ebook img

Plano-concave microlenses with epsilon-near-zero surface-relief coatings for efficient shaping of nonparaxial optical beams PDF

1.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Plano-concave microlenses with epsilon-near-zero surface-relief coatings for efficient shaping of nonparaxial optical beams

Plano-concave microlenses with epsilon-near-zero surface-relief coatings ffi for e cient shaping of nonparaxial optical beams MahinNaserpoura,b,CarlosJ.Zapata-Rodr´ıgueza,∗,MahdiehHashemic aDepartmentofOpticsandOptometryandVisionScience,UniversityofValencia,Dr.Moliner50,Burjassot46100,Spain bDepartmentofPhysics,CollegeofSciences,ShirazUniversity,Shiraz71946-84795,Iran cDepartmentofPhysics,CollegeofScience,FasaUniversity,Fasa7461781189,Iran Abstract 7 1Epsilon-near-zero (ENZ) materials, including artificial metamaterials, have been advanced to mold laser beams and antenna- 0mediatedradiatedwaves. HereweproposeanefficientmethodtocontrolOhmiclossesinherenttonaturalENZmaterialsbythe 2assemblyofsubwavelengthstructuresinanonperiodicmatrixconstitutinganENZmetacoating. Implementedoverplano-concave ntransparent substrates whose radius can be of only a few wavelengths, ENZ surface-relief elements demonstrate to adequately ashape a plane wave into highly localized fields. Furthermore, our proposal provides an energy efficiency even higher than an J ideally-losslessall-ENZplano-concavelens. Ourprocedureissatisfactorytogenerateaberration-freenonparaxialfocusedwaves 1andacceleratingbeamsinminiaturizedspaces. 1 Keywords: Nonparaxialbeamshaping,Epsilon-near-zeromaterials,Subwavelengthstructures. ] s c ti1. Introduction increasedefficiencyprovidedthattheslabthicknessremainsin p thescaleofthewavelength[20,21]. Nevertheless,theirplanar o Dielectric microlenses used for imaging and focusing in structurecircumscribesthefocalarchitecturetolowandmod- . sminiaturized optoelectronic devices are currently prospects to eratenumericalaperturesthusrestrictingtheachievableresolu- c ibe substituted by metalenses and metasurfaces exhibiting an tionpoweroftheopticaldevice. sextraordinaryopticalperformancewithinnotablyreducedvol- Here we propose the use of epsilon-near-zero materials ad- y humes. Suchengineeredmaterialsincludeelementaryscatterers heredtotheterracedexitsurfaceofplano-concavetransparent psuchasnanoslits[1,2,3]andnanoholes[4,5,6],split-ringres- substratestoefficientlyshapeaplanewaveintoanaberration- [onators [7, 8], and V-shaped nanoantennas [9, 10], to mention freenonparaxialfocusedwave. Ourprocedureisalsoadequate 1 afew,enablingthesimultaneouscontrolofthephasefrontand togeneratenonparaxialacceleratingbeamswithBesselsigna- vpolarizationofanincomingplanewave. Infact,beamshaping tureinminiaturizedspaces[22].Wedesignsurface-reliefstruc- 0based on holographic metamaterials may be further applied to turesusingbothmetalsanddopedsemiconductorsasENZma- 5ageneralclassofwavefields[11]. terialsspanningthemid-IR,visibleandUVspectralbands. 8 In particular, epsilon-near-zero (ENZ) materials have been 2 proposed theoretically [12, 13, 14] and demonstrated exper- 0 imentally [15, 16] for far-field light focusing due to its en- 2. ENZplano-concavelensestofocusandaccelerateoptical . 1hancedwavedirectivityexperiencedatboundarieswithdielec- beams 0 tricenvironments. SincenophasedelayoccursinsidetheENZ 7 Aplano-concaveENZlenscantransformaplanewaveinto 1medium, one can manipulate the phase radiation pattern of a a cylindrical converging wave field, as depicted in Fig. 1(a). :given impinging phase front and transform it into a desired v Here we adopted a two-dimensional geometry where the con- shape by properly sculping the exit surface of the ENZ slab. i cavesurfacehasanaxisofrevolutionatC;notethataconverg- XForphotonicapplications,however,theintrinsiclossesofnatu- ingsphericalwavefrontcanbeobtainedbyusingconcavesur- rralDrudematerialsatitsplasmafrequencyandofartificialma- aterialsdesignedtoundergoazeroeffectivepermittivityseverely faceswhosecenterofsymmetryissetatthefocalpoint. Asim- pleinterpretationcanbefollowedbyusingopticalrays. When restrictstheiruseatpropagationdepthsofseveralwavelengths acollimatedbeamimpingesnormallytothefrontplanesurface [17]. Evenusingall-dielectriczero-indexphotoniccrystals,the oftheENZlens,theopticalraysdoesnotundergoanydeviation lens performance can be notably undermined due to radiative initstrajectory. Ontheotherhand,lightemergesfromanENZ losses, interface losses, and imperfections in the nanofabrica- material forming a zero angle of refraction with respect to its tion [18, 19]. Zoned plates are then good candidates with an normal line. This can be straightforwardly deduced by apply- ing the Snell’s law over the exit surface of the plano-concave ∗Correspondingauthor: lens. Therefore, an ENZ material bounded by a surface with Emailaddress:[email protected](CarlosJ.Zapata-Rodr´ıguez) centerofcurvatureatthepointC willrefractlightindirection PreprintsubmittedtoOneJournal January12,2017 Figure1: Plano-concavefocusingdevicesofhighnumericalaperturemadeof ENZmaterials.(a)Perfectlysphericalexitsurfaceenablestocreateaberration- freenonparaxialfocalfields. (b)Angular-resolvedcurvaturetogeneratecon- centriccausticfields. tosuchapoint. Smalldeviationsofthecurvaturewillproduce aberratedfocalfieldsthat,ingeneral,areundesirable. For simplicity, let us consider light rays propagating in the incidence plane, that is the xy plane, which is perpendicular to the axis of the cylindrical concave surface of the lens. If the function R = R(θ) represents the curve at the exit surface in polar coordinates, as drawn within the incidence plane, the trajectory of a light ray is driven by the normal vector to such curve, N = −rˆ+θˆR(cid:48)/R, whererˆ andθˆ areunitaryvectorsand R(cid:48) =∂R/∂θisafirstderivativeevaluatedatthepointofinterest Figure2:Time-averagedenergydensitygeneratedbyaplano-concavelossless overthecurve. Definingδastheangleofthetrajectoryofthe ENZlensimmersedinair,providedthattheincidentplanewaveispolarized lightraywithrespecttotheunitaryvector−rˆ,thelattergiving along the y axis, that is TM-polarized, at a wavelength λ = 326 nm. The theraytrajectoryinthecaseofaperfectcylindricalsurfaceas exitsurfaceis(a)perfectlycircularwithR(cid:48) = 0,wherethesymbol×denotes illustratedinFig.1(b),wefinallyobtainthat thecenterpointC;anditisshapedbythefunctiongiveninEq.(2)with(b) R(cid:48) =R0/10,(c)R(cid:48) =R0/5,and(d)R(cid:48) =R0/2.InallcasesR0 =10λ.Insetin |R(cid:48)| (a):Apodizingtime-averagedenergydensityalongtheconcaveexitsurface. tanδ= . (1) R An analogous interpretation can be given in terms of wave PositivevaluesofR(cid:48) willmakethelightraystopassbelowthe optics. The phase shift accounted in the optical path of rays pointCthusformingashadowregion. travelingfromtheconcavesurfacetothefocusCisgivenby Controlled curvature engineering can give, as a result, pat- terned fields near the focal point. As an example illustrated exp(−ikR)=exp(−ikR )exp(cid:0)−ikR(cid:48)θ(cid:1), (3) 0 in Fig. 1(b), let us consider an exit surface with azimuthally- varyingradiusofcurvatureRgivenby where k = 2π/λ is the wavenumber in vacuum. The term (−ikR ) is related with the phase shift produced by an 0 R(θ)=R +R(cid:48)(θ−π/2), (2) aberration-free converging lens. Assuming that R(cid:48) (cid:28) R , 0 0 exp(−ikR(cid:48)θ)canbesetasalinearphaseshiftexp(−iklR(cid:48)/R ), 0 where R stands for the initial radius at θ = π/2 as measured wherelrepresentsanspatialcoordinateasthearclengthmea- 0 from the curvature centerC and R(cid:48) is here a constant term in- suredalongthereferencesurfaceofradiusR . Thusthewave- 0 dicatingtherateofangularvariationofthesurfaceradius. As front emergingfrom the vicinitiesof a point P of theexit sur- notedabove,suchcurvaturedeviationoftheexitsurfaceleads face will cross the reference surface obliquely, undergoing an toaprismaticeffectonalltheemerginglightrays. Letusfirst angular deviation δ = −R(cid:48)/R . This is in agreement with the 0 assume a modest deviation of the perfectly circular symmetry factthatδalsodenotestheangulardeviationofthenormalline so that |R(cid:48)| (cid:28) R . Now it is clear that a ray emerging from a totheexitsurfacewithrespecttothesegmentPC. Iffinallywe 0 givenpoint Poftheexitsurfacewillundergoanangulardevi- includethegiventermoftheformexp(imθ),denotingthefield ationδ=|R(cid:48)|/R withrespecttothesegmentconnectingPand in the reference surface, in a diffraction integral (for instance 0 C. Asaconsequence,therayspropagatinginthe xy-planewill theDebyediffractionintegral[23])toestimatethefielddistri- generateacausticcurvearoundthefocalpointC,whichiscir- butionnearthefocalpointC, whereinourcasetheparameter cularwithcenteralsoatC andwitharadiusofcurvaturegiven m = −kR(cid:48), it might be demonstrated that the amplitude of the by|R(cid:48)|. diffracted field results in direct proportion to exp(imθ)J (kr) m 2 nearthecausticcurve,whereristheradialcoordinateandJ (·) m istheBesselfunctionofthefirstkindandorderm;afulldemon- strationcanbefoundinRef.[24]. Suchwavefunctionhasan intensitywithmaximumaroundC atadistanceapproximately givenbyr =|m|/k,thatis|R(cid:48)|.Thelatterisconsistentwithour m previousdescriptiongivenintermsoflightrays. Toillustratethecapabilitiesofaplano-concaveENZlensto focus and accelerate an incident plane wave, we numerically estimate the scattered wave field by means of a commercial full-wavesolveroftheMaxwell’sequations(COMSOLMulti- physics)basedonthefiniteelementmethod(FEM).InFig.2(a) we show the spatial distribution of the time-averaged energy densitywhenaplanewavethatislinearlypolarizedalongthey axisimpingesnormallyontheflatentrancesurfaceoftheENZ lens. We consider a wavelength λ = 326 nm for which the Figure3: Focaldistributionofthetime-averagedenergydensityproducedby dielectric constant of silver has its real part dropping to zero. aplano-concavesilverlensofradiusR0 = 10λatλ = 326nm. Theelectric fieldoftheincidentplanewaveisorientedalongtheyaxis. In(a)thereisno In this case, the concave surface is perfectly circular, that is modulationoftheradius,R(cid:48) = 0,andin(b)themodulationisdeterminedby R(cid:48) = 0, with a radius R0 = 10λ. For numerical purposes, we R(cid:48) =R0/10. Colorscalinginthefocalregionreferstoanenergyrangelower firstconsideraslightlylossyENZmaterialwithrelativepermit- thaninFig.2tobetterdepictthefieldpattern. tivity(cid:15) =0+i0.001. Inthefigureweobservetheformationof alightspotcenteredatCwithaFWHMof184nminthetrans- materialwillmakeadifferenceasdiscussedbelow. versedirection,thatistheyaxis,andawidthof504nmalong the optical axis. This means that the effective numerical aper- ture(NA)isapproximately0.90,inagreementwiththefactthat 2.1. ApplicationtonaturalENZmaterials theeffectiveangularsemi-apertureoftheplano-concavelensis 64◦[25].Suchdecrementoftheangularsemi-aperturefromthe Letusapplythepreviousconceptsofbeamshapingtoare- optimalπ/2radians, asshownintheinsetofFig.1(a), should alistic ENZ material. For that purpose we consider silver at a beattributedtoasignificantreductionofthelenstransmittance wavelength of λ = 326 nm, for which its permittivity has a atangles|θ| ≈ π/2. Asaconsequence,focalwavesundergoan vanishingrealpart. However,theimaginarypartoftherelative apodizingeffectwheresidelobesarenotablyreduced,however, permittivityofsilvercannotbeneglected,whichisexperimen- remaining its central peak with an slightly greater width than tally estimated as Im((cid:15)) = 0.7 [17]. In Fig. 3(a) we show the potentiallyexpected. profile of the time-averaged energy density of the electromag- InFig.2(b)wemodulatetheradiusR(θ)ofthelensexitsur- neticfieldfocusedbyaplano-concavesilverlenswhoseradius facesuchthatR(cid:48) = R0/10. Asdiscussedabove, wemayform of curvature is R0 = 10λ. In comparison with Fig. 2(a), we anacceleratingbeamwithcirculartrajectoryaroundacircum- firstobserveacleardecreaseofthetransmittedfield,achieving ferenceofradius∼ λ. Notethattheaccelerationoftheoptical areductionof58%atthefocalpoint,afactthatisattributedto beamcanbeproducedabovethepointC providedthatR(cid:48) < 0. absorptioninthelossymetal. Infact,themaximumconcentra- However, the trajectory of the beam is shorter than expected; tionofenergydensityisnotlocatedatC butdisplacedtowards notethatacausticcurvewithangulardistributionofπradians thelens,aneffectthatiscommonlycoinedasfocalshift[26],in wouldhypotheticallybeformed,asinferredfromthegeometric agreementwiththefactthattheeffectivenumericalapertureof picturegiveninFig.1(b). Thedecreaseoftheeffectiveangular thelenshasbeenreducedto0.085(semi-apertureangleofonly apertureoftheplano-concavelensisobviouslyaffectingtothe ∼5◦),asillustratedintheinsetofFig.3(a). Ontheotherhand, trajectorylengthoftheacceleratingbeam[24]. theresolutionpowerhasdroppedconsiderably; theFWHMin Wepointoutthattheaccelerationofthefocusedfieldisalso thetransversedirectionisnow751nm.Wemightconcludethat produced even when the condition R(cid:48) (cid:28) R is not satisfied. thelimitofresolutionisnotdeterminedbytheangularaperture 0 In Fig. 2(c) and (d) we represent the intensity distribution of of the concave exit surface, but the metallic losses which are themagneticfieldscatteredbyaplano-concavelenswithhigh evidencedinthethicklens. valuesoftheparameter(c)R(cid:48) =R /5and(d)R(cid:48) =R /2. From In Fig. 3(b) we analyze the scattered field produced by a 0 0 ourFEM-basednumericalsimulations,theradiusofthecaustic plano-concave lens with an angular-resolved curvature given curveforthefirstcaseisapproximately2.0λ,whereasitsradius by R(cid:48) = R /10. Essentially, we cannot recognize a different 0 increases to 5.1λ for the case (b), which roughly are equal to responseincomparisonwiththecase showninFig.3(a). The |R(cid:48)|. Theseexamplesdemonstratetheeffectiveimplementation expected acceleration of the field is fundamentally carried out oftherequiredmanipulationofthephasefront. atoff-axisanglesθ (cid:44) πwherethelenspresentsahigherthick- Finallywepointoutthatthepolarizationoftheincidentplane ness, and therefore dissipative effects are largely manifested. waveisreflectedinaneglectingdeviationofthespatialdistri- Althoughnotshowninthefigures,highervaluesofR(cid:48) indicat- bution of the focal waves shown in Figs. 2(a)-(d). However, ingfastermodulationofthesurfacecurvatureprovidebarelya a nonvanishing imaginary part of the permittivity of the ENZ similarresult. 3 Figure4:Schematicrepresentationofthemulti-prismENZnanostructurecoat- ingtheterraced-concavesurfaceofthedielectricthicklens, whoseindexof refractionisn. Inset: Zoom-inviewaroundasingleENZsubwavelengthele- mentcomposingtheultrathincoating. Here,theincidentwavefieldinteracts attheentrance(vertical)surfaceandthebeamemergesfromtheexitcurved Figure5: Time-averagedenergydensitygeneratedbyaplano-concave(PC) surface. lenswithsurface-reliefsilvercoatingsculpturedwithanangular-resolvedcur- vatureR0 = 10λand(a)R(cid:48) = 0,(b)R(cid:48) = R0/10. Again,theincidentplane waveisTM-polarizedatawavelengthλ=326nm. IntheFEM-basednumericalsimulationsshowninFig.3(a) and (b) we considered TM-polarized plane waves, that is the electricfieldisorientedalongtheyaxis, whichareimpinging wavefront within the focal region. Finally, a reduced Ohmic overtheplano-concavemetalliclens.TE-polarizedplanewaves lossinthetransitofthewavefieldthrougheachENZelement particularlyprovideinferiorfocalizationandaccelerationdueto issupportedbyitssubwavelengthwidth. a lower transmittance. Such a distinct behaviour is ultimately caused by the nonvanishing imaginary part of the permittivity For the sake of illustration, we first consider a FEM-based characterizingtheENZmaterial. numerical simulation showing the scattered field of a surface- Finally, alternate ENZ materials like noble metals at the relief ENZ metacoating containing 32 elements, which is de- plasma frequency (and anisotropic metamaterials) can be ana- positedontheterracedexitsurfaceofadielectricplano-concave lyzedfortheuseofplano-concavelensestogeneratenonparax- lens. If the radius of the device is R0 = 10λ, the index of re- ial focused waves and accelerating beams at different wave- fractionoftheglasssubstrateisn = 1.5,andtheENZmaterial lengths. However, the inherent lossy characteristics of them issilver(weuseawavelengthλ=326nmwhereIm((cid:15))=0.7), makesthetargetedbeamshapingimpracticable,evenforalens theresultanttime-averagedenergydensityofthefocusedwave thicknessofafewwavelengths. Forthatreason,itispreferably field is shown in Fig. 5(a). Therefore, each prismatic element tousealternatearchitecturesincludingultrathinENZlayersto of the ENZ silver assembly has a width of only 217 nm. We activelymoldthewavefrontoftheincidentplanewave. point out that a higher number of pieces can be used to com- pletely cloak the terraced-concave surface of the lens, but in practical term we may restrict such number with a negligible 3. ImplementationofultrathinENZmetacoatings loss of electromagnet energy due to the inherent apodization We propose to substitute the ENZ plano-concave lens by a effectofhigh-numericalaperturegeometries, asshownabove. lossless dielectric plano-concave lens, which inherently is di- In the numerical simulation we observe the formation of a fo- vergent, also including a surface-relief ENZ ultrathin coating. cused field with a FWHM of 198 nm in the geometrical focal The latter will perform the necessary steering of the incident planeand512nmalongtheopticalaxis,demonstratinganear- plane wave to generate either the focused field or the acceler- optimalresolutionperformance. Wepointoutthatamoderate atingbeam. Sinceinadditionthethickdielectriclenswillnot focalshiftisobservedwithanincreasedenergydensityof53% absorbtheelectromagneticenergyoftheimpingingwavefield, andareducedtransverseFWHMof175nm. Furthermore,the weareabletooptimallymaintaintheeffectivenumericalaper- focalenergydensityismultipliedbyafactorof∼19whenitis tureofthefocusingarchitecture.AsdepictedinFig.4,theENZ comparedwiththefocusingarrangementcomposedofasilver- elements of the coating have a straight (vertical) side where only plano-concave lens. Surprisingly, we also compared the the plane wave is coupled by normal incidence, whereas they energyefficiencybynumericallydisregardingthemetallosses also exhibit a designed curved side where the beam emerges ofthesilver-onlyplano-concavelens;insuchacasetheenergy to be focused and accelerated, thus producing a prismatic ef- density is multiplied by a factor of ∼ 1.9. Therefore, our pro- fect. Furthermore, thewidthofeachENZelementisgivenby posalprovidesahigherenergyefficiencythanalosslessplano- λ/n,wherendenotestherefractiveindexoftheplano-concave concavelens. Finally,asoccursabove,ourresultobtainedfora dielectric lens. In this case, the incident field will undergo a TM-polarizedincidentplanewaveisnotablebetterthanassum- phaseshiftof2πradianswhenitiscoupledinadjacentENZel- ingaTE-polarizedimpingingfield(notshowninthefigure). ements, enabling in-phase interference of the divided incident Tofurtherinspectthebehaviorofthecoatedmicrolenseswe 4 ofFig.7.Forthesakeofillustration,oncemoreweconsiderthe plano-concavelenscoatedbyn-CdO,whichbecomesENZata wavelengthofλ=1870nm. Asaresult,thedividedwavefront willbeindividuallybentineachENZelementwithadifferent angle, thus constructively interfering in the focal region along the caustic curve. However, such caustic curve is now a reg- ularpolygonapproachinganincompletecircle,whichleadsto afractionalTalboteffect[28]. Notethatinthenumericalsim- ulations shown in Fig. 7, the plano-concave dielectric lens is marginallythinnerincomparisonwiththatshowninFig.6(c), insuchawaythatthegeometricalnumericalapertureisslightly reduced in order to account for the ENZ elements making the terraced-concavesurfaceopticallyactive. Again,bycomparing thedistributionofthetime-averagedenergydensityinthefocal Figure7:Spatialdistributionofthetime-averagedenergydensitygeneratedby aplano-convacelenscoatedbyn-CdOmicroprisms(aszoomed-inintheinset) region of the original architecture shown in Fig. 6(c) and the atawavelengthλ=1870nm. simplified model depicted in Fig. 7 using prismatic elements, it is evident that the pattern differences on the generated non- paraxialacceleratingbeamsarenegligible. design the ENZ elements to form a nonparaxial accelerating beam. Again,thewidthoftheseelementsareλ/nandthever- 4. Conclusions ticalentrancesurfaceenablestheincidentTM-polarizedplane wavetoperfectlycoupletothesilverassembly. Inthiscase,we Insummary,wenumericallyinvestigatetheefficientgenera- modulate the exit surface following the equation given in (2), tionofnonparaxialfocusedwavefieldsandacceleratingbeams provided that R(cid:48) = R /10, and again R = 10λ. Figure 5(b) 0 0 withBesselsignatureusingENZmaterials.ENZ-enabledbeam clearly shows the acceleration of the beam around the central shaping is inherently based on a surface effect and therefore pointC, contrarilytowhatoccursforfull-ENZplano-concave bulk lossy devices are here substituted by transparent mate- lenses(seeFig.3(b)). rials which in addition include an ENZ subwavelength coat- In Fig. 6(a) we show the focal distribution of the time- ing. We demonstrate that the locally steering of the beam averaged energy density of the scattered field for an increased canbestraightforwardlyexecutedbyanassemblyofsubwave- spatialacceleration. NowtheFEM-basednumericalsimulation length ENZ prisms with tailored hypotenuse surface, suitably is carried out for a silver assembly which is patterned by fol- depositedontheterraced-concavesurfaceofahigh-numerical- lowingaradialmodulationR(cid:48) =R /2. Ourresultsdemonstrate 0 aperture lens made of a lossless dielectric. In practical terms, the feasibility of the procedure in good agreement with those thecurvedsurfaceoftheENZsubwavelengthprismsconstitut- obtained with a lossless ENZ microlens, previously shown in ingthesurface-reliefcoatingoftheplano-concavelenscanbe Fig.2(d).Furthermore,suchanstrategycanbeimplementedby flattened for manufacturing purposes, still providing satisfac- usingothersortofENZmaterials.LetusnowconsiderAl:ZnO, toryresults.Inthisstudyweusednoblemetalsanddopedsemi- whichisadopedsemiconductorwhosepermittivityhasavan- conductorsasENZmaterialsintheUV,visibleandnear-IR,but ishingrealpartatλ=1355nm;inthiscaseIm((cid:15))=0.31[17]. artificialENZmetamaterialscanbeusedtoextendtheapplica- Whenthemodulationoftheradiusofcurvatureisagaingiven bilityoftheproposedarrangementinabroaderelectromagnetic by R = 10λ and R(cid:48) = R /2, keeping as n = 1.5 the index 0 0 spectrum[29,30,31]. Wepointoutthatourproposalprovides of refraction of the dielectric thick lens, the resultant acceler- anenergyefficiencywhichishigherthanthatalosslessall-ENZ ating beam is represented in Fig. 6(b). Roughly speaking, the plano-concave lens can offer. As concluding remark, our pro- beam shaping is mimetically reproduced as expected from the cedurecanalsobeusedtogenerateAirybeamsintheparaxial scalingpropertiesoftheMaxwellequations[27]. Tocomplete regime[32],acceleratingnonparaxialbeamswithBesselsigna- ournumericalanalysis,wefinallyoperatewiththeENZn-CdO ture[33],andevennondiffractingBesselbeamwithasymmetric occurring at a wavelength of λ = 1870 nm, where in addition transverseprofile[34]. Im((cid:15)) = 0.127 [17]. Due to the reduced Ohmic losses of the dopedsemiconductor, theenhancedqualityofthenonparaxial Acknowledgments acceleratingbeamisevident. The robustness of our procedure to focus and accelerate a This work was supported by the Spanish Ministry of Econ- plane wave within an area of a few µm2 will be demonstrated omyandCompetitivenessundercontractTEC2014-53727-C2- next. Forthatpurpose,wesubstituteeachENZcurvedelement 1-R. ofthemetacoatingbyarectangularprism,insuchawaythatthe baseagainhasalengthofλ/n,aswellasthelateralfacewhere References the plane beam impinges on also remains unchanged. On the contrary,thecurvedsidewherethebeamexitsfromthecoating [1] L.Verslegers,P.B.Catrysse,Z.Yu,S.Fan,Planarmetallicnanoscaleslit isnowturnedintoastraighthypotenuse,asdepictedintheinset lensesforanglecompensation,Appl.Phys.Lett.95(2009)071112. 5 [2] S.Ishii,A.V.Kildishev,V.M.Shalaev,K.-P.Chen,V.P.Drachev,Metal [25] M. Naserpour, C. J. Zapata-Rodr´ıguez, C. D´ıaz-Avin˜o´, nanoslit lenses with polarization-selective design, Opt. Lett. 36 (2011) M. Hashemi, J. J. Miret, Ultrathin high-index metasurfaces 451–453. for shaping focused beams, Appl. Opt. 54 (2015) 7586–7591. [3] M. Naserpour, C. J. Zapata-Rodr´ıguez, C. D´ıaz-Avin˜o´, M. Hashemi, doi:http://dx.doi.org/10.1364/AO.54.007586. Metacoatings for wavelength-scale, high-numerical-aperture plano– [26] C. J. Zapata-Rodr´ıguez, P. Andre´s, M. Mart´ınez-Corral, L. Mun˜oz- concavefocusinglenses,J.Opt.Soc.Am.B33(10)(2016)2120–2128. Escriva´,GaussianimagingtransformationfortheparaxialDebyeformu- [4] L. Lin, X. M. Goh, L. P. McGuinness, A. Roberts, Plasmonic lenses lationofthefocalregioninalow-Fresnel-numberopticalsystem,J.Opt. formedbytwo-dimensionalnanometriccross-shapedaperturearraysfor Soc.Am.A17(2000)1185–1191. Fresnel-regionfocusing,NanoLett.10(5)(2010)1936–1940. [27] J.D.Joannopoulos,S.G.Johnson,J.N.Winn,R.D.Meade,Photonic [5] T.Matsui,H.T.Miyazaki,A.Miura,T.Nomura,H.Fujikawa,K.Sato, crystals.Moldingtheflowoflight,PrincetonUniversityPress,2008. N.Ikeda,D.Tsuya,M.Ochiai,Y.Sugimoto,etal.,Transmissionphase [28] Y.Zhang, H.Zhong, M.R.Belic´, C.Li, Z.Zhang, F.Wen, Y.Zhang, controlbystackedmetal-dielectricholearraywithtwo-dimensionalgeo- M. Xiao, Fractional nonparaxial accelerating talbot effect, Opt. Lett. metricdesign,Opt.Express20(14)(2012)16092–16103. 41(14)(2016)3273–3276. [6] S.Ishii,V.M.Shalaev,A.V.Kildishev,Holey-metallenses:Sievingsin- [29] G.Subramania,A.Fischer,T.Luk,Opticalpropertiesofmetal-dielectric glemodeswithproperphases,NanoLett.13(2013)159–163. basedepsilonnearzerometamaterials,Appl.Phys.Lett.101(24)(2012) [7] Q.Wang, X.Zhang, Y.Xu, Z.Tian, J.Gu, W.Yue, S.Zhang, J.Han, 241107. W.Zhang,Abroadbandmetasurface-basedterahertzflat-lensarray,Adv. [30] R.Maas,J.Parsons,N.Engheta,A.Polman,Experimentalrealizationof Opt.Mater.3(6)(2015)779–785. anepsilon-near-zerometamaterialatvisiblewavelengths,Nat.Photonics [8] M. Hashemi, A. Moazami, M. Naserpour, C. J. Zapata-Rodr´ıguez, A 7(11)(2013)907–912. broadband multifocal metalens in the terahertz frequency range, Opt. [31] J.Gao,L.Sun,H.Deng,C.J.Mathai,S.Gangopadhyay,X.Yang,Exper- Commun.370(2016)306–310. imentalrealizationofepsilon-near-zerometamaterialslabswithmetal- [9] F.Aieta,P.Genevet,M.A.Kats,N.Yu,R.Blanchard,Z.Gaburro,F.Ca- dielectricmultilayers,Appl.Phys.Lett.103(5)(2013)051111. passo,Aberration-freeultrathinflatlensesandaxiconsattelecomwave- [32] G.A.Siviloglou, J.Broky, A.Dogariu, D.N.Christodoulides, Obser- lengthsbasedonplasmonicmetasurfaces, NanoLett.12(2012)4932– vationofacceleratingAirybeams, Phys.Rev.Lett.99(2007)213901. 4936. doi:10.1103/PhysRevLett.99.213901. [10] N.Yu,P.Genevet,F.Aieta,M.A.Kats,R.Blanchard,G.Aoust,J.-P.Teti- [33] I.Kaminer,R.Bekenstein,J.Nemirovsky,M.Segev,Nondiffractingac- enne,Z.Gaburro,F.Capasso,Flatoptics: Controllingwavefrontswith celerating wave packets of Maxwell’s equations, Phys. Rev. Lett. 108 optical antenna metasurfaces, IEEE J. Sel. Top. Quantum Electron. 19 (2012)163901. (2013)4700423–4700423. [34] V.V.Kotlyar, A.A.Kovalev, V.A.Soifer, AsymmetricBesselmodes, [11] P.Genevet, F.Capasso, Holographicopticalmetasurfaces: areviewof Opt.Lett.39(2014)2395–2398. currentprogress,Rep.Prog.Phys.78(2)(2015)024401. [12] A.Alu,M.G.Silveirinha,A.Salandrino,N.Engheta,Epsilon-near-zero metamaterialsandelectromagneticsources:Tailoringtheradiationphase pattern,Phys.Rev.B75(2007)155410. [13] M.Navarro-C´ıa,M.Beruete,M.Sorolla,N.Engheta,Lensingsystemand Fouriertransformationusingepsilon-near-zerometamaterials,Phys.Rev. B86,(2012)165130. [14] M.Memarian,G.V.Eleftheriades,Analysisofanisotropicepsilon-near- zerohetero-junctionlensforconcentrationandbeamsplitting,Opt.Lett. 40(6)(2015)1010–1013. [15] V.Pacheco-Pen˜a,V.Torres,B.Orazbayev,M.Beruete,M.Navarro-C´ıa, M. Sorolla, N. Engheta, Mechanical 144 ghz beam steering with all- metallicepsilon-near-zerolensantenna,Appl.Phys.Lett.105(24)(2014) 243503. [16] V.Pacheco-Pen˜a,M.Navarro-C´ıa,M.Beruete,Epsilon-near-zerometal- ensesoperatinginthevisible,Opt.LaserTechnol.80(2016)162–168. [17] J.D.Caldwell,L.Lindsay,V.Giannini,I.Vurgaftman,T.L.Reinecke, S.A.Maier,O.J.Glembocki,Low-loss,infraredandterahertznanopho- tonicsusingsurfacephononpolaritons,Nanophotonics4(1)(2015)44– 68. [18] B.D.F.Casse,W.T.Lu,Y.J.Huang,S.Sridhar,Nano-opticalmicrolens withultrashortfocallengthusingnegativerefraction,Appl.Phys.Lett.93 (2008)053111. [19] X.He,Z.Huang,M.Chang,S.Xu,F.Zhao,S.Deng,J.She,J.Dong,Re- alizationofzero-refractive-indexlenswithultralowsphericalaberration, ACSPhotonicsdoi:10.1021/acsphotonics.6b00714. [20] V.Pacheco-Pen˜a,B.Orazbayev,V.Torres,M.Beruete,M.Navarro-C´ıa, Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,Appl.Phys.Lett.103(18)(2013)183507. [21] B.Orazbayev,V.Pacheco-Pen˜a,M.Beruete,M.Navarro-C´ıa,Exploiting thedispersionofthedouble-negative-indexfishnetmetamaterialtocreate abroadbandlow-profilemetalliclens,Opt.Express23(7)(2015)8555– 8564. [22] C. J. Zapata-Rodr´ıguez, M. Naserpour, Nonparaxial shape-preserving AirybeamswithBesselsignature,Opt.Lett.39(2014)2507–2510. [23] C. J. Zapata-Rodr´ıguez, Debye representation of dispersive focused waves,J.Opt.Soc.Am.A24(2007)675–686. [24] M. Naserpour, C. J. Zapata-Rodr´ıguez, A. Zakery, C. D´ıaz-Avin˜o´, J. J. Miret, Accelerating wide-angle converging waves in the near field, J. Opt. 17 (2015) 015602. doi:http://dx.doi.org/10.1088/2040- 8978/17/1/015602. 6 Figure6: Generationofhighly-acceleratingbeamsusingplano-concavelenseswithsurface-reliefcoatingcurvaturegivenbyR0 = 10λandR(cid:48) = R0/2. Inthe FEM-basednumericalsimulations,thetime-averagedenergydensityatthefocalregionisevaluatedbyusingENZmaterials:(a)Agatλ=326nm(Im((cid:15))=0.7), (b)Al:ZnOatλ=1355nm(Im((cid:15))=0.31),and(c)n-CdOatλ=1870nm(Im((cid:15))=0.127). 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.