Planning with Partial Preference Models TuanNguyen∗,∗∗,a,MinhDob,AlfonsoGerevinic,IvanSerinad,BiplavSrivastavae, SubbaraoKambhampatia aDepartmentofComputerScienceandEngineering,ArizonaStateUniversityBrickyardSuite501,699SouthMill Avenue,Tempe,AZ85281,USA bEmbeddedReasoningArea,PaloAltoResearchCenter3333CoyoteHillRoad,PaloAlto,CA94304,USA cDipartimentodiElettronicaperl’Automazione,UniversitdegliStudidiBrescia,ViaBranze38,I-25123Brescia,Italy dFreeUniversityofBozen-Bolzano,VialeRatisbona,16,I-39042Bressanone,Italy eIBMIndiaResearchLaboratory,NewDelhiandBangalore,India 1 1 0 2 n Abstract a J Currentworkinplanningwithpreferencesassumethattheuser’spreferencemodelsarecom- 2 pletelyspecifiedandaimtosearchforasinglesolutionplan. Inmanyreal-worldplanningsce- 1 narios,however,theuserprobablycannotprovideanyinformationaboutherdesiredplans,orin ] some cases can only expresspartialpreferences. In such situations, the planner has to present I notonlyonebutasetofplanstotheuser,withthehopethatsomeofthemaresimilartotheplan A sheprefers. Wefirstproposetheusageofdifferentmeasurestocapturequalityofplansetsthat . s are suitable for such scenarios: domain-independentdistance measures defined based on plan c elements (actions, states, causal links) if no knowledge of the user’s preferencesis given, and [ theIntegratedConvexPreferencemeasureincasetheuser’spartialpreferenceisprovided. We 1 then investigate various heuristic approachesto find set of plans according to these measures, v andpresentempiricalresultsdemonstratingthepromiseofourapproach.1 9 7 Keywords: Planning,Preferences,Heuristics,Search 2 2 . 1 0 1 1. Introduction 1 : Most work in automated planning takes as input a complete specification of domain mod- v els and/or user preferencesand the planner searches for a single solution satisfying the goals, i X probablyoptimizingsomeobjectivefunction. Inmanyrealworldplanningscenarios,however, r the user’s preferences on desired plans are either unknown or at best partially specified (c.f. a Kambhampati(2007)). In such cases, the planner’sjob changesfrom finding a single optimal plantofindingasetofrepresentativesolutions(“options”)andpresentingthemtotheuserwith thehopethatshecanfindoneofthemdesirable. Asanexample,inadaptivewebservicescom- position,thecausaldependenciesamongsomewebservicesmightchangeattheexecutiontime, 1ThisworkisanextensionoftheworkpresentedinSrivastavaetal.(2007)andNguyenetal.(2009). ∗Correspondingauthor. ∗∗Authorslistedinalphabeticalorder,withtheexceptionofthefirstandthelast. Emailaddresses:[email protected](TuanNguyen),[email protected](MinhDo), [email protected](AlfonsoGerevini),[email protected](IvanSerina), [email protected](BiplavSrivastava),[email protected](SubbaraoKambhampati) PreprintsubmittedtoArtificialIntelligence January13,2011 andasaresultthewebserviceenginewantstohaveasetofdiverseplans/compositionssuchthat if there is a failure while executingone composition, an alternativemay be used which is less likelytobefailingsimultaneously(Chafleetal.,2006). However,ifauserishelpinginselecting thecompositions,theplannercouldbefirstaskedforasetofplansthatmaytakeintoaccountthe user’strustinsomeparticularsourcesandwhensheselectsoneofthem,itisnextaskedtofind plansthataresimilartotheselectedone. Therequirementofsearchingforasetofplansisalso consideredinintrusiondetection(Boddyetal.,2005)whereasecurityanalysisneedstoanalyze asetofattackplansthatmightbeattemptedbyapotentialadversary,givenlimited(orunknown) informationabouttheadversary’smodel(e.g.,hisgoals,capabilities,habits,...),andtheresult- inganalyzedinformationcanthenbeusedtosetupdefensivestrategiesagainstpotentialattacks in the future. Another example can be found in Memonetal. (2001) in which test cases for graphicaluserinterfaces(GUIs)aregeneratedasasetofdistinctplans,eachcorrespondingtoa sequenceofactionsthatausercouldperform,giventheuser’sunknownpreferencesonhowto interactwiththeGUItoachievehergoals. Thecapabilityofsynthesizingmultipleplanswould alsohavepotentialapplicationincase-basedplanning(e.g.,Serina(2010))whereitisimportant tohaveaplansetsatisfyingacaseinstance.Theseplanscanbedifferentintermsofcriteriasuch asresources,makespanandcostthatcanonlybespecifiedintheretrievalphase. Intheproblem oftravelplanningforindividualsofacityinadistributedmannerwhilealsooptimizingpublic resource(e.g., road, trafficpolice personel),the availabilityof a numberof plansforeachper- son’sgoalscouldmaketheplanmergingphaseeasierandreducetheconflictsamongindividual plans. In this work, we investigate the problem of generatinga set of plans in order to deal with planning situations where the preference model is not completely specified. In particular, we considerthefollowingscenarios: • Eventhoughtheplannerisawarethattheuserhassomepreferencesonsolutionplans,it isnotprovidedwithanyofthatknowledge. • Theplannerisprovidedwithincompleteknowledgeoftheuser’spreferences.Inparticular, theuserisinterestedinsomeplanattributes(suchasthedurationandcostofaflight,or whetherallpackageswithpriorityaredeliveredontimein alogistic domain),eachwith differentbutunknowndegreeof importance(representedby weight or trade-off values). Normally,itisquitehardforausertoindicatetheexacttrade-offvalues,butinsteadmore likely to determine that one attribute is more (or less) important than some others—for instance, a bussinessman would consider the duration of a flight much more important than its cost. Such kindof incompletepreferencespecificationcouldbe modeledwith a probabilitydistributionofweightsvalues2,andisthereforeassumedtobegivenasaninput (togetherwiththeattributes)totheplanner. Even though, in principle, the user would have a better chance to find her desired plan froma largerplan set, there are two problemsto consider—onecomputational,and othercomprehen- sional. Thecomputationalproblemisthatsynthesisofasingleplanisoftenquitecostlyalready, and thereforeit is even morechallengingto search for a large plan set. Comingto the second problem,itisunclearthattheuserwillbeabletoinspectalargesetofplanstoidentifytheplan 2Evenifwedonothaveanyspecialknowledgeaboutthisprobabilitydistribution,wecanalwaysstartbyinitializing ittobeuniform,andgraduallyimproveitbasedoninteractionwiththeuser. 2 she prefers. What is clearly needed, therefore, is the ability to generate a set of plans, among allsetsofbounded(small)numberofplans,withthehighestchanceofincludingtheuser’spre- ferredplan. Animmediatechallengeisformalizingwhatitmeansforameaningfulsetofplans, inotherwordswhatthequalitymeasureofplansetsshouldbegivenanincompletepreference specification. We propose different quality measures for the two scenarios listed above. In the extreme case whenthe usercouldnotprovideanyknowledgeof herpreferences,we define a spectrum ofdistancemeasuresbetweentwo plansbasedontheirsyntacticfeaturesinordertodefinethe diversitymeasureofplansets. Thesemeasurescanbeusedregardlessoftheuser’spreference, and by maximizing the diversity of a plan set we increase the chance that the set is uniformly distributedintheunknownpreferencespace,andthereforelikelycontainsaplanthatiscloseto auser’sdesiredone. Thismeasurecanbefurtherrefinedwhensomeknowledgeoftheuser’spreferencesispro- vided. Asmentionedabove,weassumethattheuser’spreferenceisspecifiedbyaconvexcom- binationofplanattributes,andincompleteinthesensethatthedistributionoftrade-offweights is given, not their exact values. The whole set of best plans (i.e. the ones with the best value function)can be picturedas the lower convex-hullof the Pareto set on the attribute space. To measure the quality of any (bounded)set of plans on the whole optimalset, we adaptthe idea ofIntegratedPreferenceFunction(IPF)(Carlyleetal.,2003),inparticularitsspecialcaseInte- gratedConvexPreference(ICP).ThismeasurewasdevelopedintheOperationsResearch(OR) communityinthecontextofmulti-criteriascheduling,andisabletoassociatearobustmeasure ofrepresentativenessforanysetofsolutionschedules(Fowleretal.,2005). Armed with these quality measures, we can then formulate the problem of planning with partialpreferencemodelsasfindingaboundedsetofplansthathasthebestqualityvalue. Our next contribution therefore is to investigate effective approachesfor using quality measures to biasaplanner’ssearchtofindahighqualityplansetefficiently. Forthefirstscenariowhenthe preferencespecificationisnotprovided,tworepresentativestate-of-the-artplanningapproaches are considered. The first, GP-CSP (DoandKambhampati, 2001), typifies the issues involved ingeneratingdiverseplansinboundedhorizoncompilationapproaches,whilethesecond, LPG (Gerevinietal., 2003), typifies the issues involved in modifying the heuristic search planners. OurinvestigationswithGP-CSPallowustocomparetherelativedifficultiesofenforcingdiversity with each of the three differentdistance measures (elaboratedin later section). With LPG, we findthattheproposedqualitymeasuremakesitmoreeffectiveingeneratingplansetoverlarge problem instances. For the second case when part of the user’s preferences is provided, we alsopresentaspectrumofapproachesforsolvingthisproblemefficiently. Weimplementthese approaches on top of Metric-LPG (Gerevinietal., 2008). Our empirical evaluation compares these approachesbothamongthemselvesaswellasagainstthemethodsforgeneratingdiverse plansignoringthepartialpreferenceinformation,andtheresultsdemonstratethepromiseofour proposedsolutions. Our work can be considered as a complementto current research in planning with prefer- ences, as shownin Figure1. Underthe perspectiveofplanningwith preferences,mostcurrent workinplanningsynthesizeasinglesolutionplan,orasinglebestone,insituationswhereuser has no preferences, or a complete knowledge of preferences is given to the planner. On the other hand, we address the problem of synthesizing a set of plans when knowledge of user’s preferencesiseithercompletelyunknownorpartiallyspecified. Thepaperisorganizedasfollows.Section2givesfundamentalconceptsinpreferences,and formalnotations. InSection3, weformalizequalitymeasuresofplansetinthetwo scenarios. 3 Figure1:Anoverviewpictureofplanningwithrespecttoknowledgeofuser’spreferences. Sections 4 and 5 discuss our various heuristic approachesto generate plan sets, together with the experimentalresults. We discuss related work in Section 6, future work and conclusionin Section7. 2. BackgroundandNotation GivenaplanningproblemwiththesetofsolutionplansS,auserpreferencemodelisatransitive, reflextiverelationinS×S,whichdefinesanorderingbetweentwoplanspandp′inS.Intuitively, p (cid:22) p′ means that the user prefers p at least as much as p′. Note that this ordering can be eitherpartial(i.e. itispossiblethatneitherp (cid:22) p′ norp′ (cid:22) p holds—inotherwords,theyare incomparable),ortotal(i.e.eitherp(cid:22)p′orp′ (cid:22)pholds).Aplanpisconsideredmorepreferred than a plan p′, denotedby p ≺ p′, if p (cid:22) p′, p′ 6(cid:22) p, and theyare equallypreferredif p (cid:22) p′ andp′ (cid:22) p. Aplanpisanoptimal(i.e.,mostpreferred)planifp (cid:22) p′ foranyotherplanp′. A plansetP ⊆S isconsideredmorepreferredthanP′ ⊆S,denotedbyP ≺P′,ifp≺p′forany p∈P andp′ ∈P′,andtheyareincomparableifthereexistsp∈P andp′ ∈P′suchthatpand p′areincomparable. Theordering(cid:22)impliesapartitionofS intodisjointplansets(orclasses)S0,S1, ... (S0∪ S1∪... =S,Si∩Sj =∅)suchthatplansinthesamesetareequallypreferred,andforanyset S ,S ,eitherS ≺ S ,S ≺ S ,ortheyareincomparable. Thepartialorderingbetweenthese i j i j j i setscanberepresentedasaHassediagram(Birkhoff,1948)wherethesetsarevetices,andthere isan(upward)edgefromS toS ifS ≺ S andthereisnotanyS inthepartitionsuchthat j i i j k S ≺ S ≺ S . We denotel(S )asthe“layer”oftheset S in thediagram,assumingthatthe i k j i i mostpreferredsetsareplacedatthelayer0,andl(S ) = l(S )+1ifthereisanedgefromS j i j toS . Aplaninasetatalayerwiththesmallervalue,ingeneral,iseithermorepreferredthan i 4 Figure2:TheHassediagramsandlayersofplansetsimpliedbytwopreferencemodels.In(a),S1≺S2≺S3,andany twoplansarecomparable. In(b),ontheotherhand,S1 ≺ S2 ≺ S4,S1 ≺S3,andeachplaninS3isincomparable withplansinS2andS4. or incomparable with ones at high-value layers.3 Figure 2 show examples of Hasse diagrams representingatotalandpartialpreferenceorderingbetweenplans. Whenthepreferencemodelisexplicitlyspecified,answeringqueriessuchascomparingtwo plans,findingamostpreferred(optimal)planbecomesaneasytask. Thisispossible,however, onlyifthesetofplansissmallandknownupfront. Manypreferencelanguages,therefore,have beenproposedtorepresenttherelation(cid:22)inamorecompactway,andserveasstartingpointsfor algorithmstoanswerqueries.Mostpreferencelanguagesfallintothefollowingtwocategories: • Quantitativelanguagesdefinea valuefunctionV : S → R whichassignsa realnumber to each plan, with a precise interpretationthat p (cid:22) p′ ⇐⇒ V(p) ≤ V(p′). Although this function is defined differently in many languages, at a high level it combines the user’s preferences on various aspects of plan that can be measured quantitatively. For instance, in the context of decision-theoretic planning (Boutilieretal., 1999), the value functionofapolicyisdefinedastheexpectedrewardsofstatesthatarevisitedwhenthe policy executes. In partial satisfaction (over-subcription) planning (PSP) (Smith, 2004; VanDenBrieletal.,2004),thequalityofplansisdefinedasitstotalrewardsofsoftgoals achievedminusitstotalactioncosts. InPDDL2.1(FoxandLong,2003),thevaluefunc- tionisanarithmeticfunctionofnumericalfluentssuchasplanmakespans,fuelusedetc., andinPDDL3(Gerevinietal.,2009)itisenhancedwithindividualpreferencespecifica- tion defined as formulae over state trajectory using linear temporal logic (LTL) (Pnueli, 1977). • Qualitativelanguagesprovidequalitativestatementsthataremoreintuitiveforlayusersto specify. A commonlyused languageof this typeis CP-networks(Boutilieretal., 2004), wheretheusercanspecifyherpreferencestatementsonvaluesofplanattributes,possibly givenspecificationof others(forinstance, “Amongticketswith the same prices, I prefer airline A to airline B.”). Another example is LPP (Bienvenuetal., 2006) in which the 3If(cid:22)isatotalordering,thenplansatsmallerlayerismorepreferredthanonesathigherlayer. 5 Figure3:Themetamodel(BrafmanandDomshlak,2009). statementscanbespecifiedusingLTLformulae,andpossiblybeingaggregatedindifferent ways. Figure3showstheconceptualrelationofpreferencemodels,languagesandalgorithms. We refer the reader to the work by Brafman and Domshlak (2009) for a more detailed discussion on this metamodel, and by Baier and McIlraith (2009) for an overviewof differentpreference languagesusedinplanningwithpreferences. Fromthemodelingpointofview,inordertodesignasuitablelanguagecapturingtheuser’s preferencemodel, the modeler should be providedwith some knowledgeof the user’s interest that affectsthe way she evaluatesplans(for instance, flight durationand ticketcost in a travel planning scenario). Such knowledgein many cases, however, cannotbe completely specified. Our purpose therefore is to present a bounded set of plans to the user in the hope that it will increasethechancethatshecanfindadesiredplan. Inthenextsection,weformalizethequality measuresforplansetsintwosituationswhereeithernoknowledgeoftheuser’spreferencesor onlypartofthemisgiven. 3. QualityMeasuresforPlanSets 3.1. SyntacticDistanceMeasuresforUnknownPreferenceCases Wefirstconsiderthesituationinwhichtheuserhassomepreferencesforsolutionplans,butthe plannerisnotprovidedwithanyknowledgeofsuchpreferences.Itisthereforeimpossibleforthe plannertoassumeanyparticularformofpreferencelanguagerepresentingthehiddenpreference model.Therearetwoissuesthatneedtobeconsideredinformalizingaqualitymeasureforplan sets: • Whataretheelementsofplansthatcanbeinvolvedinaqualitymeasure? • Howshouldaqualitymeasurebedefinedusingthoseelements? For the first question, we observe that even though users are normally interested in some highlevelfeaturesofplansthatarerelevanttothem,manyofthosefeaturescanbeconsideredas “functions”ofbaselevelelementsofplans.Forinstance,thesetofactionsintheplandetermine themakespanofa(sequential)plan,andthesequenceofstateswhentheplanexecutesgivesthe totalrewardof goalsachieved. We considerthe followingthreetypesofbase levelfeaturesof planswhichcouldbeusedindefiningqualitymeasure,independentlyofthedomainsemantics: • Actionsthatarepresentinplans,whichdefinevarioushighlevelfeaturesoftheplanssuch asitsmakespan,executioncostetc. thatareofinteresttotheuserwhosepreferencemodel couldberepresentedwithpreferencelanguagessuchasinPSPandPDDL2.1. 6 Basis Pros Cons Actions Doesnotrequire Noprobleminformation probleminformation isused States Notdependentonanyspecific Needsanexecution planrepresentation simulatortoidentifystates Causallinks Considerscausalproximity Requiresdomaintheory ofstatetransitions(action) ratherthanpositional (physical)proximity Table1:Theprosandconsofdifferentbaselevelelementsofplan. • Sequence of states that the agent goes through, which captures the behaviors resulting from the executionof plans. In manypreferencelanguagesdefinedusing highlevelfea- tures of plans such as the reward of goals collected (e.g., PSP), of the whole state (e.g., MDP), or the temporal relation between propositionsoccur in states (e.g. PDDL3, PP (SonandPontelli,2006)andLPP(FritzandMcIlraith,2006)),thesequenceofstatescan affectthequalityofplanevaluatedbytheuser. • The causallinksrepresentinghow actionscontribute to the goalsbeingachieved,which measures the causal structures of plans.4 These plan elements can affect the quality of planswithrespecttothelanguagesmentionedabove,asthecausallinkscaptureboththe actionsappearinginaplanandthetemporalrelationbetweenactionsandvariables. Asimilarconceptualseparationoffeatureshasalsobeenconsideredrecentlyinthecontext ofcase-basedplanningbySerina(2010),inwhichplanningproblemswereassumedtobewell classified, in terms of costs to adapt plans of one problem to solve another, in some unknown highlevelfeaturespace. Thesimilaritybetweenproblemsinthespacewereimplicitlydefined usingkernelfunctionsoftheirdomain-independentgraphrepresentations. Inoursituation, we aimtoapproximatequalityofplansetsonthespaceoffeaturesthattheuserisinterestedinusing distancebetweenplanswithrespecttobaselevelfeaturesofplansmentionedabove(seebelow). Table1givestheprosandconsofusingthedifferentbaselevelelementsofplan. We note thatifactionsintheplansareusedindefiningqualitymeasureofplansets,noadditionalproblem ordomaintheoryinformationisneeded. If planbehaviorsareusedasbase levelelements, the representation of the plans that bring about state transition becomes irrelevant since only the actualstatesthatanexecutionoftheplanwilltakeisconsidered. Hence,wecannowcompare plans of different representations, e.g., four plans where the first is a deterministic plan, the second is a contingentplan, the third is a hierarchicalplan andthe fourthis a policyencoding probabilisticbehavior. Ifcausallinksareused,thenthecausalproximityamongactionsisnow consideredratherthanjustphysicalproximityintheplan. Giventhosebaselevelelements,thenextquestionishowtodefineaqualitymeasureofplan setsusingthem.Recallthatwithoutanyknowledgeabouttheuser’spreferences,thereisnoway for theplannerto assume anyparticularpreferencelanguage,because ofwhich the motivation 4Acausallinka1→p a2recordsthatapredicateisproducedbya1andconsumedbya2. 7 behindachoiceofqualitymeasureshouldcomefromthehiddenuser’spreferencemodel.Given aHassediagraminducedfromtheuser’spreferencemodel,ak-plansetthatwillbepresentedto theusercanbeconsideredtoberandomlyselectedfromthediagram. Theprobabilityofhaving oneplanin thesetclassifiedin aclassattheoptimallayerwouldincreasewhentheindividual plansaremorelikelytobeatdifferentlayers,andthischanceinturnwillincreaseiftheyareless likelytobeequallypreferedbytheuser.5 Ontheotherhand,theeffectofbaselevelelementsof aplanonhighlevelfeaturesrelevanttotheusersuggeststhatplanssimilarwithrespecttobase levelfeaturesaremorelikelytobeclosetoeachotheronthehighlevelfeaturespacedetermining user’spreferencemodel. Inordertodefineaqualitymeasureusingbaselevelfeaturesofplans,weproceedwiththe following assumption: plans that are different from each other with respect to the base level featuresarelesslikelytobeequallypreferedbytheuser,inotherwordstheyaremorelikelyto beatdifferentlayersoftheHassediagram.Withthepurposeofincreasingthechanceofhaving aplanthattheuserprefers,weproposethequalitymeasureofplansetsasitsdiversitymeasure, definedusingthedistancebetweentwoplansinthesetwithrespecttoabaselevelelement.More formally,thequalitymeasureζ : 2S → RofaplansetP canbedefinedaseithertheminimal, maximal,oraveragedistancebetweenplans: • Minimaldistance: ζ (P)= min δ(p,p′) (1) min p,p′∈P • Maximaldistance: ζ (P)= max δ(p,p′) (2) max p,p′∈P • Averagedistance: −1 |P| ζ (P)= × δ(p,p′) (3) avg (cid:18) 2 (cid:19) p,Xp′∈P whereδ :S×S →[0,1]isthedistancemeasuresbetweentwoplans. 3.1.1. Distancemeasuresbetweenplans Therearevariouschoicesonhowtodefinethedistancemeasureδ(p,p′)betweentwoplansusing planactions, sequenceofstatesorcausallinks, andeachway canhavedifferentimpactonthe diversityof plan set on the Hasse diagram. In the following, we proposedistance measuresin whichaplanisconsideredas(i)a setofactionsandcausallinks, or(ii)sequenceofstatesthe agentgoesthrough,whichcouldbeusedindependentlyofplanrepresentation(e.g. totalorder, partialorderplans). 5Tosee this, consider adiagram with S1 = {p1,p2}at layer 0, S2 = {p3}and S3 = {p4}atlayer 1, and S4 = {p5}atlayer2. Assumingthatwerandomlyselectasetof2plans. Ifthoseplansareknowntobeatthesame layer,thenthechanceofhavingoneplanatlayer0is 1. However,iftheyareforcedtobeatdifferentlayers,thenthe 2 probabilitywillbe 3. 4 8 • Plan as a set ofactionsor causallinks: givena plan p, let A(p) and C(p) be the set of actionsorcausallinksofp. Thedistancebetweentwoplanspandp′canbedefinedasthe ratio of the numberof actions(causallinks) thatdo notappearin both plansto the total numberofactions(causallinks)appearinginoneofthem: |A(p)∩A(p′)| δ (p,p′)=1− (4) A |A(p)∪A(p′)| |C(p)∩C(p′)| δ (p,p′)=1− (5) CL |C(p)∪C(p′)| • Planasasequenceofstates:giventwosequenceofstates(s0,s1,...,sk)and(s′0,s′1,...,s′k′) resultingfromexecutingtwo plansp and p′, and assume thatk′ ≤ k. Since the two se- quenceofstatesmayhavedifferentlength,therearevariousoptionsin definingdistance measure between p and p′, and we considerhere two simple options. In the first one, it can be definedas the averageof the distancesbetweenstate pairs(s ,s′) (0 ≤ i ≤ k′), i i and each state sk′+1,... sk is consideredto contributemaximally(i.e. one unit) into the differencebetweentwoplans: k′ 1 δ (p,p′)= ×[ ∆(s ,s′)+k−k′] (6) S k i i Xi=1 Ontheotherhand,wecanassumethattheagentcontinuestostayatthegoalstates′ in k′ thenext(k−k′)timestepsafterexecutingp′,andthemeasurecanbedefinedasfollows: k′ k 1 δS(p,p′)= k ×[ ∆(si,s′i)+ ∆(si,s′k′)] (7) Xi=1 i=Xk′+1 The distance measure ∆(s,s′) between two states s, s′ used in those two measures is definedas s∩s′ ∆(s,s′)=1− (8) s∪s′ Example: Figure 4 shows three plans p1, p2 and p3 for a planning problem where the initial state is {r1} and the goal propositionsare {r3,r4}. The specification of actions are shown in thetable. Theactionsetsofthefirsttwoplans({a1,a2,a3}and{a1,a2,a4})arequitesimilar (δA(p1,p2) = 0.5),butthecausallinkswhichinvolvea3 (a2 → r3 −a3, a3 → r4 −aG)and a4(aI →r1−a4,a4 →r4−aG)maketheirdifferencemoresignificantwithrespecttocausal- linkbaseddistance(δCL(p1,p2) = 47). Twootherplansp1 andp3,ontheotherhand,arevery differentintermsofactionsets(andthereforethesetsofcausallinks): δA(p1,p3)=1,butthey arecloserintermofstate-baseddistance(13 asdefinedintheequation6,and0.5ifdefinedin 18 theequation7). 9 Figure4: Exampleillustratingplanswithbase-levelelements. aI andaGdenotedummyactionsproducingtheinitial stateandconsumingthegoalpropositions,respectively(seetextformoredetails). 3.2. IntegratedPreferenceFunction(IPF)forPartialPreferenceCases Wenowdiscussaqualitymeasureforplansetsinthecasewhentheuser’spreferenceispartially expressed. In particular, we consider scenarios in which the preference model can be repre- sentedbysomequantitativelanguagewithanincompletelyspecifiedvaluefunctionofhighlevel features. As an example, the quality of plans in PDDL2.1 (FoxandLong, 2003) and PDDL3 (GereviniandLong, 2005) are represented by a metric function combining metric fluents and preferencestatementsonstatetrajectorywithparametersrepresentingtheirrelativeimportance. While providing a convenient way to represent preference models, such parameterized value functionspresentanissueofobtainingreasonablevaluesfortherelativeimportanceofthefea- tures. A common approach to model this type of incomplete knowledge is to consider those parametersasavectorofrandomvariables,whosevaluesareassumedtobedrawnfromadistri- bution.Thisistherepresentationthatwewillfollow. Tomeasurethequalityofplansets,weproposetheusageofIntegratedPreferenceFunction (IPF) (Carlyleetal., 2003), which has been used to measure the quality of a solution set in a widerangeofmulti-objectiveoptimizationproblems. TheIPFmeasureassumesthattheuser’s preferencemodelcan be representedby two factors: (1) a probabilitydistribution h(α) of pa- rametervectorαsuchthat h(α)dα = 1(intheabsenceofanyspecialinformationaboutthe α distribution, h(α) can be aRssumed to be uniform), and (2) a value functionV(p,α) : S → R combinesdifferentobjectivefunctionsintoasinglereal-valuedqualitymeasureforplanp. This incompletespecification of the value functionrepresentsa set of candidatepreferencemodels, foreachofwhichtheuserwillselectadifferentplan,theonewiththebestvalue,fromagiven plansetP ⊆S. TheIPFvalueofsolutionsetP isdefinedas: IPF(P)= h(α)V(p ,α)dα (9) α Z α 10