Linköpingstudiesinscienceandtechnology. Thesis. No.1420 Planning Methods for Aerial Exploration and Ground Target Tracking Per Skoglar REGLERTEKNIK AUTOMATIC CON T R O L LINKÖPING DivisionofAutomaticControl DepartmentofElectricalEngineering LinköpingUniversity,SE-58183Linköping,Sweden http://www.control.isy.liu.se [email protected] Linköping2009 ThisisaSwedishLicentiate’sThesis. SwedishpostgraduateeducationleadstoaDoctor’sdegreeand/oraLicentiate’sdegree. ADoctor’sDegreecomprises240ECTScredits(4yearsoffull-timestudies). ALicentiate’sdegreecomprises120ECTScredits, ofwhichatleast60ECTScreditsconstituteaLicentiate’sthesis. Linköpingstudiesinscienceandtechnology. Thesis. No.1420 PlanningMethodsforAerialExplorationandGroundTargetTracking PerSkoglar [email protected] www.control.isy.liu.se DepartmentofElectricalEngineering LinköpingUniversity SE-58183Linköping Sweden ISBN978-91-7393-509-8 ISSN0280-7971 LiU-TEK-LIC-2009:28 Copyright(cid:13)c 2009PerSkoglar PrintedbyLiU-Tryck,Linköping,Sweden2009 TillMaria Abstract This thesis considers unmanned airborne surveillance systems equipped with electro- optical vision sensors. The aim is to increase the level of autonomy and improve the system performance by the use of planning methods for aerial exploration and target tracking. Thegeneralproblemisverycomplexduetothe“curse-of-dimensionality”and suboptimalapproachesarenecessaryinordertohandleadvancedsurveillancemissions. A general planning framework is proposed and the planner contains a high-level sched- uler and a number of planning modes. Each mode consists of planning modules that solve smaller sub-tasks and in this thesis a number of these modules are developed. In particular, two major approaches are treated; information based planning, and Bayesian targetsearch. Inaddition,theon-roadtargettrackingproblemistreatedindetailandan algorithmbasedontheParticlefilterispresented. In information based planning, different information measures are used to solve the optimal trajectory planning problem for bearings-only estimation. Thus, the problem is howtomaneuveranunmannedaerialvehicle(UAV)toachievethebestpossibleestimate ofatargetlocationwhileobservingitwithavisionsensor. ApproachesbasedontheIn- formationfilterandthedifferentialentropyareproposed. TheInformationfilterapproach isalsousedtodevelopanexplorationframeworkwheretheUAVflighttrajectoryandthe sensorpointingdirectionareconsideredconcurrently. In Bayesian target search, the aim is to find a target as quickly as possible given somepriorknowledgeofwhereitmightbe. Methodsbasedonbothgradientsearchand combinatorialoptimizationroutinesareproposedforthesearchproblemwhereaUAVis equippedwithacontrollablevisionsensorwithlimitedfield-of-view. v Acknowledgments FirstofallIwouldliketothankmysupervisorProf.FredrikGustafssonforthesupport andguidanceduringmyyearssofaratAutomaticControl(RT),aspectaculargroupunder theleadershipofProf.LennartLjung. IamverygratefultoLennartandFredrik,andalso totheprojectleaderofARCUSMorganUlvkloandtheformerheadofSensorInformatics Dr.JörgenAhlbergatFOI,formakingthetransferfromFOItoRTpossible. TwomajorreasonsfortheexistenceofthisthesisareDr.UmutOrgunerandDr.David Törnqvist, my valuable co-authors, proofreaders and discussion partners. Who needs BatmanandRobinwhenyouareintown!? Thankyouforalltheencouragementandthe patience! SomeoftheideasinthisthesisaroseduringmytimeatFOIandthediscussions with,inparticular,Dr. JonasNygårds. YouhaveanimpressiveflowofideasandIenjoy discussingwithyou. A large number of people have made contributions to this work. I am grateful to all the people in ARCUS (can not mention them all...), the co-authors at FOI (Morgan Ulvklo, Dr. Jonas Nygårds, Dr. Jörgen Karlholm, Dr. Patrik Hermansson, Dr. Petter Ögren, Dr. Johan Hamberg and Rikard Björström), and the MSSLab/ARCUS people at FOI (Dr. David Lindgren, Dr. Christina Grönwall, Fredrik Näsström, Mikael Karlsson, Gustav Haapalahti, Mirsad Cirkic, Dr. Joakim Rydell and Lic. Karl-Göran Stenborg). I wouldalsoliketothankLic.HenrikTidefeltandDr.GustafHendeby, forthehelpwith variouslayoutproblems,andUllaSalaneck,RT,andAgnetaAhlström,FOI,forsupport withvariousadministrationissues. ThisworkisapartoftheTAIS-programmanagedbyFMV(SwedishDefenceMateriel Administration)andfinancedbytheSwedishArmedForcesandVinnova(TheSwedish Governmental Agency for Innovation Systems), which are hereby gratefully acknowl- edged. Finally,IwouldliketothankmywifeMaria. Thankyouforallthelove,patienceand supportyouaregivingme! Linköping,October2009 PerSkoglar vii Contents 1 Introduction 1 1.1 ARCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 UAVSurveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 I Background 9 2 PlanningforUAVSurveillance 11 2.1 DataFusionandSensorManagement . . . . . . . . . . . . . . . . . . . 12 2.1.1 TargetTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 SensorManagement . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 OptimizationbasedPlanning . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 ThePlanningGoal-Whatisgoodplanning? . . . . . . . . . . . 14 2.2.2 PlanningConstraints . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 ScopeoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 StochasticOptimalControl . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 FiniteHorizonStochasticOptimalControl . . . . . . . . . . . . 16 2.3.2 ThePrincipleofOptimalityandtheDPAlgorithm . . . . . . . . 17 2.4 SuboptimalPlanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 SuboptimalApproaches . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 PlanningFramework . . . . . . . . . . . . . . . . . . . . . . . . 19 3 GroundTargetTracking 23 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 TargetTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Multi-TargetTracking . . . . . . . . . . . . . . . . . . . . . . . 24 ix x Contents 3.1.3 GroundTargetTracking . . . . . . . . . . . . . . . . . . . . . . 24 3.1.4 Electro-OpticalImagingSystemPerformance . . . . . . . . . . . 26 3.2 VisionSensorModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Bearings-onlyObservationModel . . . . . . . . . . . . . . . . . 27 3.3 TargetMotionModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 RandomWalkModel . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 ConstantVelocityMotionModel . . . . . . . . . . . . . . . . . . 28 3.3.3 CoordinatedTurnModel . . . . . . . . . . . . . . . . . . . . . . 28 3.3.4 RoadNetworkModel. . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.5 RoadTargetMotionModel . . . . . . . . . . . . . . . . . . . . . 29 3.3.6 RoadTargetMotionModelwithmodifiedSpeedState . . . . . . 30 3.4 TargetTrackingFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 TheGeneralEstimationSolution . . . . . . . . . . . . . . . . . . 31 3.4.2 ParticleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.3 Rao-BlackwellizedParticleFilter(RBPF) . . . . . . . . . . . . . 32 3.5 ARoadTargetFilterbasedonRBPF . . . . . . . . . . . . . . . . . . . . 33 3.6 ProbabilityofDetectionandNegativeInformation. . . . . . . . . . . . . 35 3.6.1 InformationfromNon-Detections . . . . . . . . . . . . . . . . . 35 3.6.2 ProbabilityofDetectionModel . . . . . . . . . . . . . . . . . . 36 3.7 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.A FilterAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.A.1 KalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.A.2 ExtendedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . 42 3.A.3 ParticleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.A.4 BayesianBootstrapParticleFilter . . . . . . . . . . . . . . . . . 45 3.A.5 Rao-BlackwellizedParticleFilter . . . . . . . . . . . . . . . . . 45 II InformationBasedPlanning 47 4 ObserverTrajectoryPlanningbasedonInformationFilter 49 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 SuboptimalApproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 CertaintyEquivalenceControl . . . . . . . . . . . . . . . . . . . 52 4.3.2 Open-loopFeedbackControl . . . . . . . . . . . . . . . . . . . . 52 4.4 InformationMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.1 EntropicInformation . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.2 MutualInformation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.3 TheInformationFilter . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 CECPlannerbasedontheInformationFilter. . . . . . . . . . . . . . . . 55 4.6 OLFCPlannerbasedontheInformationFilter . . . . . . . . . . . . . . . 56 4.7 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.7.1 CEC-EIFPlannerwithRandomWalkTargetin2D . . . . . . . . 58 4.7.2 OLFC-EIFPlannerwithRandomWalkTargetin2D . . . . . . . 59 4.7.3 CEC-EIFPlannerwithRandomWalkTargetin3D . . . . . . . . 60
Description: