis Pathway .............................................. 34 2.2.5 GH3.5 Is Involved in Salicylic Acid Biosynthesis ............. 34 2.2.6 Role of CDR1 Gene in SA Biosynthesis............................ 35 2.2.7 Role of FMO1 Gene in SA Biosynthesis Pathway ............ 36 2.2.8 Cytokinin May Be Involved in Activation of Salicylic Acid Biosynthesis ........................................... 36 2.2.9 Some Transcription Factors May Be Involved in Accumulation of Salicylic Acid ..................................... 36 v vi Contents 2.3 Upstream of Salicylic Acid Signaling System ................................. 39 2.3.1 G-Proteins Trigger Salicylic Acid Biosynthesis in SA Signaling System ..................................................... 39 2.3.2 Calcium Signaling May Act Upstream of Salicylic Acid Accumulation ......................................... 40 2.3.3 MAP Kinases May Act Upstream of Salicylic Acid Accumulation............................................................. 43 2.3.4 Reactive Oxygen Species May Act Upstream of Salicylic Acid Accumulation ......................................... 44 2.3.5 Nitric Oxide May Act Upstream of Salicylic Acid Accumulation ......................................... 45 2.4 Downstream Events in Salicylic Acid Signaling ............................. 46 2.4.1 Generation of Salicylic Acid Conjugates ........................... 46 2.4.2 ROS Signaling System May Act Downstream of SA Accumulation ........................................................... 47 2.4.3 NO May Act Downstream of SA Accumulation ................ 48 2.4.4 MAPK Signaling Cascade May Act Downstream in SA Signaling System ..................................................... 48 2.5 SA Signaling Induces Increased Expression of Transcription Factors to Activate SA-Responsive Defense-Related Genes ........... 49 2.5.1 SA Induces WRKY Transcription Factors ......................... 49 2.5.2 SA Induces ERF Transcription Factors .............................. 51 2.6 NPR1 Is Master Regulator of SA Signaling .................................... 52 2.6.1 NPR1 Acts Downstream of SA Signal ............................... 52 2.6.2 SA Controls Nuclear Translocation of NPR1 .................... 52 2.6.3 SA Modulates Proteasome-Mediated Degradation of NPR1 ......................................................... 53 2.6.4 NPR1 Interacting Proteins.................................................. 55 2.6.5 SA-Dependent NPR1-Activated Transcription Factors ..... 55 2.6.6 SA-Induced Expression of PR Genes, Independent of NPR1 ......................................................... 57 2.7 Role of SUMO in SA Signaling System .......................................... 57 2.8 SA Induces Transcription of Various Defense Genes ...................... 58 2.9 Role of SA Signaling in Stomatal Closure-Related Immune Responses Against Bacterial Pathogens ............................ 58 2.10 SA Induces Resistance Against Viruses by Modulating AOX-Mediated Alternative Respiratory Pathway ............................ 59 2.11 SA Triggers Small RNA-Directed RNA Silencing System ............. 60 2.12 Enhancement of Small RNA-Directed RNA Silencing by Salicylate Signaling System ........................................................ 62 2.13 Interplay Between SA-Induced AOX-Mediated Redox Signaling and SA-Induced Small RNA-Directed RNA Silencing ................................................................................. 62 2.14 Salicylic Acid Signaling Is Involved in Induction of Systemic Acquired Resistance ..................................................... 64 Contents vii 2.15 Mobile Long-Distance Signals for Induction of Systemic Acquired Resistance ..................................................... 65 2.15.1 Search for Long-Distance Mobile Signal ........................... 65 2.15.2 Methyl Salicylate May Be a Mobile Signal ....................... 65 2.15.3 DIR1 and Glycerol-3-Phosphate-Dependent Factor Mobile Signal Complex .......................................... 68 2.15.4 Azelaic Acid May Be a Mobile Signal ............................... 70 2.15.5 Dehydroabietinal as a Mobile Signal ................................. 70 2.15.6 Pipecolic Acid as an SAR Long-Distance Signal .............. 71 2.16 Role of Mediator Complex in SA-Mediated Systemic Acquired Resistance ......................................................................... 73 2.17 Salicylic Acid Triggers Priming and Induces Systemic Acquired Resistance ......................................................................... 75 2.17.1 What Is SA-Triggered Priming? ........................................ 75 2.17.2 Accumulation of Dormant MAPKs May Be Involved in SA-Triggered Priming .................................................... 76 2.17.3 Histone Modifi cations May Be Involved in Gene Priming in SA-Induced SAR ................................ 77 2.17.4 NPR1 May Be Involved in Chromatin Modifi cation- Induced Priming ........................................... 78 2.17.5 Histone Replacement May Be Instrumental for Priming of SA-Responsive Loci ................................... 79 2.18 Next-Generation Systemic Acquired Resistance ............................. 80 2.19 Crosstalk Between Salicylate and Jasmonate Signaling Systems .... 81 2.19.1 Antagonism Between SA and JA Signaling Systems ........ 81 2.19.2 SA May Block JA Biosynthesis ......................................... 81 2.19.3 SA May Suppress JA-Responsive Gene Expression .......... 82 2.19.4 NPR1 in the Cytosol Modulates Crosstalk Between SA and JA Signaling Systems ............................. 83 2.19.5 Role of Glutaredoxin and TGA Transcription Factors in the SA–JA Crosstalk .......................................... 85 2.19.6 Role of MAP Kinase 4 (MPK4) in SA and JA Crosstalk ................................................................. 86 2.19.7 SA May Suppress JA Signaling by Targeting GCC-Box Motifs in JA-Responsive Promoters ................. 87 2.19.8 JA May Inhibit SA Signaling ............................................. 88 2.19.9 Synergism Between SA and JA Signaling Pathways ......... 88 2.20 Crosstalk Between SA and ET Signaling Systems .......................... 89 2.21 Crosstalk Between SA and ABA Signaling Systems ....................... 89 2.22 Crosstalk Between SA and Auxin Signaling Systems ..................... 89 2.23 Negative Regulation of Salicylate-Mediated Immunity by Brassinosteroid Signaling ........................................................... 90 2.24 SA Signaling System May Induce Resistance Against a Wide Range of Pathogens ............................................................. 90 viii Contents 2.24.1 SA Signaling System Is Involved in Conferring Fungal and Oomycete Disease Resistance ......................... 90 2.24.2 SA Signaling System Is Involved in Conferring Bacterial Disease Resistance .............................................. 91 2.24.3 SA Signaling System Is Involved in Conferring Virus Disease Resistance .................................................... 93 2.25 Pathogens May Suppress SA Signaling System to Cause Disease .. 94 2.25.1 Pathogens May Secrete Effectors to Suppress SA Signaling System ................................................................ 94 2.25.2 Pathogen Produces Toxin and Suppresses SA Signaling System to Promote Disease Development ......................... 94 2.25.3 Pathogen Manipulates the Antagonistic Effect Between SA and JA Signaling Systems to Promote Disease Development ......................................................... 96 References ................................................................................................... 96 3 Jasmonate Signaling System in Plant Innate Immunity ....................... 123 3.1 Jasmonate Signaling System Is a Key Component in PAMP-Triggered Innate Immunity .............................................. 124 3.2 Biosynthesis of Jasmonates .............................................................. 125 3.3 Jasmonate Biosynthesis Intermediate OPDA in Defense Signaling ........................................................................ 126 3.4 JA Metabolites Involved in Defense Signaling ................................ 126 3.4.1 Methyl Jasmonate ............................................................... 126 3.4.2 Jasmonoyl-Isoleucine ......................................................... 128 3.5 Upstream of JA Biosynthesis ........................................................... 129 3.5.1 PAMP Triggers Enhanced Biosynthesis and Accumulation of JA ..................................................... 129 3.5.2 G-Proteins in the Induction of JA Biosynthesis ................. 130 3.5.3 G-Proteins-Activated Polyamine Synthesis in Triggering JA Biosynthesis ............................................ 131 3.5.4 Calcium Signature Triggers JA Biosynthesis ..................... 134 3.5.5 Role of ROS in JA Biosynthesis Pathway .......................... 135 3.5.6 Role of NO in JA Biosynthesis Pathway ............................ 135 3.5.7 Mitogen-Activated Protein Kinases Functioning Upstream in JA Biosynthesis Pathway ............................... 137 3.5.8 Systemin Triggers JA Biosynthesis in Tomato ................... 138 3.6 Jasmonate Receptor Complex in JA Signal Perception ................... 139 3.6.1 COI1, an F-Box Protein, Is a Jasmonate Receptor............. 139 3.6.2 COI1–JAZ Receptor Complex ........................................... 140 3.6.3 InsP5 Potentiates JA Perception by COI1–JAZ1 Complex ......................................................... 140 3.6.4 JA-Ile Promotes Physical Interaction Between JAZ1 and COI1 .................................................................. 140 Contents ix 3.7 JA Signaling Pathway ...................................................................... 141 3.7.1 JAZ Proteins Suppress JA Signaling .................................. 141 3.7.2 Role of COI1 Protein in the Degradation of JAZ Proteins by E3 Ubiquitin Ligase ................................. 142 3.7.3 Role of JA-Ile in the JAZ Degradation by 26S Proteasome .................................................................. 143 3.7.4 MYC2, MYC3, and MYC4 Transcription Factors Regulate JA-Responsive Gene Expression ............ 144 3.8 Mediator Complex Regulates Transcription of JA-Responsive Genes by Interacting with Transcription Factors ............................. 147 3.9 MAP Kinases May Regulate the Downstream Events in JA Signaling Pathway .................................................................. 150 3.10 Histone Acetylation May Regulate JA-Mediated Signaling Systems ............................................................................ 152 3.11 JA-Induced Pep1 Peptide Amplifi es JA Downstream Signaling to Induce JA-Responsive Genes ...................................... 153 3.12 Transcription Factors Acting Downstream of JA in Defense Signaling System ........................................................... 154 3.13 JA Signaling System-Activated Defense Genes .............................. 156 3.14 JA Signaling System Triggers Immune Responses Against Necrotrophic Pathogens ...................................................... 157 3.15 JA and Ethylene Signaling Pathways May Operate Concomitantly in Plant Innate Immune System .............................. 158 3.15.1 Cooperative Function of JA and ET Signaling Pathways in Plant Innate Immunity .................................................... 158 3.15.2 ERF Transcription Factors May Concurrently Modulate JA and ET Signaling Pathways in Plant Immune System .................................................... 159 3.15.3 Role of Ethylene Transcription Factors EIN3 and EIL1 in JA/ET Signaling Synergy ............................................... 160 3.15.4 Ethylene Signaling System May Protect JA Signaling System Against Its SA-Mediated Suppression ................... 161 3.16 JA Signaling May Suppress SA Signaling System .......................... 162 3.17 Suppression of JA Signaling by SA Signaling System .................... 163 3.17.1 SA Suppresses Biosynthesis of JA ..................................... 163 3.17.2 SA Suppresses JA Signaling System by Targeting GCC- Box Motifs in JA-Responsive Promoters ................. 164 3.17.3 Role of WRKY62 Transcription Factor in the Suppression of JA Signaling by SA ......................... 165 3.17.4 Role of WRKY70 and MYB Transcription Factors in the Suppression of JA Signaling by SA ............ 166 3.17.5 WRKY50 and WRKY51 Transcription Factors May Modulate JA Signaling Suppression by SA ............... 166 3.17.6 Role of TGA Transcription Factors in the Suppression of JA Signaling by SA ........................................................ 167

Description:
Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.