ebook img

Planning Methods for Aerial Exploration and Ground Target Tracking PDF

203 Pages·2009·2.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Planning Methods for Aerial Exploration and Ground Target Tracking

Linköpingstudiesinscienceandtechnology. Thesis. No.1420 Planning Methods for Aerial Exploration and Ground Target Tracking Per Skoglar REGLERTEKNIK AUTOMATIC CON T R O L LINKÖPING DivisionofAutomaticControl DepartmentofElectricalEngineering LinköpingUniversity,SE-58183Linköping,Sweden http://www.control.isy.liu.se [email protected] Linköping2009 ThisisaSwedishLicentiate’sThesis. SwedishpostgraduateeducationleadstoaDoctor’sdegreeand/oraLicentiate’sdegree. ADoctor’sDegreecomprises240ECTScredits(4yearsoffull-timestudies). ALicentiate’sdegreecomprises120ECTScredits, ofwhichatleast60ECTScreditsconstituteaLicentiate’sthesis. Linköpingstudiesinscienceandtechnology. Thesis. No.1420 PlanningMethodsforAerialExplorationandGroundTargetTracking PerSkoglar [email protected] www.control.isy.liu.se DepartmentofElectricalEngineering LinköpingUniversity SE-58183Linköping Sweden ISBN978-91-7393-509-8 ISSN0280-7971 LiU-TEK-LIC-2009:28 Copyright(cid:13)c 2009PerSkoglar PrintedbyLiU-Tryck,Linköping,Sweden2009 TillMaria Abstract This thesis considers unmanned airborne surveillance systems equipped with electro- optical vision sensors. The aim is to increase the level of autonomy and improve the system performance by the use of planning methods for aerial exploration and target tracking. Thegeneralproblemisverycomplexduetothe“curse-of-dimensionality”and suboptimalapproachesarenecessaryinordertohandleadvancedsurveillancemissions. A general planning framework is proposed and the planner contains a high-level sched- uler and a number of planning modes. Each mode consists of planning modules that solve smaller sub-tasks and in this thesis a number of these modules are developed. In particular, two major approaches are treated; information based planning, and Bayesian targetsearch. Inaddition,theon-roadtargettrackingproblemistreatedindetailandan algorithmbasedontheParticlefilterispresented. In information based planning, different information measures are used to solve the optimal trajectory planning problem for bearings-only estimation. Thus, the problem is howtomaneuveranunmannedaerialvehicle(UAV)toachievethebestpossibleestimate ofatargetlocationwhileobservingitwithavisionsensor. ApproachesbasedontheIn- formationfilterandthedifferentialentropyareproposed. TheInformationfilterapproach isalsousedtodevelopanexplorationframeworkwheretheUAVflighttrajectoryandthe sensorpointingdirectionareconsideredconcurrently. In Bayesian target search, the aim is to find a target as quickly as possible given somepriorknowledgeofwhereitmightbe. Methodsbasedonbothgradientsearchand combinatorialoptimizationroutinesareproposedforthesearchproblemwhereaUAVis equippedwithacontrollablevisionsensorwithlimitedfield-of-view. v Acknowledgments FirstofallIwouldliketothankmysupervisorProf.FredrikGustafssonforthesupport andguidanceduringmyyearssofaratAutomaticControl(RT),aspectaculargroupunder theleadershipofProf.LennartLjung. IamverygratefultoLennartandFredrik,andalso totheprojectleaderofARCUSMorganUlvkloandtheformerheadofSensorInformatics Dr.JörgenAhlbergatFOI,formakingthetransferfromFOItoRTpossible. TwomajorreasonsfortheexistenceofthisthesisareDr.UmutOrgunerandDr.David Törnqvist, my valuable co-authors, proofreaders and discussion partners. Who needs BatmanandRobinwhenyouareintown!? Thankyouforalltheencouragementandthe patience! SomeoftheideasinthisthesisaroseduringmytimeatFOIandthediscussions with,inparticular,Dr. JonasNygårds. YouhaveanimpressiveflowofideasandIenjoy discussingwithyou. A large number of people have made contributions to this work. I am grateful to all the people in ARCUS (can not mention them all...), the co-authors at FOI (Morgan Ulvklo, Dr. Jonas Nygårds, Dr. Jörgen Karlholm, Dr. Patrik Hermansson, Dr. Petter Ögren, Dr. Johan Hamberg and Rikard Björström), and the MSSLab/ARCUS people at FOI (Dr. David Lindgren, Dr. Christina Grönwall, Fredrik Näsström, Mikael Karlsson, Gustav Haapalahti, Mirsad Cirkic, Dr. Joakim Rydell and Lic. Karl-Göran Stenborg). I wouldalsoliketothankLic.HenrikTidefeltandDr.GustafHendeby, forthehelpwith variouslayoutproblems,andUllaSalaneck,RT,andAgnetaAhlström,FOI,forsupport withvariousadministrationissues. ThisworkisapartoftheTAIS-programmanagedbyFMV(SwedishDefenceMateriel Administration)andfinancedbytheSwedishArmedForcesandVinnova(TheSwedish Governmental Agency for Innovation Systems), which are hereby gratefully acknowl- edged. Finally,IwouldliketothankmywifeMaria. Thankyouforallthelove,patienceand supportyouaregivingme! Linköping,October2009 PerSkoglar vii Contents 1 Introduction 1 1.1 ARCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 UAVSurveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 I Background 9 2 PlanningforUAVSurveillance 11 2.1 DataFusionandSensorManagement . . . . . . . . . . . . . . . . . . . 12 2.1.1 TargetTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 SensorManagement . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 OptimizationbasedPlanning . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 ThePlanningGoal-Whatisgoodplanning? . . . . . . . . . . . 14 2.2.2 PlanningConstraints . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 ScopeoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 StochasticOptimalControl . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 FiniteHorizonStochasticOptimalControl . . . . . . . . . . . . 16 2.3.2 ThePrincipleofOptimalityandtheDPAlgorithm . . . . . . . . 17 2.4 SuboptimalPlanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 SuboptimalApproaches . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 PlanningFramework . . . . . . . . . . . . . . . . . . . . . . . . 19 3 GroundTargetTracking 23 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 TargetTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Multi-TargetTracking . . . . . . . . . . . . . . . . . . . . . . . 24 ix x Contents 3.1.3 GroundTargetTracking . . . . . . . . . . . . . . . . . . . . . . 24 3.1.4 Electro-OpticalImagingSystemPerformance . . . . . . . . . . . 26 3.2 VisionSensorModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Bearings-onlyObservationModel . . . . . . . . . . . . . . . . . 27 3.3 TargetMotionModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 RandomWalkModel . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 ConstantVelocityMotionModel . . . . . . . . . . . . . . . . . . 28 3.3.3 CoordinatedTurnModel . . . . . . . . . . . . . . . . . . . . . . 28 3.3.4 RoadNetworkModel. . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.5 RoadTargetMotionModel . . . . . . . . . . . . . . . . . . . . . 29 3.3.6 RoadTargetMotionModelwithmodifiedSpeedState . . . . . . 30 3.4 TargetTrackingFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 TheGeneralEstimationSolution . . . . . . . . . . . . . . . . . . 31 3.4.2 ParticleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.3 Rao-BlackwellizedParticleFilter(RBPF) . . . . . . . . . . . . . 32 3.5 ARoadTargetFilterbasedonRBPF . . . . . . . . . . . . . . . . . . . . 33 3.6 ProbabilityofDetectionandNegativeInformation. . . . . . . . . . . . . 35 3.6.1 InformationfromNon-Detections . . . . . . . . . . . . . . . . . 35 3.6.2 ProbabilityofDetectionModel . . . . . . . . . . . . . . . . . . 36 3.7 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.A FilterAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.A.1 KalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.A.2 ExtendedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . 42 3.A.3 ParticleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.A.4 BayesianBootstrapParticleFilter . . . . . . . . . . . . . . . . . 45 3.A.5 Rao-BlackwellizedParticleFilter . . . . . . . . . . . . . . . . . 45 II InformationBasedPlanning 47 4 ObserverTrajectoryPlanningbasedonInformationFilter 49 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 SuboptimalApproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 CertaintyEquivalenceControl . . . . . . . . . . . . . . . . . . . 52 4.3.2 Open-loopFeedbackControl . . . . . . . . . . . . . . . . . . . . 52 4.4 InformationMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.1 EntropicInformation . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.2 MutualInformation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.3 TheInformationFilter . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 CECPlannerbasedontheInformationFilter. . . . . . . . . . . . . . . . 55 4.6 OLFCPlannerbasedontheInformationFilter . . . . . . . . . . . . . . . 56 4.7 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.7.1 CEC-EIFPlannerwithRandomWalkTargetin2D . . . . . . . . 58 4.7.2 OLFC-EIFPlannerwithRandomWalkTargetin2D . . . . . . . 59 4.7.3 CEC-EIFPlannerwithRandomWalkTargetin3D . . . . . . . . 60

Description:
system performance by the use of planning methods for aerial exploration and target tracking. The general problem is 1 Introduction. 1. 1.1 ARCUS.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.