ebook img

Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz PDF

2.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

Astronomy&Astrophysicsmanuscriptno.counts˙planck c ESO2012 (cid:13) July20,2012 Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857GHz PlanckCollaboration:P.A.R.Ade84,N.Aghanim59,F.Argu¨eso19,M.Arnaud73,M.Ashdown70,5,F.Atrio-Barandela17,J.Aumont59, C.Baccigalupi83,A.Balbi36,A.J.Banday88,8,R.B.Barreiro67,E.Battaner90,K.Benabed60,87,A.Benoˆıt57,J.-P.Bernard8,M.Bersanelli33,50, M.Bethermin73,R.Bhatia6,A.Bonaldi69,J.R.Bond7,J.Borrill12,85,F.R.Bouchet60,87,C.Burigana49,35,P.Cabella37,J.-F.Cardoso74,1,60, 2 A.Catalano75,72,L.Cayo´n30,A.Chamballu55,R.-R.Chary56,X.Chen56,L.-YChiang63,P.R.Christensen80,38,D.L.Clements55, 1 S.Colafrancesco46,S.Colombi60,87,L.P.L.Colombo22,68,A.Coulais72,B.P.Crill68,81,F.Cuttaia49,L.Danese83,R.J.Davis69,P.deBernardis32, 0 G.deGasperis36,G.deZotti45,83,J.Delabrouille1,C.Dickinson69,J.M.Diego67,H.Dole59,58,S.Donzelli50,O.Dore´68,9,U.Do¨rl78, 2 M.Douspis59,X.Dupac41,G.Efstathiou64,T.A.Enßlin78,H.K.Eriksen65,F.Finelli49,O.Forni88,8,P.Fosalba61,M.Frailis47,E.Franceschi49, S.Galeotta47,K.Ganga1,M.Giard88,8,G.Giardino42,Y.Giraud-He´raud1,J.Gonza´lez-Nuevo67,83,K.M.Go´rski68,91,A.Gregorio34,47, l u A.Gruppuso49,F.K.Hansen65,D.Harrison64,70,S.Henrot-Versille´71,C.Herna´ndez-Monteagudo11,78,D.Herranz67,S.R.Hildebrandt9, J E.Hivon60,87,M.Hobson5,W.A.Holmes68,T.R.Jaffe88,8,A.H.Jaffe55,T.Jagemann41,W.C.Jones25,M.Juvela24,E.Keiha¨nen24, 9 T.S.Kisner77,R.Kneissl40,6,J.Knoche78,L.Knox27,M.Kunz16,59,N.Kurinsky23,H.Kurki-Suonio24,44,G.Lagache59,A.La¨hteenma¨ki2,44, 1 J.-M.Lamarre72,A.Lasenby5,70,C.R.Lawrence68,R.Leonardi41,P.B.Lilje65,10,M.Lo´pez-Caniego67,J.F.Mac´ıas-Pe´rez75,D.Maino33,50, N.Mandolesi49,4,M.Maris47,D.J.Marshall88,8,E.Mart´ınez-Gonza´lez67,S.Masi32,M.Massardi48,S.Matarrese31,P.Mazzotta36, ] A.Melchiorri32,51,L.Mendes41,A.Mennella33,50,S.Mitra54,68,M.-A.Miville-Descheˆnes59,7,A.Moneti60,L.Montier88,8,G.Morgante49, O D.Mortlock55,D.Munshi84,J.A.Murphy79,P.Naselsky80,38,F.Nati32,P.Natoli35,3,49,H.U.Nørgaard-Nielsen15,F.Noviello69,S.Osborne86, C F.Pajot59,R.Paladini56,D.Paoletti49,B.Partridge43,F.Pasian47,G.Patanchon1,O.Perdereau71,L.Perotto75,F.Perrotta83,F.Piacentini32, h. M.Piat1,E.Pierpaoli22,S.Plaszczynski71,E.Pointecouteau88,8,G.Polenta3,46,N.Ponthieu59,52,L.Popa62,T.Poutanen44,24,2,G.W.Pratt73, p S.Prunet60,87,J.-L.Puget59,J.P.Rachen20,78,W.T.Reach89,R.Rebolo66,13,39,M.Reinecke78,C.Renault75,S.Ricciardi49,T.Riller78, - I.Ristorcelli88,8,G.Rocha68,9,C.Rosset1,M.Rowan-Robinson55,J.A.Rubin˜o-Mart´ın66,39,B.Rusholme56,A.Sajina23,M.Sandri49,G.Savini82, o D.Scott21,G.F.Smoot26,77,1,J.-L.Starck73,R.Sudiwala84,A.-S.Suur-Uski24,44,J.-F.Sygnet60,J.A.Tauber42,L.Terenzi49,L.Toffolatti18,67, r t M.Tomasi50,M.Tristram71,M.Tucci71,M.Tu¨rler53,L.Valenziano49,B.VanTent76,P.Vielva67,F.Villa49,N.Vittorio36,L.A.Wade68, s B.D.Wandelt60,87,29,M.White26,D.Yvon14,A.Zacchei47,andA.Zonca28 a [ (Affiliationscanbefoundafterthereferences) 1 Submitted19-Jul-2012/Accepted?? v 6 0 Abstract 7 4 We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources – infrared and radio sources . 7 – from the Planck Early Release Compact Source Catalogue at 100 to 857GHz (3mm to 350µm). Three zones (deep, medium and shallow) 0 of approximately homogeneous coverage areused toensure acleancompleteness correction. Our sample, prior tothe80%completeness cut, 2 contains between 217 sources at 100GHz and 1058 sources at 857GHz over about 12,800 to 16,550deg2 (31 to 40% of the sky). After the 1 80%completenesscut,between122and452andsourcesremain,withfluxdensitiesabove0.3and1.9Jy.Usingthemulti-frequencycoverage : ofthePlanckHighFrequencyInstrument,allthesourceshavebeenclassifiedintodust-dominated(infraredgalaxies)orsynchrotron-dominated v (radiogalaxies)spectralenergydistributions(SED).Wefindanapproximatelyequalnumberofsynchrotronanddustysourcesbetween217and i 353GHz;at353GHzorhigher(respectively217GHzorlower)frequencies,thenumberisdominatedbydusty(synchrotron)sources,asexpected. X Formostofthesources,thespectralindicesarealsoderived.Weprovidebrightcountsfrom353to857GHzandthecontributionsfromdusty r andsynchrotronsourcesatallHFIfrequencies, inthekeyspectral rangewherethesespectraarecrossing,forthefirsttimeinacoherent way. a The observed counts are inthe Euclidean regime. The number counts are compared topreviously published data (from earlier Planck results, Herschel,BLAST,SCUBA,LABOCA,SPT,andACT)andmodels.Wederivethemulti-frequencyEuclideanlevel–theplateauinthenormalised differential counts at high flux-density – and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproducedbycurrentevolutionmodelsofdustygalaxies,whereasthemillimetrepartappearsreasonablywellfittedbythemostrecentmodelfor synchrotron-dominatedsources.Finallyweprovideestimatesofthelocalluminositydensityofdustygalaxies,providingthefirstmeasurements at545and857GHz. Keywords.Cosmology:observations–Surveys–Galaxies:statistics-Galaxies:evolution–Galaxies:starformation–Galaxies:active–Radio continuum:galaxies–Submillimetre:galaxies 1. Introduction reasonto probebrightobjectsisto studythe numbercountsof extragalacticsourcesandtheirspectralshapes.Inthefar-infrared Among other advantages, all-sky multifrequency surveys have (FIR) the sources detected by these surveys are usually domi- thebenefitofprobingrareand/orbrightobjectsinthesky.One 2 PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz Figure1. Comparison between our Planck 857GHz mask (red Figure2. Comparison between our Planck 353GHz mask (red means removed from the analysis) and WMAP 7-year KQ75 means removed)and WMAP 7-year KQ85 mask (green means mask (green means removed); unlike the case for the mask removed). The background (blue) is the sky area used for the employed in this paper, the WMAP mask excludes some point analysis. sources.Thebackground(blue)istheskyareausedforouranal- ysis.ThismapisaMollweideprojectionoftheskyinGalactic coordinates. The Planck1 all-sky survey covers nine bands between 30 and 857GHz. It gives us for the first time robust extragalactic countsoverawideareaofskyatthesewavelengths,andthefirst all-skycoveragebetween3mm(WMAP)and160µm (Akari)– e.g.seeTable1ofPlanckCollaborationVII(2011).Thecounts giveuspowerfulconstraintsonthelong-wavelengthspectralen- ergy distribution (SED) of the dusty galaxies investigated e.g. natedbylow-redshiftgalaxieswithz < 0.1,e.g.IRASat60µm byIRAS,andontheshort-wavelengthSEDoftheactivegalax- (Ashbyetal.,1996)butalsorevealthepresenceofafewextreme iesstudiedatradiowavelengths,e.g.byWMAPorground-based objects like the lensed F10214source (Rowan-Robinsonet al., facilities. 1991).However,theradiorangepopulationisdominatedbysyn- chrotronsources(inparticular,blazars)athigherredshift(seede Zottietal.,2010,forarecentreview).Previousmultifrequency all-skysurveyswerecarriedoutintheinfrared(IR)rangebythe IRASsatellite(between12and100µm;Neugebaueretal.1984), andmorerecentlybyAkari(between2and180µm;Murakami et al. 2007) and WISE (between 3.4 and 22µm; Wright et al. 2010). They were carried out in the IR and microwave range byCOBE(between1.2µmand1cm;Boggessetal.1992),and more recently in the microwave range by WMAP (between 23 and 94GHz; Bennett et al. 2003;Wright et al. 2009;Massardi etal.2009;deZottietal.2010). Atlargefluxdensities(typically1Jyandabove),FIRextra- galactic numbercounts from all-sky surveysshow a Euclidean component,i.e. a distribution of the number of source per flux densitybinS atobservedfrequencyν(dN/dS inJysr 1)pro- ν ν − portional to S 2.5 (see Eq. 1) – in line with expectations from ν− a local Universe uniformly filled with non-evolving galaxies (Lonsdale&Hacking,1989;Hacking&Soifer,1991;Bertin& Dennefeld,1997;Massardietal.,2009;Wrightetal.,2009).In Figure3.CumulativedistributionofPlanckhitcountsonthesky the radio range,the Euclideanpartis modifiedby the presence (hereat857GHzwithNside=2048),withthecorrespondingin- of higher-redshift sources. At flux densities smaller than typi- tegrationtimeperskypixel(giveninthetopaxis).Thethreesky cally 0.1 to 1Jy, an excess in the number counts compared to zonesused in the analysis are definedat 857GHz: shallow (50 the Euclidean level is an indication of evolution in luminosity to 75% of the hit count distribution, short-spaced lines, blue); and/or density of the galaxy populations. This effect is clearly medium (75 to 95% of the hit counts, medium-spaced lines, seen in deeper surveys in the FIR – e.g. (Genzel & Cesarsky, green);anddeep(95%andabovehits,widely-spacedlines,red). 2000;Dole etal., 2001,2004;Frayeretal., 2006;Soifer etal., 2008;Betherminetal.,2010a)–inthesubmillimetre(submm) 1 Planck (http://www.esa.int/Planck) is a project of the range–e.g.(Bargeretal.,1999;Blainetal.,1999;Ivisonetal., EuropeanSpaceAgency(ESA)withinstrumentsprovidedbytwosci- 2000;Greveetal.,2004;Coppinetal.,2006;Weissetal.,2009; entificconsortiafunded byESAmember states(inparticularthelead Patanchonetal.,2009;Clementsetal.,2010;Lapietal.,2011) countriesFranceandItaly),withcontributionsfromNASA(USA)and – and millimetre and radio ranges – e.g. (de Zotti et al., 2010; telescopereflectorsprovidedbyacollaborationbetweenESAandasci- Vieiraetal.,2010;Vernstrometal.,2011). entificconsortiumledandfundedbyDenmark. PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz 3 Figure4. Thethreesky zonesusedin theanalysisat857GHz: Figure5.Thethreesky zonesusedin theanalysisat100GHz: deep(red);medium(green);andshallow(blue);Thesearebased deep(red);medium(green);andshallow(blue).Thesearebased onthe857GHzhitcounts. onthe100GHzhitcounts. Wepresentheretheextragalacticnumbercountsandspectral The Planck data used in this paper (unlike other interme- indices of galaxies selected at high Galactic latitude and using diate Planck papers) correspond to the first 1.6 sky surveys identifications, detected at the six highest Planck frequencies, (PlanckCollaborationI,2011;PlanckHFICoreTeam,2011a,b), between 100and 857GHz. Planck numbercountsand spectral from which the Early Release Compact Source Catalogue, or indicesofextragalacticradio-selectedsourceswerealreadypub- ERCSC(PlanckCollaborationVII,2011;PlanckCollaboration, lished for the frequency range 30 to 217GHz using LFI and 2011) has been extracted and documented. First results from HFIinstruments(PlanckCollaborationXIII,2011).Thetransi- the ERCSC are published as Planck early papers (Planck tion betweensynchrotron-dominatedsourcesand thermaldust- Collaboration XIII, 2011; Planck Collaboration XIV, 2011; dominated occurs in the crucial spectral range 200-800GHz . Planck Collaboration XV, 2011; Planck Collaboration XVI, Thusourbroadfrequencydataallowabetterspectralcharacteri- 2011).WeuseHFIdata,coveringthe100–857GHzrangeinsix sation,usefulforestimatinge.g.thepointsourcecontamination. bands. Planckhastheuniquecapabilitytostudybothpopulations,tak- ingadvantageofitswidespectralandall-skycoverage. 2.1.Galacticmasks WeusetheWMAP7yearbest-fitΛCDMcosmology(Larson etal., 2011),with H = 71 kms 1Mpc 1, Ω = 0.734andΩ Toobtainreliableextragalacticnumbercounts,uncontaminated 0 − − Λ M =0.266. by Galactic sources, we mask out areas of the sky strongly af- fected by Galactic sources, defining a set of “Galactic masks”. Thesearebasedonremovingafractionoftheskyaboveaspec- ified levelin sky surface brightness.We use two masks, one at 2. Planckdata,masksandsources highfrequencies(857and545GHz),andoneatlowerfrequen- Planck(Tauberetal.,2010;PlanckCollaborationI,2011)isthe thirdgenerationspacemissiontomeasuretheanisotropyofthe cosmic microwave background (CMB). It observes the sky in ninefrequencybandscovering30–857GHzwith highsensitiv- ity and angular resolution from 31 to 5. The Low Frequency ′ ′ InstrumentLFI;(Mandolesietal.,2010;Bersanellietal.,2010; Mennellaetal.,2011)coversthe30,44,and70GHzbandswith amplifierscooledto20K.TheHighFrequencyInstrument(HFI; Lamarreet al. 2010;Planck HFI Core Team 2011a)coversthe 100, 143, 217, 353, 545, and 857GHz bands with bolometers cooled to 0.1K. Polarization is measured in all but the highest twobands(Leahyetal.,2010;Rossetetal.,2010).Acombina- tionofradiativecoolingandthreemechanicalcoolersproduces the temperatures needed for the detectors and optics (Planck Collaboration II, 2011). Two Data Processing Centers (DPCs) checkandcalibratethe dataandmakemapsofthesky(Planck HFICoreTeam,2011b;Zaccheietal.,2011).Planck’ssensitiv- ity, angularresolution, and frequencycoveragemake it a pow- erful instrument for galactic and extragalactic astrophysics as wellascosmology.EarlyastrophysicsresultsaregiveninPlanck Collaboration VIII–XXVI 2011, based on data taken between Figure6. Completeness (vs. flux density of sources) coming 13August2009and7June2010.Intermediateastrophysicsre- fromtheMonte-CarlorunsfortheERCSCandderivedforeach sultsarenowbeingpresentedinaseriesofpapersbasedondata zone. The horizontal dashed line represents our threshold for takenbetween13August2009and27November2010. numbercountanalysis. 4 PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz cies (353GHz and below). The use of two different masks is to the focal plane geometry; each zone will thus have slight motivated by the different astrophysical components dominat- differences in geometry from one frequency to another, lead- ingthehigherHFIfrequenciesandthelowerfrequencies,which ing to slightly different surface areas. Table 2 summarizes the arenotnecessarilyspatiallycorrelated.WhiletheGalacticdust surface area of each zone (deep, medium and shallow); typi- dominatesat857 GHz,its spectrumdecreaseswith decreasing cally, the deep zone covers 1000deg2, the medium zone about frequency.On the contrary,the synchrotronand free-freecom- 3000deg2,andtheshallowabout12000deg2.Fig.4(5,respec- ponentsdominateat100GHz. tively)representsthethreedifferentzonesusedinthisanalysis: Beforeapplyingabrightnesscuttothemaps,wedegradethe deep,mediumandshallowat857GHz(100GHz,respectively). angularresolutionofthemapsfrom1.5(N =2048inHealpix; ′ side Go´rskietal.2005)downto55(N =64).Themapsatlowres- ′ side 2.3.Sampleselectionandvalidation olutionaretheninterpolatedattheoriginalhighangularresolu- tion.CreatingaGalacticmaskusingthisprocedurehasthedou- The sample is drawn from the first public catalogue of Planck ble benefit of:1) not masking the brightsources (because they sources,theERCSC(PlanckCollaborationVII,2011),contain- aresmoothed);and2)smoothingtheGalacticstructure. inghighlyreliablesources.Theselectionisperformedwiththe The857GHzGalacticmaskkeeps48%oftheskyforanal- followingstepsateachHFIfrequencyindependently: ysis(thusremoving52%ofthesky),andthiscorrespondstoa cutof2.2MJysr−1 at857GHz.Thismaskisappliedat857and – selectsourceswithineachzone:deep,mediumandshallow; 545GHz.The353GHzGalacticmaskkeeps64%oftheskyfor – select point sources, using the keyword “EXTENDED” set analysis(thusremoving36%ofthe sky),andcorrespondstoa tozero; cut of 0.28 MJysr 1 at 353GHz.This mask is applied at 353, − 217,143and100GHz. Thesecriteria shouldfavourthe presenceofgalaxiesrather Figs.1and2showthePlanckmasks,comparingthemwith thanGalacticsources.Tovalidatethis,wemakethreechecksin the WMAP 7 year KQ75 and KQ85 masks (Gold et al., 2011; additiontousingconservativemasks. Jarosiketal.,2011).NoticethatwedonotusetheWMAPmasks 1.We measurethemid-IRvs. submmfluxdensityratiosof inthiswork. known Galactic cold cores (from the Planck Early Cold Core catalogue, ECC, Planck Collaboration XXIII 2011) and con- verselyofknowngalaxiesoftheERCSC.UsingWISE(Wright 2.2.Threezonesinthesky:deep,mediumandshallow et al., 2010) W3 and W4 bands (when available with the first Three main zones are identified to ensure homogeneous cov- publicrelease),andthe857GHzHFIband,wemeasureafactor erage of the sky by the Planck detectors at each frequency, of100to200betweenthesubmm-to-mid-infaredratiosofgalax- therebyallowingasubsequentestimateofthecompleteness.The iesandECCsources.Whenmeasuringthisratioinoursample, Planckdatausedherecorrespondtoapproximately1.6complete weseethatthesubmm-to-mid-infaredcoloursofsourcesinour surveys of the sky and have a non-uniform coverage (Planck sample are compatible with galaxy colours, and not with ECC CollaborationI,2011;PlanckHFICoreTeam,2011a,b).While colours. performing statistics on sources drawn from a non-uniformly 2.TheCIRRUSflagintheERCSCgivesanestimateofthe coveredsurveyisfeasible,thenatureofthePlanckdata(includ- normalisedneighboursurfacedensityofsourcesat857GHz,as ingscanningstrategy,andmaskingofplanets–seeERCSCar- aproxyforacirrusestimate.ThemedianvalueoftheCIRRUS ticlePlanckCollaborationVII2011)anditsheterogeneouscov- flaginoursampleis0.093at857GHz,alowvaluecompatible erage(byafactormorethan103, see Fig.3)–makeitdifficult withnocirruscontaminationwhenusedinconjunctionwiththe toimplement.Wethereforeselectthreezonesinthesky,ineach EXTENDED=0flag(e.g.Herranzetal.2012). ofwhichtheobservationsareapproximativelyhomogeneousin 3. We query the NED and SIMBAD databases at the po- integrationtime. sitions of all our ERCSC sources using a 2.5 radius search. ′ We define the hit count by counting the number of times a Each Planck source has many matches (many of them com- singlePlanckdetectorobservesoneskypositioninthesky.The pletely unrelated, e.g. foreground stars), and the identification hitcountcanalsobedefinedforafrequencyband:itisthenum- is more complex at higher frequencies. However, as seen later beroftimeseachskypixelhasbeenhitbyanyPlanckdetector with the counts estimates, our N(> S) cumulative distribution atagivenfrequency.Wewillbeusingthislatterdefinition.This ofsourcesisalwayslessthan200sourcespersteradian,i.e.less quantityissimilartoNobs inWMAPdatafiles. than3.3×10−4ERCSCsourcesper2.′5searchradiusonaverage. The three zones have hit counts varying by not more than We thus search for the most probable match by identify- a factor of two, exceptin the smaller deepzone (atthe ecliptic ing the source type in the order Galactic, then extragalactic. poles)wherethereishighredundancy.Theyaredefinedas(and The Galactic typesincludesupernovaremnants,planetaryneb- illustratedinFig.3): ulae,nebulae,Hiiregions,stars,molecularclouds,globular/star clusters.We calla source“Galactic unsecure”whenoneofthe – deep:95%ormoreofthe cumulativehitcountdistribution two databasesreturnsnoidentificationandtheothera Galactic atagivenfrequency; identification.Wedonotuse“Galacticsecure”or“Galacticun- – medium:75to95%ofthecumulativehitcountdistribution secure”sourcesin this paper.The statistics of identificationsis atagivenfrequency; giveninTable1. – shallow:50to75%ofthecumulativehitcountdistribution Ourfinalsampleiscomposedofconfirmedgalaxies,thevast atagivenfrequency. majoritybeingNGC,IRAS,radiosourcesandblazarobjects,as well as some unidentified sources (a small fraction of the to- Thus,pixelsinthedeepzone(atagivenfrequency)allhave tal number). These completely unidentified sources, where no ahitcountvaluegreaterthanorequaltothehitcountvaluecor- SIMBAD or NED ID was found, are interpreted as potential responding to 95% of the total distribution at this frequency. galaxies,andhenceareincludedinourcounts,becausetheyhave Notice that each frequency map has different hit counts, due asmallcirrusflagvalue(seepoint2above), PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz 5 Table1.PercentageofPlancksourceidentificationsusingtheSIMBADandNEDdatabases(withthenumberofsourcesinparen- theses). ν Extragalactic Galactic Galactic Unidentified Total [GHz] Secure%(Nb.) Unsecure%(Nb.) Secure%(Nb.) % (Nb.) % (Nb.) 857 deep 91.2 (73) 2.5 (2) 1.2 (1) 5.0 (4) 100 (80) 857medium 95.5 (255) 1.9 (5) 0.0 (0) 2.6 (7) 100(267) 857shallow 94.6 (697) 1.6 (12) 0.8 (6) 3.0 (22) 100(737) 545 deep 76.5 (39) 7.8 (4) 2.0 (1) 13.7 (7) 100 (51) 545medium 91.1 (143) 2.5 (4) 0.0 (0) 6.4 (10) 100(157) 545shallow 91.8 (301) 2.1 (7) 0.9 (3) 5.2 (17) 100(328) 353 deep 81.6 (31) 2.6 (1) 5.3 (2) 10.5 (4) 100 (38) 353medium 87.0 (94) 0.9 (1) 2.8 (3) 9.3 (10) 100(108) 353shallow 78.0 (170) 4.6 (10) 4.6 (10) 12.8 (28) 100(218) 217 deep 77.3 (17) 0.0 (0) 22.7 (5) 0.0 (0) 100 (22) 217medium 92.5 (62) 1.5 (1) 1.5 (1) 4.5 (3) 100 (67) 217shallow 88.5 (170) 0.5 (1) 4.2 (8) 6.8 (13) 100(192) 143 deep 86.7 (13) 0.0 (0) 13.3 (2) 0.0 (0) 100 (15) 143medium 100.0 (48) 0.0 (0) 0.0 (0) 0.0 (0) 100 (48) 143shallow 96.8 (182) 0.5 (1) 1.6 (3) 1.1 (2) 100(188) 100 deep 77.8 (14) 0.0 (0) 22.2 (4) 0.0 (0) 100 (18) 100medium 100.0 (45) 0.0 (0) 0.0 (0) 0.0 (0) 100 (45) 100shallow 93.9 (154) 0.0 (0) 3.7 (6) 2.4 (4) 100(164) Table 2. Numberof extragalacticERCSC sourcesin oursample priorto the completenesscut(andafter the completenesscutin parentheses),togetherwiththesurfaceareaofthezones. ν number number number totalsource surfacearea surfacearea surfacearea totalsurface [GHz] deep medium shallow number deep medium shallow [deg2] 857 77(24) 262(115) 719(313) 1058 (452) 880 2288 9800 12969 545 46 (8) 153 (69) 318(143) 517 (220) 874 2324 9551 12749 353 35(14) 104 (59) 198(151) 337 (224) 1086 2971 12373 16431 217 17(15) 65 (57) 183 (71) 265 (143) 1104 3169 11900 16174 143 13 (8) 48 (44) 184 (90) 245 (142) 1111 2972 11977 16061 100 14 (6) 45 (39) 158 (77) 217 (122) 1072 2870 12611 16554 Table3.NumberofextragalacticERCSCsourcesactuallyusedinthenumbercounts:deep–medium–shallow,withthenumbers ofunidentifiedsourcesaftertheslash. S S range 857GHz 545GHz 353GHz 217GHz 143GHz 100GHz h νi ν [Jy] [Jy] 0.398 0.303 – 0.480 0 0 0 7/0-28/1-92/9 3/0-12/0-81/1 0 0.631 0.480 – 0.762 0 0 8/0-31/4-83/14 3/0-13/1-34/2 2/0-13/0-43/0 4/0-15/0-68/3 1.000 0.762 – 1.207 0 0 4/0 - 18/2 - 38/7 4/0 - 8/0 - 21/1 4/0-10/0-25/0 4/0-11/0-47/1 1.585 1.207 – 1.913 0 5/0-26/6-78/9 1/1 - 6/0 - 14/0 1/0 - 4/0 - 11/0 2/0 - 4/0 - 12/0 2/0 - 7/0 - 13/0 2.512 1.913 – 3.032 11/0-31/1-139/4 0/0-20/1-28/1 1/0 - 2/0 - 8/0 0/0 - 1/0 - 3/0 0/0 - 3/0 - 5/0 0/0 - 3/0 - 11/0 3.981 3.032 – 4.805 7/0 - 33/2 - 95/4 1/0-16/1-20/1 0/0 - 1/0 - 6/0 0/0 - 2/0 - 1/0 0/0 - 1/0 - 3/0 0/0 - 2/0 - 3/0 6.310 4.805 – 7.615 3/0 - 22/2 - 41/7 1/0 - 6/0 - 8/1 0 0/0 - 1/0 - 1/0 0/0 - 1/0 - 1/0 0/0 - 0/0 - 2/0 10.000 7.615 – 12.069 2/0 - 20/1 - 23/1 1/0 - 1/0 - 5/0 0/0 - 1/0 - 0/0 0 0/0 - 0/0 - 1/0 0/0 - 1/0 - 1/0 15.849 12.069–22.801 1/0 - 9/0 - 15/0 0/0 - 0/0 - 4/0 0/0 - 0/0 - 2/0 0 0 0 Table 2 summarises the source number and surface area of three zones presented in Fig. 6. The uncertaintiesin complete- eachzone(deep,mediumandshallow).Wefindatotalnumber ness are at the 5% level, as discussed in Planck Collaboration ofsourcesrangingfrom217at100GHzto1058at857GHz. VII(2011)andPlanckCollaboration(2011).Thecorrectionfor incompleteness is then applied to the number counts of each zoneseparately. 2.4.Completeness We will use a completeness level threshold of 80% for all TheERCSCPipeline(PlanckCollaborationVII,2011)usedex- frequencies. This ensures: 1) a minimal source contamination; tensive Monte-Carlo simulations to assess various parameters 2) no photometric biases (Planck Collaboration, 2011); and 3) such as positional or flux density accuracies. Here, we use the good photometric accuracy(Planck Collaboration, 2011) – see resultsofthoserunstoestimatethecompletenessineachofthe Sect. 2.5. The number of sources actually used to estimate the 6 PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz Figure7. Distributionofspectralindices(forthesourcespresentintheERCSCatagivenfrequencyinoursamplewithcomplete- nessof80%orabove).Hereα217 isshownasadottedline,α353 asadashedline,andα857 asasolidline.Theregion2 α 4 143 217 545 ≤ ≤ is typical of thermal dust emission. In red we show the dusty sources, whereas in blue we show the synchrotron sources. The sourcesin all three samples(deep, medium,and shallow) are combinedhere. Note that, as expected,the 100GHz, and 143GHz samplesaredominatedbyradiogalaxies,whereasthe545GHzand857GHzsamplesaredominatedbydustygalaxies.At217GHz and 353GHz we observethe transition betweenthe two populations,with significantnumbersof both typesbeingpresentin the samples. numbercountsisgiveninTab.3,whichalsoincludesthenum- ment Planck Collaboration (2011). Here we use the “FLUX” berofunidentifiedsources.We finallyuseanumberofsources field for flux densities. Notice that 100 and 217GHz flux den- rangingfrom122at100GHzto452at857GHz(Tab.2). sities can be affected by Galactic CO lines (Planck HFI Core Team,2011b). We would like to emphasise that the extensive simulations performed in the process of generating/validating the ERCSC allowustoderivereliablecompletenessestimatesforeachzone (seeSect.2.4)andalsotoestimatethequalityofthephotometry. In the faintest flux density bins that we are using (correspond- ing to 80% completeness), there is no photometric offset, and the photometric accuracy from the Monte-Carlo simulations is about(PlanckCollaboration,2011,;Fig.7forreference):35% at 480mJy for 100GHz; 30% at 300mJy for 143GHz; 20% at 300mJy for 217GHz; 20% at 480mJy for 353GHz; 20% at 1207mJy for 545GHz; and 20% at 1913mJy for 857GHz. Thisscatter(inthefaintestfluxdensitybins)stronglydecreases at larger flux densities. Notice that photometric uncertainties can bias the determination of the counts slope (e.g. Murdoch, Crawford&Jauncey,1973). From our sample, we also create “Band-filled catalogues”. For each frequency/zonesample, we take each source position from the ERCSC and perform aperture photometry from the corresponding images in the other frequencies. We adopt 4σ Figure8. Fraction of galaxy types as a function of frequency, asthedetectionthreshold.Theseaperturephotometrymeasure- on the sample having completeness of 80% and above: dusty ments(andupperlimits) are usedfor thespectralclassification (red squares) and synchrotron (blue triangles). Error bars are of sources and in the spectral index determinations, but not in Poissonian. the number counts measurements(which rely only on ERCSC fluxdensities).WedefinethespectralindexαbyS να. ν ∝ Thederivedspectralindicesareusedtodeterminethecolour correctionoftheERCSCfluxdensities(PlanckHFICoreTeam, 2.5.Photometry 2011b). This correction changes the flux densities by at most ThephotometryoftheERCSCisextensivelydetailedinPlanck 5% at 857GHz, 15% at 545GHz, 14% at 353GHz, 12% at Collaboration VII (2011) as well as in the explanatorysupple- 217GHz,and1%at143GHzand100GHz. PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz 7 Table4.Plancknumbercountsat353,545and857GHz. S S range dN/dS S2.5 N> S dN/dS S2.5 N> S dN/dS S2.5 N> S h νi ν 857 857 857 545 545 545 353 353 353 [Jy] [Jy] [Jy1.5sr 1] [sr 1] [Jy1.5sr 1] [sr 1] [Jy1.5sr 1] [sr 1] − − − − − − 0.631 0.480 – 0.762 0 0 0 0 30.6 3.7 50.1 3.3 ± ± 1.000 0.762 – 1.207 0 0 0 0 26.4 4.0 21.0 2.1 ± ± 1.585 1.207 – 1.913 0 0 131.4 21.4 60.3 4.1 17.6 4.1 8.4 1.3 ± ± ± ± 2.512 1.913 – 3.032 466.2 70.5 127.7 6.0 104.6 20.4 28.9 2.7 18.3 5.7 4.2 0.9 ± ± ± ± ± ± 3.981 3.032 – 4.805 613.6 96.6 71.8 4.4 160.2 33.8 16.3 2.1 23.3 9.0 2.0 0.6 ± ± ± ± ± ± 6.310 4.805 – 7.615 573.4 103.4 35.0 3.0 129.4 37.5 6.7 1.3 0 0 ± ± ± ± 10.000 7.615 – 12.069 755.2 150.3 17.7 2.1 119.5 47.8 2.8 0.9 13.2 13.3 0.6 0.3 ± ± ± ± ± ± 15.849 12.069–22.801 837.1 200.5 6.3 1.3 136.2 70.4 1.0 0.5 52.9 37.6 0.4 0.3 ± ± ± ± ± ± Table5.Plancknumbercountsat100,143and217GHz. S S range dN/dS S2.5 N> S dN/dS S2.5 N> S dN/dS S2.5 N> S h νi ν 217 217 217 143 143 143 100 100 100 [Jy] [Jy] [Jy1.5sr 1] [sr 1] [Jy1.5sr 1] [sr 1] [Jy1.5sr 1] [sr 1] − − − − − − 0.398 0.303 – 0.480 16.5 2.0 54.3 3.54 8.5 1.1 44.3 2.95 0 0 ± ± ± ± 0.631 0.480 – 0.762 11.5 1.9 23.0 2.21 13.7 2.1 28.1 2.46 21.9 3.0 43.7 3.14 ± ± ± ± ± ± 1.000 0.762 – 1.207 14.6 2.8 12.0 1.58 17.4 3.1 15.0 1.77 29.1 4.4 22.9 2.22 ± ± ± ± ± ± 1.585 1.207 – 1.913 13.6 3.6 5.1 1.01 15.4 3.8 6.7 1.17 18.8 4.3 9.1 1.35 ± ± ± ± ± ± 2.512 1.913 – 3.032 6.8 3.4 1.8 0.61 13.6 5.0 3.1 0.79 23.2 6.5 4.6 0.95 ± ± ± ± ± ± 3.981 3.032 – 4.805 10.1 5.9 1.0 0.45 13.6 6.9 1.4 0.54 16.5 7.5 1.8 0.59 ± ± ± ± ± ± 6.310 4.805 – 7.615 13.5 9.6 0.4 0.29 13.6 9.7 0.6 0.35 13.2 9.4 0.8 0.40 ± ± ± ± ± ± 10.000 7.615–12.069 0 0 13.6 13.6 0.2 0.20 26.3 18.7 0.4 0.28 ± ± ± ± 3. Classificationofgalaxiesintodustyor tionrisessignificantlyifweremovethecompletenesscutdueto synchrotroncategories the increasing photometricuncertaintiesat lower flux densities (seeAppendixAfordetails).Examplesofboth“dusty”or“syn- For the purposes of this paper, we aim for a basic classifica- chrotron”sourceswithsomewhatunusualSEDsarediscussedin tionbasedonSEDsthatseparatessourcesintothosedominated AppendixB. by thermal dust emission and those dominated by synchrotron emission. (Free-free emission does exist, but is not dominant, e.g., Peel et al. 2011).In orderto classify our sourcesby type, westartwiththeband-filledcataloguesdiscussedinSection2.5. Thermaldustemissionisexpectedtoshowspectralindicesinthe 4. Planckextragalacticnumbercountsbetween100 range α 2–4. On the other hand, colder temperature sources can show∼lower α857, if the 857GHz point is near the spectral and857GHz 545 peak.The presenceofa strongsynchrotroncomponent,orper- The Planck extragalactic number counts (differential, nor- haps free-free emission component, would start to flatten the malisedtotheEuclideanslope,andcompleteness-corrected)are SED below 353GHz. With such issues in mind, we have set ∼ presentedinFig.9andTables4and5.Theyareobtainedusinga upthefollowingclassificationalgorithm: meanofthe3zones(weightedbythesurfaceareaofeachzone). all sourceswith α857 2,orα545 2 are assigneda “dusty” • 545≥ 353≥ The error budget in the number counts is made up of: (i) classification; Poisson statistics (ii); the 5% uncertainty in the completeness all sources where both of these spectral indices are lower • correction(iii);theabsolutephotometriccalibrationuncertainty than2,includingnon-detections,areassigned“synchrotron” of2%atandbelow353GHz,and7%above545GHz(Planck classification. HFICoreTeam,2011a,b).Accordingtoe.g.Eq.1ofBethermin TheresultingclassificationissummarisedinFig.7,showingthe etal. (2011),thecalibrationuncertaintiesscale to the powerof spectral index distributions for each type as a function of ob- 1.5forEuclideannormalisednumbercounts. servedfrequency. Notice that our bright counts error budget is dominated by However,somesourcesaredifficulttoclassify,andcouldbe sample variance at low redshift and by small-number statis- part of an “intermediate dusty” or “intermediate synchrotron” tics. For instance, the small wiggle seen in the counts at the type.Theseintermediatesourcescanbedefinedasfollows: three highest frequencies (seen at 600mJy at 353GHz, 4Jy at beingdusty(accordingtoourcriterionabove)butalsohav- 545GHz and 10Jy at 857GHz) is due to a few tens of local • ingα857 <1 NGCsourcesinthemediumzone(seeAppendicesBandC). 100 beingsynchrotron(accordingtoourcriterionabove)butalso • withα70 measurable(usingLFIdata),i.e.sourcesthatshow Integral (i.e. cumulative) combined number counts are 30 showninFig.11.Althougherrorbarsarehighlycorrelated,these botha significantdustcomponentanda strongsynchrotron counts provide a useful estimate of the source surface density. component. Thecompletenesscorrectionisalsoappliedhere,andweusethe Among the sources included in the number counts analy- samecutsinfluxdensityasforthedifferentialcounts.Tab.4and sis, fewerthan10% areclassified as“intermediate”.Thisfrac- 5alsogivetheN >S values. 8 PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz Table6.Plancknumbercountsofdustygalaxies(only)between217and857GHz. S S range dN/dS S2.5 dN/dS S2.5 dN/dS S2.5 dN/dS S2.5 h νi ν 857 857 545 545 353 353 217 217 [Jy] [Jy] [Jy1.5sr 1] [Jy1.5sr 1] [Jy1.5sr 1] [Jy1.5sr 1] − − − − 0.398 0.303 – 0.480 0 0 0 3.2 0.7 ± 0.631 0.480 – 0.762 0 0 23.6 3.1 2.3 0.8 ± ± 1.000 0.762 – 1.207 0 0 18.5 3.2 1.8 0.9 ± ± 1.585 1.207 – 1.913 0 129.0 21.1 12.5 3.4 0 ± ± 2.512 1.913 – 3.032 463.6 70.2 100.3 19.8 11.7 4.5 1.7 1.7 ± ± ± ± 3.981 3.032 – 4.805 609.0 96.0 151.5 32.5 13.3 6.7 0 ± ± ± 6.310 4.805 – 7.615 573.4 103.4 129.4 37.5 0 0 ± ± 10.000 7.615 – 12.069 755.2 150.3 119.5 47.8 13.2 13.3 0 ± ± ± 15.849 12.069–22.801 837.1 200.5 136.2 70.4 26.4 26.5 0 ± ± ± Table7.Plancknumbercountsof(only)synchrotrongalaxiesbetween100and857GHz. S S range dN/dS S2.5 dN/dS S2.5 dN/dS S2.5 dN/dS S2.5 dN/dS S2.5 dN/dS S2.5 h νi ν 857 857 545 545 353 353 217 217 143 143 100 100 [Jy] [Jy] [Jy1.5sr 1] [Jy1.5sr 1] [Jy1.5sr 1] [Jy1.5sr 1] [Jy1.5sr 1] [Jy1.5sr 1] − − − − − − 0.398 0.303 – 0.480 0 0 0 13.3 1.7 8.5 1.1 0 ± ± 0.631 0.480 – 0.762 0 0 7.0 1.4 9.2 1.6 13.5 2.1 21.9 3.0 ± ± ± ± 1.000 0.762 – 1.207 0 0 7.9 2.0 12.8 2.6 16.9 3.1 28.6 4.3 ± ± ± ± 1.585 1.207 – 1.913 0 2.4 1.7 5.0 2.1 13.6 3.6 15.4 3.8 18.8 4.3 ± ± ± ± ± 2.512 1.913 – 3.032 2.6 2.6 4.3 3.1 6.7 3.4 5.1 3.0 13.6 5.0 23.2 6.5 ± ± ± ± ± ± 3.981 3.032 – 4.805 4.5 4.6 8.7 6.2 10.0 5.8 10.1 5.9 13.6 6.9 16.5 7.5 ± ± ± ± ± ± 6.310 4.805 – 7.615 0 0 0 13.5 9.6 13.6 9.7 13.2 9.4 ± ± ± 10.000 7.615 – 12.069 0 0 0 0 13.6 13.6 26.3 18.7 ± ± 15.849 12.069–22.801 0 0 26.4 26.5 0 0 0 ± 5. Results&Discussion 5.2.PlanckNumberCountsComparedwithOtherDatasets The number counts are in fairly good agreement at lower fre- 5.1.NatureoftheGalaxiesatsubmillimetreandmillimetre quencies (100 to 217GHz) with the counts published in the wavelengths Planckearlyresults,basedona30GHzselectedsample(Planck Collaboration XIII, 2011), represented as diamonds in Fig. 9 and10.Theeffectofthecompletenesscorrectionisseeninthe The change in the nature of sources (synch vs dusty) with fainterfluxdensitybins,belowabout500mJy.However,weno- frequency was first observed in the Planck data in Planck ticeaslightdisagreementaround400mJyat217GHz,whereour Collaboration VII (2011). Our new sample allows a more pre- counts of synchrotron galaxies exceed the Planck early counts cisequantificationbecauseofitscompleteness.Thestatisticsof by a factor of 1.7 (13.7 1.5vs. 8.2 0.9Jy1.5sr 1). This dis- synchrotronvs.dustygalaxiesaresummarisedinFig.8,show- ± ± − crepancycanbeeasilyunderstood:ourcurrentselectionofsyn- ing the fraction of galaxy type as a function of frequency. We chrotronsourcesisnotthesameastheoneadoptedinthePlanck estimatetheuncertaintyintheclassificationtobeoftheorderof EarlyresultspaperPlanckCollaborationXIII(2011),inwhicha 10% (see AppendixA). The striking resultis the almost equal morerestrictivecriterionwasused(α217 < 0.5).Ifweadoptthe contribution of both source types near 300GHz. The high fre- 143 samecriterionasinthatpaperwefindnostatisticallysignificant quencychannels(545and 857GHz) are, ynsurprisingly,domi- differencebetweenthetwoestimatesofthenumbercounts. nated (> 90%) by dusty galaxies.The low frequencychannels are,unsurprisingly,dominated(>95%)bysynchrotronsources OurcountsestimatealsoseemconsistentwiththeHerschel at100and143GHz.At217GHz,fewerthan10%ofthesources ATLASandHerMEScounts(Clementsetal.,2010;Oliveretal., showadust-dominatedSED. 2010)athighfrequency(545and857GHz)as wellasBLAST atthesametwowavelengths(Betherminetal.,2010b),although Allthesourcesfromourcompletesamplehaveanidentified thereisnodirectoverlapinfluxdensityandsmallnumberstatis- spectral type (by construction), and we can compute the num- ticsaffectthebrightestHerschelpoints. bercountsforsynchrotronanddustygalaxies.Fig.9,10and11 show the differential and integral number counts by type, also TheACT148GHzdata(Marriageetal.,2011)andSPT150 given in Tables 6 and 7. We note that at 353GHz, about two and 220GHz (Vieira et al., 2010) are also plotted in Fig. 10, thirds of the number counts are made-up by dusty sources. At together with SCUBA and LABOCA data at 353GHz (Borys 217GHz(545GHz)thereisaminorcontribution(10%orless) etal.,2003;Coppinetal.,2006;Scottetal.,2006;Beelenetal., of the dusty (synchrotron) sources contributing to the counts. 2008;Weissetal.,2009),coveringmorethanfourordersofmag- These number counts of extragalactic dusty and synchrotron nitudeinfluxdensity. sources are an important step to further constrain models of galaxy SED and to include them in more general models of Wefinallycheckedthatourcountsareinagreementwiththe galaxyevolution(seebelow). PlanckSkyModel(Delabrouilleetal.,2012). PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz 9 Figure9.Planckdifferentialnumbercounts,normalisedtotheEuclideanvalue(i.e.S2.5dN/dS),comparedwithmodelsandother datasets.Planckcounts:total(blackfilledcircles);dusty(redcircles);synchrotron(bluecircles).Fourmodelsarealsoplotted:de Zottietal.(2005,dealingonlywithsynchrotronsources–solidline);Tuccietal.(2011,dealingonlywithsynchrotronsources– dots);Betherminetal.(2011,dealingonlywithdustysources–longdashes);Serjeant&Harrison(2005,dealingonlywithlocal dustysources–shortdashes).Otherdatasets:Planckearlycountsfor30GHz-selectedradiogalaxies(PlanckCollaborationXIII, 2011)at100,143and217GHz(opendiamonds);HerschelATLASandHerMEScountsat350and500µmfromOliveretal.(2010) andClementsetal.(2010);BLASTatthesametwowavelengths,fromBetherminetal.(2010b),allshownastriangles.Leftvertical axesareinunitsofJy1.5sr 1,andtherightverticalaxisinJy1.5.deg 2. − − 5.3.PlanckNumberCountsandModels Thede Zottiet al. (2005)modelfocussesonradio sources, flat-andsteep-spectrum,thelatterhavingacomponentofdusty spheroidals and GPS (GHz peaked spectrum) sources. Its cos- 5.3.1. Models mologicalevolution for extragalactic radio sources is based on analysisof all the mainsource populationsat GHz frequencies Fig. 9 and 10 display our present estimates of number counts and currently providesa good fit to all data on number counts of extragalactic point sources, based on ERCSC data, together andonotherstatisticsfrom 5GHzandupto 100GHz.This with predictions from recent evolution models. These models ∼ ∼ modeladoptsasimplepower-law,withanalmost“flat”spectral focus either on radio-selectedsources – i.e. sources with spec- index(α 0.1),for extrapolatingthe spectra of the brightest tra dominated by synchrotron radiation at mm/submm wave- extragalac≃tic−sources(essentially“blazar2 sources”)atfrequen- lengths(“synchrotronsources”):deZottietal.(2005)andTucci ciesabove100GHz. et al. (2011)– or on far-IR selected sources– i.e. sourceswith The Tucci et al. (2011) models provide a description of spectradominatedbythermalcolddustemissionatmm/submm three populations of radio sources: steep-, flat-, and inverted- wavelengths(“dustysources”):Serjeant&Harrison(2005)and spectrum. The flat-spectrum population is further divided into Bethermin et al. (2011). Many other models exist in the lit- Flat-Spectrum Radio Quasars (FSRQ), and BLLacs. The main erature, among which are Le Borgne et al. (2009), Negrello etal.(2009),Pearson&Khan(2009),Rowan-Robinson(2009), 2 Blazarsarejet-dominatedextragalacticobjects,observed withina Valiante et al. (2009), Franceschini et al. (2010), Lacey et al. smallangleofthejetaxisandcharacterizedbyahighlyvariable,non- (2010),Marsdenetal.(2011),Wilmanetal.(2010),andRahmati thermalsynchrotronemissionatGHzfrequenciesinwhichthebeamed &vanDerWerf(2011).Acomparisonisgivenwiththesemod- component dominates the observed emission (Angel & Stockman, elsinFig.12for857GHz. 1980). 10 PlanckCollaboration:PlanckstatisticalpropertiesofIRandradioERCSCextragalacticsources100–857GHz Figure10.SameasFig.9,butonawiderfluxdensityscaleandwiththeadditionofACT(Marriageetal.,2011)andSPT(Vieira etal.,2010)dataassquaresat143and217GHz,andSCUBAandLABOCAdataasstarsat353 GHz(Borysetal.,2003;Coppin etal.,2006;Scottetal.,2006;Beelenetal.,2008;Weissetal.,2009). Figure12. Planck differential number counts at 857GHz, nor- malised to the Euclidean (i.e. S2.5dN/dS). Planck counts: to- Figure11.Planck integralnumbercounts(filledcircles);dusty tal (black filled circles); dusty galaxies (red circles). Models: (red);synchrotron(blue).Verticalaxesareinnumberperstera- Bethermin et al. (2011) (long red dashes – dusty); Serjeant & dian; right axis is in number per square degree. Counts are Harrison (2005) (short green dashes – dusty); Rahmati & van completeness-corrected.The same faint flux density cut as for Der Werf (2011)(black dash-dot-dot-dotline). Other: Lagache differentialcountsisapplied. et al. (2004); Negrello et al. (2007); Rowan-Robinson (2009); Valiante et al. (2009); Pearson & Khan (2009); Franceschini etal.(2010);Laceyetal.(2010);Wilmanetal.(2010). noveltyofthesemodelsisthestatisticalpredictionofthe“break” frequency, ν , in the spectra of blazar jets modeled by classi- M

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.