ebook img

Planck Early Results: The Galactic Cold Core Population revealed by the first all-sky survey PDF

3.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Planck Early Results: The Galactic Cold Core Population revealed by the first all-sky survey

Astronomy&Astrophysicsmanuscriptno.Planck˙Early˙Paper˙1˙v3.1 c ESO2011 (cid:13) January12,2011 Planck Early Results: The Galactic Cold Core Population revealed by the first all-sky survey PlanckCollaboration:P.A.R.Ade68,N.Aghanim45,M.Arnaud55,M.Ashdown53,74,J.Aumont45,C.Baccigalupi66,A.Balbi27, A.J.Banday72,6,60,R.B.Barreiro50,J.G.Bartlett3,51,E.Battaner76,K.Benabed46,A.Benoˆıt46,J.-P.Bernard72,6,M.Bersanelli25,40,R.Bhatia33, J.J.Bock51,7,A.Bonaldi36,J.R.Bond5,J.Borrill59,69,F.R.Bouchet46,F.Boulanger45,M.Bucher3,C.Burigana39,P.Cabella27, C.M.Cantalupo59,J.-F.Cardoso56,3,46,A.Catalano3,54,L.Cayo´n18,A.Challinor75,53,8,A.Chamballu43,R.-R.Chary44,L.-YChiang47, P.R.Christensen63,28,D.L.Clements43,S.Colombi46,F.Couchot58,A.Coulais54,B.P.Crill51,64,F.Cuttaia39,L.Danese66,R.D.Davies52, R.J.Davis52,P.deBernardis24,G.deGasperis27,A.deRosa39,G.deZotti36,66,J.Delabrouille3,J.-M.Delouis46,F.-X.De´sert42,C.Dickinson52, K.Dobashi14,S.Donzelli40,48,O.Dore´51,7,U.Do¨rl60,M.Douspis45,X.Dupac32,G.Efstathiou75,T.A.Enßlin60,E.Falgarone54,F.Finelli39, 1 O.Forni72,6,M.Frailis38,E.Franceschi39,S.Galeotta38,K.Ganga3,44,M.Giard72,6,G.Giardino33,Y.Giraud-He´raud3,J.Gonza´lez-Nuevo66, 1 K.M.Go´rski51,78,S.Gratton53,75,A.Gregorio26,A.Gruppuso39,F.K.Hansen48,D.Harrison75,53,G.Helou7,S.Henrot-Versille´58,D.Herranz50, 0 2 S.R.Hildebrandt7,57,49,E.Hivon46,M.Hobson74,W.A.Holmes51,W.Hovest60,R.J.Hoyland49,K.M.Huffenberger77,A.H.Jaffe43,G.Joncas11, W.C.Jones17,M.Juvela16,E.Keiha¨nen16,R.Keskitalo51,16,T.S.Kisner59,R.Kneissl31,4,L.Knox20,H.Kurki-Suonio16,34,G.Lagache45, n J.-M.Lamarre54,A.Lasenby74,53,R.J.Laureijs33,C.R.Lawrence51,S.Leach66,R.Leonardi32,33,21,C.Leroy45,72,6,M.Linden-Vørnle10, a J M.Lo´pez-Caniego50,P.M.Lubin21,J.F.Mac´ıas-Pe´rez57,C.J.MacTavish53,B.Maffei52,N.Mandolesi39,R.Mann67,M.Maris38, D.J.Marshall72,6,P.Martin5,E.Mart´ınez-Gonza´lez50,G.Marton30,S.Masi24,S.Matarrese23,F.Matthai60,P.Mazzotta27,P.McGehee44, 1 A.Melchiorri24,L.Mendes32,A.Mennella25,38,S.Mitra51,M.-A.Miville-Descheˆnes45,5,A.Moneti46,L.Montier72,6⋆,G.Morgante39, 1 D.Mortlock43,D.Munshi68,75,A.Murphy62,P.Naselsky63,28,F.Nati24,P.Natoli27,2,39,C.B.Netterfield13,H.U.Nørgaard-Nielsen10, ] F.Noviello45,D.Novikov43,I.Novikov63,S.Osborne71,F.Pajot45,R.Paladini70,7,F.Pasian38,G.Patanchon3,T.J.Pearson7,44,V.-M.Pelkonen44, A O.Perdereau58,L.Perotto57,F.Perrotta66,F.Piacentini24,M.Piat3,S.Plaszczynski58,E.Pointecouteau72,6,G.Polenta2,37,N.Ponthieu45, G T.Poutanen34,16,1,G.Pre´zeau7,51,S.Prunet46,J.-L.Puget45,W.T.Reach73,R.Rebolo49,29,M.Reinecke60,C.Renault57,S.Ricciardi39,T.Riller60, I.Ristorcelli72,6,G.Rocha51,7,C.Rosset3,M.Rowan-Robinson43,J.A.Rubin˜o-Mart´ın49,29,B.Rusholme44,M.Sandri39,D.Santos57,G.Savini65, . h D.Scott15,M.D.Seiffert51,7,G.F.Smoot19,59,3,J.-L.Starck55,9,F.Stivoli41,V.Stolyarov74,R.Sudiwala68,J.-F.Sygnet46,J.A.Tauber33, p L.Terenzi39,L.Toffolatti12,M.Tomasi25,40,J.-P.Torre45,V.Toth30,M.Tristram58,J.Tuovinen61,G.Umana35,L.Valenziano39,P.Vielva50, - F.Villa39,N.Vittorio27,L.A.Wade51,B.D.Wandelt46,22,N.Ysard16,D.Yvon9,A.Zacchei38,S.Zahorecz30,andA.Zonca21 o r (Affiliationscanbefoundafterthereferences) t s a Preprintonlineversion:January12,2011 [ 1 ABSTRACT v 5 WepresentthestatisticalpropertiesofthefirstversionoftheColdCoreCatalogueofPlanckObjects(C3PO),intermsoftheirspatialdistribution, 3 temperature, distance, mass, and morphology. We also describe the statistics of the Early Cold Core Catalogue (ECC) that is a subset of the 0 complete catalogue, and that contains only the 915 most reliable detections. ECC is delivered asa part of the EarlyRelease Compact Source 2 Catalogue(ERCSC).WehaveusedtheCoCoCoDeTalgorithmtoextractabout10thousandcoldsources.ThemethodusestheIRAS100µmdata . 1 asawarmtemplatethatisextrapolatedtothePlanckbandsandsubtractedfromthesignal,leadingtoadetectionofthecoldresidualemission. 0 Wehaveusedcross-correlationwithancillarydatatoincreasethereliabilityofoursample,andtoderiveotherkeypropertiessuchasdistanceand 1 mass. 1 TemperatureanddustemissionspectralindexvaluesarederivedusingthefluxesintheIRAS100µmbandandthethreehighestfrequencyPlanck : bands.Therangeoftemperaturesexploredbythecataloguespansfrom7Kto17K,andpeaksaround13K.Dataarenotconsistentwithaconstant v valueoftheassociatedspectralindexβoverthealltemperaturerange.βrangesfrom1.4to2.8withameanvaluearound2.1,andseveralpossible i X scenariosarepossible,includingβ(T)andtheeffectofmultipletemperaturecomponentsfoldedintothemeasurements. For one third of the objects the distances are obtained using various methods such as the extinction signature, or the association with known r a molecularcomplexesorInfra-RedDarkClouds.Mostofthedetectionsarewithin2kpcintheSolarneighbourhood, butafewareatdistances greaterthan4kpc.Thecoresaredistributedoverthewholerangeoflongitudeandlatitude,fromthedeepGalacticplane,despitetheconfusion,to highlatitudes(>30 ).Theassociatedmassestimatesderivedfromdustemissionrangefrom1to105solarmasses.Usingtheirphysicalproperties ◦ suchastemperature,mass,luminosity, densityandsize,thesecoldsourcesareshowntobecoldclumps, definedastheintermediatecoldsub- structuresbetweencloudsandcores.Thesecoldclumpsarenotisolatedbutmostlyorganizedinfilamentsassociatedwithmolecularclouds.The ColdCoreCatalogueofPlanckObjects(C3PO)isthefirstunbiasedall-skycatalogueofcoldcompactobjectsandcontains10783objects.Itgives anunprecedented statisticalviewtothepropertiesofthesepotentialpre-stellarclumpsandoffersauniquepossibilityfortheirclassificationin termsoftheirintrinsicpropertiesandenvironment. Keywords.ColdCores,Galaxy,Sourceextraction 1. Introduction The main difficulty in understanding star formation lies in the ⋆ [email protected] vastrangeofscalesinvolvedintheprocess.Ifstarformationit- 2 PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey selfistheoutcomeofgravitationalinstabilityoccurringincold parts of the nearby star-forming clouds but cannot cover high and dense structuresat sub-parsecscales, the characteristicsof Galacticlatitudeswherestarformationisknowntooccur.Inthis thesestructures(usuallycalledpre-stellarcores)dependontheir endeavorthemainchallengeishowtolocatethecoresbecause, large-scaleenvironment,uptoGalacticscalesbecausetheirfor- evenwith Herschel, detailedstudies mustbe limited to a small mation and evolution is driven by a complex coupling of self- fractionofthewholesky. gravitywith coolingprocesses,turbulenceand magneticfields, The Planck 1 satellite (Tauber et al. 2010) improves to namea few. To progressin the understandingof star forma- over the previous studies by providing an all-sky submillime- tionpre-stellarcoresneedtobeobserved,inavarietyofenviron- tre/millimetresurveythathasboththesensitivityandresolution ments.Moreimportantly,broadsurveysarerequiredtoaddress neededforthedetectionofcompactsources.Theshortestwave- statisticalissues,andprobetheoreticalpredictionsregardingthe length channels of Planck cover the wavelengths around and initial mass function (IMF) largely determined at the stage of longwardsoftheintensitymaximumofthecolddustemission: fragmentationofpre-stellarcores. ν2B (T =10K)peakscloseto300µmwhile,withatemperature ν Unfortunately,thepropertiesofthepre-stellarcoresarestill of T 6K, the coldest dust inside the coreshas its maximum poorlyknownmostly becauseof observationaldifficulties.The close∼to 500µm. Combined with far-infrared data such as the total number of Galactic pre-stellar cores is estimated to be IRASsurvey,thedataenableaccuratedeterminationofboththe around3 105(Clemensetal.1991)butmostofthemhavesofar dusttemperatureandthespectralindex.We usethePlanck ob- × escaped detection, simply because they are cold and immersed servationsto search forGalactic cold cores,i.e. compactcloud inwarmer(thereforebrighter)environments. coreswithcolourtemperaturesbelow14K.Becauseofthelim- The thermal dust emission of nearby molecular clouds has itedresolution,wearelikelytodetectmainlylargerclumpsin- beenmappedfromthegroundinthemillimeterandsubmillime- side which the cores are located. The cores will be pre-stellar terrangeswithinstrumentssuchasSCUBA,MAMBO,SIMBA, objects before (or at the very initial stages) of the protostel- andLaboca.Becauseoflimitedsensitivity,butalsothepresence lar collapse,orpossiblymoreevolvedsourcesthatstill contain of the atmospheric fluctuations that call for beam-throw of at significant amounts of cold dust. The Cold Core Catalogue of mostafewarcmin,thestudieshaveconcentratedonthebright- Planck Objects (C3PO) which will be made public at the end estandmostcompactregionsthatarealreadyinanactivephase of the Planck proprietary period, will be the first all-sky cat- ofstarformation.Thankstosub-arcminuteresolution,theseob- alogue of cold cloud cores and clumps. It will reveal the lo- servations(togetherwithdedicatedmolecularlinestudies)have cations where the next generations of stars will be born and been the main source of information also on the structure of will provide an opportunity to address a number of key ques- the pre-stellar cores (Motte et al. 1998;Curtis & Richer 2010; tionsrelatedtoGalacticstarformation:Whatarethecharacter- Hatchelletal.2005;Enochetal.2006;Kauffmannetal.2008). isticsofthissourcepopulation?Howdoesthedistributionofthe Many compactclouds were detected as absorption features cores/clumps correlate with the current star formation activity onphotographicplates.A newpopulationofthousandsofcold andthelocationofthemolecularcloudringsandthespiralarms? dark clouds was discovered by observations of mid-infrared Howarethesourcesrelatedtolarge-scalestructuresliketheFIR absorption towards the bright Galactic background (MSX and loops,bubbles,shells,andfilaments?Aretherepre-stellarcores ISOGALsurveys;seeEganetal.1998;Peraultetal.1996).The at high latitudes? How much do the core propertiesdepend on absorptionstudiesare,however,stronglybiasedtowardsthelow theirenvironment?Investigationssuchasthesewillhelpusun- latitudes and do not directly provide information on the tem- derstandthe originof the pre-stellarcores,the instabilities that perature of the detected sources. For a definitive study of the initiate the collapse, and the roles of turbulence and magnetic coldcloudcores,onemustturntohighresolutionobservations fields.Thecataloguewillproveinvaluableforfollow-upstudies inthesubmillimetreormillimetrerange(Andreetal.2000).The to investigate in detail the internal properties of the individual Bolocam Galactic Plane Survey(BGPS) is producingmm data sources. for the central part of the Galactic plane (Aguirre et al. 2010). In this paper we describe the general properties of the Thefirstresultssuggestthatatkpcdistances,evenwithahalfar- current cold cores catalogue that is based on data that the cminresolution,oneisdetectingmainlyclusterformingclumps Planck satellite has gathered during its first two scans of the ratherthan coresthatwouldproduce,at most,a small multiple full sky. In particular, we will describe the statistics of the system(Dunhametal.2010). Early Cold Cores Catalogue (ECC) that is part of the recently Balloon borne experiments have provided larger blind sur- published Planck Early Release Compact Source Catalogue veysofhigherlatitudes.PRONAOS discoveredcoldcondensa- (ERCSC Planck Collaboration 2011c). ECC forms a subset of tionsalsoincirrus-typeclouds(Bernardetal.1999;Dupacetal. thefullC3POandcontainsonlythemostsecuredetectionsofall 2003)Similarly,Archeops(De´sertetal.2008)detectedhundreds thesourceswithcolourtemperaturesbelow14K.Thefinalver- of sources with temperatures down to 7K. The latest addition sionofC3POwillbepublishedin2013.Forhistoricalreasons, to the balloon borne surveys is the BLAST experiment which weuse”ColdCores”todesignatetheentriesintheC3POandin haslocatedseveralhundredsubmillimetresourcesinVulpecula the ECC, andsimilarly in muchofthis paper.However,asthis (Chapinetal.2008)andVela(Netterfieldetal.2009;Olmietal. paper and the companion paper (Planck Collaboration 2011r, 2009),includinganumberofcoldandprobablypre-stellarcores. hereafterPaperII)demonstrate,mostofthesearemorecorrectly Since its launchin May 2009,the Herschelsatellite has al- described as ”cold clumps”, intermediate in their structure and readyprovidedhundredsofnewdetectionsofbothstarlessand protostellar cores (Andre´ et al. 2010; Bontemps et al. 2010; Ko¨nyvesetal.2010;Molinarietal.2010;Ward-Thompsonetal. 1 Planck (http://www.esa.int/Planck) is a project of the European 2010). There is an intriguing similarity between the core mass SpaceAgency(ESA)withinstrumentsprovidedbytwoscientificcon- function(CMF)derivedfromthesedata,andtheIMFthatneed sortia funded by ESA member states (in particular the lead countries to be investigated in different environments, towards the inner FranceandItaly),withcontributionsfromNASA(USA)andtelescope Galaxyin particular.TheHerschelstudieswill eventuallycover reflectorsprovidedbyacollaborationbetweenESAandascientificcon- a significant fraction of the Galactic mid-plane and the central sortiumledandfundedbyDenmark. PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey 3 physical scale between a true pre-stellar core and a molecular The noise in the channel maps is essentially white with cloud. a mean standard deviation of 1.4 10 3, 4.1 10 3, 1.4 − − Planck (Tauberet al. 2010;Planck Collaboration 2011a)is 10 3MJy/srat353,545and857GH×zrespectivel×y(PlanckHF×I − thethirdgenerationspacemissiontomeasuretheanisotropyof CoreTeam2011b).Thephotometriccalibrationisperformedei- the cosmic microwave background(CMB). It observesthe sky ther at the ring level using the CMB dipole, for the lower fre- inninefrequencybandscovering30–857GHzwithhighsensi- quencychannels,oratthemaplevelusingFIRASdata,forthe tivityandangularresolutionfrom31 to5.TheLowFrequency higher frequency channels at 545 and 857GHz. The absolute ′ ′ InstrumentLFI; (Mandolesiet al. 2010;Bersanelli et al. 2010; gaincalibrationofHFIPlanckmapsisknowntobetterthan2% Mennellaetal.2011)coversthe30,44,and70GHzbandswith at353GHzand7%at545and857GHz(seeTable2inPlanck amplifierscooledto20K.TheHighFrequencyInstrument(HFI; HFICoreTeam2011b). Lamarreet al. 2010;Planck HFI Core Team 2011a)coversthe Thedetectionalgorithmrequirestheuseofancillarydatato 100, 143, 217, 353, 545, and 857GHz bands with bolometers tracethewarmcomponentofthegas.ThuswecombinePlanck cooled to 0.1K. Polarization is measured in all but the highest data with the IRIS all-sky data (Miville-Descheˆnes& Lagache two bands(Leahy et al. 2010;Rosset et al. 2010).A combina- 2005).ThechoiceoftheIRIS100µm asthe warm templateis tionofradiativecoolingandthreemechanicalcoolersproduces motivatedbythefollowing:(i)100µmisveryclosetothepeak the temperatures needed for the detectors and optics (Planck frequencyofablackbodyat20K,andtracesthewarmcompo- Collaboration 2011b). Two Data Processing Centers (DPCs) nentoftheGalaxy;(ii)thefractionofsmallgrainsatthiswave- checkandcalibratethe dataandmakemapsofthesky(Planck lengthremainsverysmallanddoesnotsignificantlytheestimate HFI Core Team 2011b;Zaccheiet al. 2011).Planck’ssensitiv- of the emission fromlarge grainsthat is extrapolatedto longer ity, angularresolution, and frequencycoveragemake it a pow- wavelengths;(iii)theIRASsurveycoversalmosttheentiresky erful instrument for galactic and extragalactic astrophysics as (only 2 bands of 2% of the whole sky are missing); (iv) the wellascosmology.EarlyastrophysicsresultsaregiveninPlanck resolutionoftheIR∼ISmapsissimilartotheresolutionofPlanck Collaboration,2011h–z. in the highfrequencybands,i.e. around4.5. Using the mapat ′ 100µmasthewarmtemplateis,ofcourse,notperfect,because a non-negligiblefractionof the cold emission is still presentat 2. SourceExtraction thisfrequency.ThislowerstheintensityinthePlanckbandsaf- terremovaloftheextrapolatedbackground.Wewilldescribein 2.1.DataSet detail,especiallyinSect.2.3,howwedealwiththisissueforthe As cold cores are traced by their cold dust emission in the photometryofthedetectedcores. submillimetric bands, we use Planck channel maps of the HFI AllPlanck andIRISmapshavebeensmoothedatthesame at 3 frequencies : 353, 545 and 857 GHz as described in de- resolution4.5 beforesourceextractionandphotometryprocess- ′ tail in Planck HFI Core Team (2011b). The temperature maps ing. at these frequencies are based on the first two sky surveys of Planck, provided in Healpix format (Go´rski et al. 2005) at nside=2048.We givehereaverybriefsummaryofthedatare- 2.2.SourceExtractionMethod duction, cf Planck HFI Core Team (2011b) for further details. Rawdataarefirstprocessedtoproducecleanedtimelines(TOI) We have applied the detection method described in Montier et and associated flags identifyingvarioussystematic effects. The al.2010,knownasCoCoCoDeT(standingforColdCoreColour data analysis includes application of a low-pass filter, removal DetectionTool),onthecombinedIRISplusPlanckdatasetde- and correction of glitches, conversion to absorbed power and scribedinSect.2.1.Thisalgorithmusesthecolourpropertiesof decorrelationofthermalstagefluctuations.Forthecoldcorede- theobjectstobedetectedtoseparatethemfromthebackground. tection, and more generally for source detection, Solar System In the case of cold cores, the method selects compact sources objects (SSO) are identified in the TOI data using the publicly colder than the surrounding envelope and the diffuse Galactic availableHorizonephemeridesandanSSOflagiscreatedtoen- background, that is at about 17K (Boulanger et al. 1996) but surethattheyarenotprojectedontothesky. canlargelyvaryfromoneplacetotheotheracrosstheGalactic Focalplanereconstructionandbeam-shapeestimatesareob- planeorathigherlatitudes.ThisWarmBackgroundSubtraction tained using observations of Mars. Beams are described by an method is applied on each one of the three Planck maps, and ellipticalGaussianparameterisationleadingtoFWHMθ given consistsof6steps: S in Table 2 of Planck HFI Core Team (2011b). The attitude of the satellite as a function of time is provided by the two star 1. foreachpixel,thebackgroundcolourisestimatedastheme- trackersinstalledonthePlanckspacecraft.Thepointingforeach dian value of the Planck map divided by the 100µm map bolometeriscomputedbycombiningtheattitudewiththeloca- withinadiscofradius15 aroundthecentralpixel; ′ tionofthebolometerinthefocalplanereconstructedfromMars 2. thewarmcomponentinapixelatthePlanckfrequencyisob- observations. tainedbymultiplyingtheestimateofthebackgroundcolour FromthecleanedTOIandthepointing,channelmapshave withthevalueofthepixelinthe100µmmap; beenmadeusingbolometersatagivenfrequency.Thepathfrom 3. the cold residual map is computedby subtractingthe warm TOItomapsintheHFIDPCisschematicallydividedintothree componentfromthePlanckmap; steps, ring-making, destriping and map-making. The first step 4. the local standard deviation around each pixel in the cold averages circles within a pointing period to make rings with residual map is estimated in a radius of 30 using the so- ′ highersignal-to-noiseratiotakingadvantageoftheredundancy called Median Absolute Deviation that ensures robustness of observations provided by the Planck scanning strategy. The against a high confusionlevel of the backgroundand pres- lowamplitude1/f componentisaccountedforinasecondstep enceofotherpointsourceswithinthesamearea; usingadestripingtechnique.Finally,cleanedmapsareproduced 5. athresholdingdetectionmethodisappliedinthecoldresid- usingasimpleco-additionoftherings. ualmaptodetectsourcesatasignal-to-noiseratioSNR>4; 4 PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey 6. finaldetectionsaredefinedaslocalmaximaoftheSNRcon- 2.3.2. Step2:100µmphotometry strained so that there is a minimum distance of 5 between ′ The photometryon the 100 µm map is obtained by surface fit- them. ting,performedonlocalmapsof1 1 centeredoneachcan- ◦ ◦ × didate.Allcomponentsofthemaparefittedasawhole:apoly- This processis performedat each Planck bandyieldingin- nomialsurface of an order between three and six for the back- dividual catalogues at 857 GHz, 545 GHz and 353 GHz. The ground;asetofellipticalGaussianswhenotherpointsourcesare laststepofthesourceextractionconsistsinmergingthesethree detected inside the local map; and a central elliptical Gaussian independentcataloguesrequiringa detection in all three bands correspondingtothecoldcorecandidateforwhichtheelliptical at SNR>4. Thisstep rejects spuriousdetectionsthatare due to shapeissetbytheparametersobtainedduringstep1.Whenthe mapartifactsassociatedwith a singlefrequency(e.g.stripesor fitofthebackgroundispoor,i.e.acleardegeneracyisobserved under-sampledfeatures).Itincreasestherobustnessofthefinal betweenthepolynomialfitandthecentralGaussian,weswitch catalogue,whichcontains10783objects. toasimpleaperturephotometryonthelocalmap.Notethatthe We stressthatnoanyothera-prioriconstraintsareimposed aperturephotometryisperformedtakingintoaccounttheellipti- on the size of the expectedsources,other than the limited area calshapeofthecoldcoreprovidedbystep1.Insuchcases(140 on which the background colour is estimated. Thus the maxi- sources), the flag Bad Sfit 100µm is set to on. Occasionally no mumscaleoftheC3POobjectsisabout12′.Notealsothatthis counterpartatallisobservedat100µm,whenthecoldcorecan- Warm Background Subtraction method uses local estimates of didateistoofaintorverycold,ortheconfusionoftheGalactic the colour, identifyinga relative rather than an absolute colour backgroundis too high.Insuch case, we are notable to derive excess.Thuscoldcondensationsembeddedin coldregionscan anyreliableestimateofthe100µmfluxofthecore,soonlyan be missed,while in hotregionscondensationsmaybe detected upper-limitcanbeprovided.Thisupperlimitisdefinedasthree thatarenotactuallycold.Amoredetailedanalysisintempera- times the standard deviation of the cold residual map within a tureisrequiredtoassessthenatureoftheobjects. 25 radiuscircle, and the flag Upper100µm is set to on. There ′ are 2356 objects for which only an upper limit of the temper- ature is derived. This population represents a very interesting 2.3.Photometry sub-sampleofthewholecatalogue,probablythecoldestobjects, Wehavedevelopedadedicatedalgorithmtoderivethephotom- butwedonothaveconfidenceinthephysicalpropertiesderived etryof theclumpitself. The fluxesare estimatedfromthecold from the Planck data and so it is excluded from the physical residualmaps,insteadofworkingontheinitialmapswherethe analysis. clumps are embedded in their warm surrounding envelope. As alreadystressedabove,themainissueistoperformthephotom- 2.3.3. Step3:100µmcorrection etryontheIRIS100µmmapsthatalsoincludeafractionofthe coldemission.The fluxof the sourceat100µm hasto bewell Once an estimate of the flux at 100 µm has been provided by determinedfortworeasons:(1)anaccurateestimateoftheflux steps1and2,the warm templateat100µm iscorrectedbyre- atthisfrequencyisrequiredbecauseitisconstrainssignificantly moving an elliptical Gaussian correspondingto the flux of the therestoftheanalysis(intermsofspectraldensitydistribution centralclump.Thisnewwarmtemplateisthenextrapolatedand (SED)andtemperature);(2)anincorrectestimateofthefluxat subtractedfromthePlanckmapstobuildthecoldresidualmaps. 100µm will propagatethroughthe Planck bandsafter removal Whenonlyanupperlimithasbeenobtainedat100µm,thewarm oftheextrapolatedwarmcomponent.Themainstepsofthepho- templateisnotchanged. tometry processing are described in the following subsections. AnillustrationofthisprocessisprovidedinFig.B.5oftheasso- 2.3.4. Step4:Planckbandsphotometry ciatedPlanckEarlyPaperonColdClumpsdescribingindetaila sampleof10sources(PlanckCollaboration2011r). Aperture photometryis performedon local cold residual maps centered on each candidate in the Planck bands, at 857 GHz, 545GHzand353GHz.Thisaperturephotometrytakesintoac- 2.3.1. Step1:EllipticalGaussianfit count the real extension of each object by integrating the sig- nalinsidetheellipticalGaussianconstrainedbytheparameters AnellipticalGaussianfitisperformedonthe1 1 colourmap ◦ ◦ × obtained at step 1. The background is estimated by taking the 857GHzdividedby100µmcenteredoneachC3POobject.This medianvalueonanannulusaroundthesource.Nevertheless,in results in estimates of three parameters: major axis extension 229cases,nopositiveestimateofthefluxhasbeenobtained,be- σ , minor axis extension σ and position angle ψ. The re- Maj Min causeofthepresenceofcoldpointsourcesthataretoocloseor lationbetweentheextensionσandtheFWHMθofaGaussian because the backgroundis highlyconfused.These sources(for isgivenby: whichtheflagPSNegissettoon)aresimplyremovedfromthe physicalanalysisdescribedinthispaper. σ=θ/ 8ln(2) (1) p 2.4.Monte-CarloQualityAssessment If the elliptical Gaussian fit is indeterminate, a symmetrical Gaussian is assumed with a FWHM fixed to θ = 4.5, and the To assess the quality of our photometry algorithm, we have ′ flagAperForcedissettoon.Inthesecases,thesourcefluxesare performeda Monte-Carlo analysis. A total of 10000 simulated severelyunderestimatedatallfrequencies.Thisflaggedpopula- sourcesarerandomlydistributedoverthewholeskyintheIRIS tion contains978 sourceswhich are rejected from the physical andPlanckmaps.Thesourcesareassumedtofollowtheemis- analysis of Sect. 4, but not from the entire catalogue, which is sionofamodifiedblackbodywith atemperaturerandomly,T, usedtoassesstheassociationwithancillarydata(cfSect.3)and distributedbetween6Kand20K,andanassociatedspectralin- tostudymorphologyatlargescale(cfSect.5). dex given by β = 11.5 T 0.66 within a 20% error bar, based − × PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey 5 Normal BadSfit100µm AperForced Upper100µm Quantity Bias(%) 1σ(%) Bias(%) 1σ(%) Bias(%) 1σ(%) Bias(%) 1σ(%) Fluxat100µm 1.4 31.7 1.0 4.7 -58.1 14.1 117.1 190.0 Fluxat857GHz -5.0 6.2 3.9 3.2 -56.3 13.8 -11.0 6.0 Fluxat545GHz -3.6 6.4 3.7 3.7 -55.8 14.4 -9.0 6.0 Fluxat353GHz -5.0 7.3 2.4 4.7 -58.9 14.8 -10.0 6.7 FWHM -0.6 16.2 30.9 27.7 -25.2 16.3 -6.7 15.3 Ellipticity 0.0 8.2 0.0 9.5 - - 0.0 9.0 T -4.2 5.2 -4.1 1.6 -6.5 3.8 0.4 16.0 β 9.8 7.3 10.5 2.4 11.2 6.7 2.7 18.7 Table 1. Statistics of the Monte-Carlo analysis performedto estimate the robustness of the photometryalgorithm. The bias (ex- pressed in %) is defined as the relative error between the median of the outputdistribution of the photometryalgorithm and the injectedinput.The1σ(expressedin%)representsthediscrepancyaroundthemostprobablevalueoftheoutputdistribution.Those quantitiesaregiveninthevariouscasescorrespondingtotheoutputflagsprovidedbythealgorithm.Statisticsofthetemperature andspectralindexisalsogivenheretoshowtheimpactoftheobservederroronfluxes. Normal BadSfit100µm AperForced Upper100µm Quantity Bias(%) 1σ(%) Bias(%) 1σ(%) Bias(%) 1σ(%) Bias(%) 1σ(%) Fluxat100µm 11.5 44.3 0.8 8.4 -51.6 21.1 204.5 278.2 Fluxat857GHz -4.0 8.1 2.1 4.7 -58.3 20.1 -10.4 7.1 Fluxat545GHz -2.5 8.0 2.4 4.9 -57.4 21.3 -7.8 7.0 Fluxat353GHz -3.4 8.7 1.9 5.5 -59.3 21.3 -8.7 7.4 FWHM 0.0 18.1 31.0 31.1 -24.4 16.9 -5.2 17.6 Ellipticity 0.0 9.3 -0.5 9.2 - - 0.1 10.4 T -2.1 6.3 -3.2 1.8 -4.4 6.2 6.8 20.6 β 7.1 8.2 9.3 2.6 5.6 12.3 -4.9 20.4 Table2.SameasTable1intheGalacticplane(b <25 ). ◦ | | ontheworkdoneonArcheopsdatabyDe´sertetal.(2008).The astrongsourceisembeddedinafaintbackground(e.g.athigh FHWM ofthe simulatedsourcesspansfrom4.5 to 7 with an latitude),introducingadegeneracybetweenthefitofthecentral ′ ′ ellipticityrangingfrom0to0.87.Thefluxat857GHzistaken ellipticalGaussianandthepolynomialfitofthebackgroundsur- from10to500Jy followingalogarithmicrandomdistribution. face at100µm. Althoughbiasand1-σvaluesare smallerthan The derived fluxes in all IRAS and Planck bands take into ac- inthenormalcaseduetothestrongsignalofthesesources,we countthe colour correction.We apply our complete process of reject this population from the physical analysis, because they photometry on this set of simulated data, and retrieve an esti- couldintroducewrongestimatesofthephysicalpropertiesbased mateofallquantities(fluxes,FWHM,ellipticity)inthevarious onahighlybiasedextension. casesdescribedbytheflagslistedbefore(cfFig.A.1).Statistical If we focus now on the normal case, when the photometry bias and 1σ errors are derivedfor all quantitiesand cases, and algorithm has performedwell, we first observe a slight bias of arelistedinTable1and2forall-skyand b < 25 respectively. ◦ all fluxes estimates. The bias at 100 µm becomes larger when | | Wethetemperatureandspectralindexestimatesrecoveredatthe looking into the Galactic plane (11.5% for b < 25 compared endoftheprocessingarealsolistedtoillustratetheimpactofthe | | to1.4%overthewholesky).ThefluxesPlanckbands,however, errorsonthefluxes. arelessunder-estimatedwhenlookinginsidetheGalacticplane, with biases spanning from 2.5% to 5%. The associated 1σ er- This Monte-Carlo analysis confirms, firstly, why sources rorsareabout6to7%onall-skyand8-9%intheGalacticplane. withAperforcedsettoonshouldberejectedfromthephysical The impact of such a biased estimate of the fluxes will be dis- study, since for these sources fluxes are systematically under- cussedtogetherwiththe studyonthe calibrationuncertaintyin estimatedbyabout60%.SourceswithUpper100µmsettoon, Sect. 4.1.On the otherhand,theFWHM estimateare typically for which only an upperlimit at 100µm hasbeen providedby biasedbylessthan1%andhaveanaccuracyof 18%,whenthe the algorithm, the flux at 100 µm is over-estimated by a factor ∼ ellipticitypresentsnobiasandanaccuracyof 9%.Finallythe oftwo,withanassociateddiscrepancythatcanreachafactorof ∼ temperatureandspectralindexarederivedusingthemethodde- threetimestheinputvalueinregionsclosetotheGalacticplane. scribedinSect.4.1.Whereasthetemperatureisslightlyunder- MoreoverthefluxesinthePlanckbandsaresignificantlybiased estimated ( 2% in the Galactic plane), the associated spectral tolowervalues,withabiasgreaterthanthe1σdiscrepancy.The ∼ index is over-estimated by 7%. The statistical 1-σ uncertain- resulting temperature estimate is, as expected, greater than the ∼ tiesareabout6%and8%forT andβrespectively.Theseresults injectedvalueandtheuncertaintiesinthetemperatureandspec- willbetakenintoaccountindetailwhendiscussingthephysical tralindexarearound20%.Thisillustratesthelimitationsonany propertiesofthesecoldsourcesinSect.4.1. physical conclusions that could be drawn from this population ofsources.Whena badfitofthe 100µm backgroundhasbeen The Monte-Carlo simulations described here demonstrate obtained,Bad Sfit 100 µm flag set to on, the main error comes the robustness of our photometryalgorithm,and justify the re- fromthehighlybiasedestimateoftheFWHM( 31%),leading jectionofentirecategoriesofobjectsusingthephotometryflags, ∼ toanover-estimateofthefluxesinallbands.Thishappenswhen such as the Aper Forced, PS Neg and Bad Sfit 100µm. The re- 6 PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey Fig.1.Colour-Colourdiagramofthecatalogue.Theover-plotted Fig.2. Signal-to-noise ratio (SNR) of new sources (dash line) symbolsstandforthepositivecross-matcheswithnonISMob- overlaidontheSNRofallsources(solidline). jects.Theredcontoursgivethedomainofthediagramfilledby Archeopscoldcoresassumedtofollowagrey-bodylaw,witha Simbadtype C3PO <MC> temperaturerangingfrom6K < T < 25K,andaspectralindex [%] [%] βgivenbyDe´sertetal.(2008). ISM 49.0 21.7 Star 2.3 4.9 Gal 2.1 7.4 mainingsample consists of 9465objects, dividedinto two cat- Radio 5.3 7.7 egories: 1840 objects have only an upper limit estimate of the QSO 0.1 0.3 Others 0.3 0.2 fluxat100µmand7625havewelldefinedphotometryinIRAS Newdetections 40.9 57.8 and Planck bands. We will focus on this last category of 7625 sources for the rest of the analysis on the physical properties. Table3.CrossmatchwithSimbaddatabaseforC3POandsimu- BasedonthisMonte-Carloanalysis,wewilladoptthefollowing latedcatalogues,foreachcategoryofSimbadtype.The<MC> estimateofthe1σuncertaintyonfluxes:40%onIRAS100µm, columngivesanestimateoftheprobabilityofchancealignment and8%onPlanck bands.Thiserrorismuchlargerthanthein- foreachSimbadtype. trinsicpixelnoiseandsoinstrumentalerrorsareneglected. 2.5.Cross-Correlationwithexistingcatalogues contoursof this figure show the domainfilled by dusty objects As one step of the validation of our detections, we have per- assumingagrey-bodyemissionlaw,with6K < T < 25K,and formed an astrometric search on the Simbad database2 for all a spectralindexβgivenbyDe´sertetal. (2008).Thematchbe- known sources within a 5 radius of our sources. There are a tweenPlanckdetectionsandthiscolour-colourdomainisstrong. ′ large number of objects in the Simbad database which raises Only a few objects (17) show the colour-colour properties of the question of chance alignments. This is especially true for radio emitters, located in the top-right corner, indicating real extragalacticobjectswhichhaveareasonablyisotropicskydis- matches with extragalactic objects. For the rest of the sample, tribution. To judge the number of chance alignments that can theprobabilityofchancealignmentishigh.Concerningtheas- be expected by performing this kind of search, we have also sociationwithstars,exceptforafewX-rayemitters,mostlyall conducted a Simbad cross check on the positions of a set of Simbadmatchesseemassociatedwithdustyemission,andthus 100Monte-CarlosimulatedcataloguespresentedinSect.5.1.1. representchancealignment. TheseMonte-Carlorealizationsreproducetheobjectdensityof Wefinallyrejectonlytheobviousextragalacticmatches,lo- the Planck catalogue per bin of longitudeand latitude. The re- catedinthetop-rightcornerofthecolour-colourdiagram,lead- sultspresentedinTable3showthatthenumberofcoincidences ingto7608objects. in the ISM category is greater in the C3PO catalogue than the Out of the 7608 sources in the photometric reliable cata- probabilityofchancealignmentestimatedfromtheMonte-Carlo logue,40%havenocounterpartintheSimbaddatabase.Inad- simulations. On the contrary, the fraction of contaminants (i.e. dition, these newdetectionshave a similar SNR distributionas Galaxies,QSO,RadioSources,stars) isalwayslowerinC3PO theentirecatalogueasshowninFig.2,andcanbeconsideredas thanintheMonte-Carlorealizations.Thusextragalacticobjects reliableastheentirecatalogue. and Galactic non-dusty objects are mostly rejected by the de- tection algorithm, whereas actual ISM structures are preferen- 3. SpatialDistribution tiallydetected.AmoredetailedcomparisonbetweenC3POand IRDCscataloguesispresentedinSect.7.1. 3.1.AssociationwithGalacticstructures Neverthelessthe association with probablecontaminantsin C3POisquitehigh( 10%)andnotallarenecessarilytheresult Theall-skydistributionofthe10783C3POsourcesispresented ofchancealignments∼.Todisentanglebetweenchancealignment intheupperpanelofFig.3.MostlyconcentratedintheGalactic and real matches, we use colour-colour information as shown plane, the distribution clearly follows Galactic structures be- in Fig. 1. Mostly objects are distributed in the bottom-leftcor- tweenlatitudesof 20◦and+20◦.Afewdetectionsareobserved − nerofthediagram,typicalofdust-dominatedemitters.Thered at high Galactic latitude (b > 30◦) and after cross-correlation | | with external catalogues have been confirmed not to be extra- 2 http://simbad.u-strasbg.fr/simbad/ galacticobjects(seeSect.2.5). PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey 7 ColdCoreDensityMap COcontoursonColdCoreDensityMap AvcontoursonColdCoreDensityMap Fig.3. Upper panel: All-sky map of the number of C3PO Planck cold clumps per sky area, smoothed at 3 . Middle panel: CO ◦ contoursareover-plottedontheC3POdensitymapwhichissetto0whereCOmapisnotdefined.Lowerpanel:Avcontoursare over-plottedontheC3POdensitymapwhichissetto0whereAvmapislowerthan0.1Av. 8 PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey In themiddlepanelofFig.3, contoursoftheintegratedin- Name Lon Lat Area Distance Nb tensitymapoftheCOJ1-0lineareoverlaidonthePlanckcold [deg] [deg] [deg2] [pc] clumps density all-sky map. This CO map is a combinationof AquilaSerpens 3 28 30 260 59 COdatafromDameetal.(2001)andNANTENdata(Fukuietal. PolarisFlare 24 123 134 150 55 1999;Matsunagaetal.2001;Mizuno&Fukui2004),asdefined Camelopardalis 20 148 159 240 11 UrsaMajor 35 148 44 240 13 in Planck Collaboration (2011o). The correlation between CO Taurus -15 170 883 140 393 and C3PO Cold Clumps is quite impressive and demonstrates TaurusPerseus -15 170 883 350 227 onceagaintherobustnessofthedetectionprocessandthecon- λOri -13 196 113 400 66 sistency of the physical nature of these Planck cold objects. A Orion -9 212 443 450 353 detailed analysis shows that more than 95% of the clumps are Chamaeleon -16 300 27 150 114 associatedwithCOstructures. Ophiuchus 17 355 422 150 311 Hercules 9 45 35 300 16 The lower panelshowsthe same kindof spatial correlation withtheall-skyAvmap(Dobashi2011inpreparation).TheAv Table 4. Molecular complexes used to associate C3PO cold map traces more diffuse regions of the Galaxy and extents to clumpstoGalacticwell-knownstructures,forwhichanestimate higherlatitude,wherecoldclumpsarealsopresent.About75% ofthedistanceisavailable. oftheC3POobjectsareassociatedwithanAvsignaturegreater than1. 3.2.3. Distancesfromextinctionsignature 3.2.DistanceEstimation Genetic forward modelling (using the PIKAIA code Distanceestimatesareessentialtoproperlyanalysethepopula- Charbonneau 1995) is used along with the Two Micron tionofdetectedcoldclumps.Wehaveusedfourdifferentmeth- All Sky Survey (Skrutskie et al. 2006) and the Besanc¸on ods:associationwithIRDCs,associationwithknownmolecular Galactic model (Robin et al. 2003) to deduce the three di- complexes,three dimensionalextinctionmethodusing2MASS mensional distribution of interstellar extinction towards the data,andextinctionmethodusingSDSSdata. cold clump detections. The derived dust distribution can then be used to determine the distance and mass of the sources, independently of kinematic models of the Milky Way. Along 3.2.1. DistancestoIRDCs a line of sight that crosses a cold clump, the extinction is seen torise sharplyatthedistanceofthe cloud.Themethodisfully Simonetal.(2006b)andJacksonetal.(2008)providekinematic explainedinMarshalletal.(2006)andMarshalletal.(2009). distance estimates for a total of 497 IRDCs extracted from the Thedistance,asdeterminedbythistechnique,providesline MSXcatalogue(Simonetal.2006a)thatconsistsof10931ob- of sight information on the dust distribution. However, it does jects. Kinematic distances are obtained via the observed radial not have sufficient angular resolution to perform morphologi- velocity of gas tracers in the plane of the Galaxy. By assum- cal matches on the cold clumps. To ensure that the extinction ing that the Galactic gas follows circular orbits and a Galactic risedetectedalongthelineofsightisindeedrelatedtotheinner rotation curve,an observedradialvelocity at a given longitude structureweperformaconsistencycheckonthecolumndensity corresponds to a unique Galactocentric radius. Of course, this derivedfromthe extinctionandfromthe sourceflux,corrected means that in the inner Galaxy, two heliocentric distances are foritstemperature.Onlydetectionswherethetwocolumnden- possible. Thistechniqueis onlyapplicablein the plane andre- sitiesareinagreementwithinafactoroftwoareretained.This quires the availability of appropriate molecular data. We find leadstodistanceestimatesfor978objectsoftheentireandpho- 127 Planck cold clumps, over the complete catalogue, associ- tometricreliablecatalogue. atedwithIRDCsthatalreadyhaveakinematicdistanceestimate. Thisnumberdecreasesto32associationsoverthe7608objects ofthephotometricreliableC3POcatalogue. 3.2.4. DistancesfromSDSS AmorerecentworkbyMarshalletal.(2009)usesanextinc- Distancestocoldclumpswithin1kpcareobtainedbyanalysis tionmethod,detailedinSect.3.2.3,onthesameMSXcatalogue ofdistance-reddeningrelationsforlatespectraltypestarswithin ofIRDCstoderivethedistanceof1259objects.Thisyields188 thelineofsighttoeachsource(McGehee2011inpreparation). associations with C3PO clumps over the entire catalogue, and Specifically,weuseSloanDigitalSkySurveyphotometryofM1 47overthephotometricreliableC3POcatalogue. toM5dwarfscolour-selectedbythereddening-invariantindex E(g r) 3.2.2. Distancestoknownmolecularcomplexes Qgri =(g r) − (r i). (2) − − Er i − − The all-sky distribution of cold clumps follows known molec- TheupdatedugrizreddeningcoefficientsofSchlaflyetal.(2010) ular complexes. Many of these have distances estimates in the areused.ThemedianstellarlocusofCoveyetal.(2007)forms litterature. To assign the distance of a complex to a particular the basis of a calibration between Q and the intrinsic g i gri − cold clump we use the CO map of Dame et al. (2001)to trace colour.Afterdereddening,thedistancetoeachstarisdetermined thestructureofthemolecularcloudaboveagiventhreshold,and includingcorrectionsforGalacticmetallicityvariationfollowing test for the presence of cold clumpsinside this region.The as- Bochanskietal.(2010). sociation has been performed on 14 molecular complexes (see Thedistance-reddeningprofileisconstructedbycomputing Table4),leadingto1152distanceestimatesovertheentirecat- the median reddeningfor stars within a circularpatch centered alogueand947onthephotometricallyreliablecatalogue.cata- on the core location for 25 pc wide distance bins spanning 0 logue. to 2000 pc. We fit the observedreddeningprofile to the model PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey 9 Method EntireC3PO ReducedC3PO (10783) (7608) IRDCs(Kinematic) 127 32 IRDCs(Extinction) 188 47 2MASSExtinction 978 978 SDSSExtinction 1452 1004 MolecularComplexes 1152 947 Total 3411 2619 Table 5. Number of distance estimates available of the C3PO sources for each method. Notice that the total numbersare not equaltothesumofallmethods,duetooverlapbetweenthem. Fig.4.DistributionofC3POcoldclumpsasseenfromtheNorth Galactic Pole. Colours stand for methodsused to estimate dis- tance: Molecular Complex association (green), SDSS extinc- tion(lightblue),2MASSextinction(darkblue),IRDCsextinc- tion(orange)andIRDCskinematic(red).Thereddashedcircle showsthe 1kpc radiusaroundthe sun. Black dashedlines rep- Fig.5. Distance distribution of the MSX IRDCs (Simon et al. resent the spiral arms and local bar. The black circles give the 2006b) (solid line) and of the subset associated to the cold limitsofthemolecularring. clumps of the entire C3PO catalogue (dot-dash-dash line) and thephotometricreliablesubsetofC3PO(dottedline). definedbyconvolutionofthenear-fieldplussinglecloudprofile withaGaussian(indistancemodulus),thisfunctionis: E(B V) =a+c x−x0 1 exp −t2 dt (3) − obs Z−∞ √2πσ2 2σ2! Thenumberofobjectsforwhichwehaveadistanceestimate wherexistheindependentvariable(distancemodulus),x isthe is 2619 out of a total of 7608 objects in our photometric reli- 0 locationofthesinglecloud,aisthenear-fieldreddening,cisthe able subset, i.e. 34%. The distances of the cold clumps span ∼ reddeningassociated with the cloud, and σ is the width of the from 0.1 to 7kpc, but they mainly concentrated in the nearby Gaussian.Thefittedσvaluesaretypically0.4to0.5magnitudes Solar neighbourhood as shown on Fig. 4. This type of distri- in m M, as expected from the standard deviation of the (r bution has been already demonstrated using simulations, see z,M )−usedtoassignabsolutemagnitudes. − Fig.10ofMontieretal.(2010).Thelackofdetectionsatlarge r Analysisofcalibrationfieldscontainingwell-studiedmolec- distances is mainly caused by the effects of confusion within ular cloud complexes, e.g. the Orion B Cloud, reveal that the the Galactic plane, from which suffers the detection method. recovereddistancemoduliareunderestimatedby0.2to0.3mag- Nevertheless, when comparing the distance distribution of the nitudes,consistentwiththebiasexpectedfromtheMdwarfmul- C3POcoldclumpsassociatedtoMSXIRDCswiththetotalsam- tiplicityfraction. pleofSimonetal.(2006b)inFig.5,wenoticethatthefraction Thisprocessingleadsto1452distanceestimatesovertheen- ofC3PO-IRDCsmatchesdoesnotdependondistanceandex- tirecatalogueand1004overthephotometricreliableone. tendsto8kpc. BecausethesubsetofC3POcoldclumpswithadistancees- timatehasbeenobtainedusingdifferentmethods,exploringvar- 3.2.5. Combinedresults iousregionsanddistancesoverthesky,thissampleappearshet- The numberof sourcesfor whichdistancescould be recovered erogeneous.Thecompletenessofthecataloguewithdistancesis depends on the method used (cf Table 5). There is some over- quite difficultto assess. Thuswe define two subsets forfurther lapbuteachmethodhasitsdistinctadvantagesaccordingtothe analysis, especially when looking at number counts, for which distancerangebeingconsidered.The2MASSextinctionmethod weknowthatthesampleismorehomogeneous:thefirstsubset isnotverysensitive nearby(D<1kpc),asthereare notenough (1790objects)dealswiththelocalobjects(D< 1kpc)anduses stars to determine accurately the line of sight information. In onlyestimatesfrommolecularcomplexesassociationandSDSS contrast, the extinction method using SDSS is especially de- extinction;thesecondsubset(674objects)focusesondistantob- signedfornearbyobjects.Forobjectswith1kpc,wehaveused jects(D>1kpc)andusesonly2MASSextinctionestimatesand SDSSdistanceswhenavailbleormolecularcomplexdistances. IRDCsassociations. 10 PlanckCollaboration:TheGalacticColdCorePopulationrevealedbythefirstPlanckall-skysurvey Fig.7. Reduced χ2 obtained in the case β = 2 as a functionof the temperature obtained with β free. When T becomes lower, theχ2becomeslarger. line),ofthewarmenvelopeT (redline),andofthelocalback- env groundT (reddotdashline)distributionspeakrespectivelyat bkg 13.9K, 15.1K and 16.1K. The uncertainty on the temperature estimatesisabout7%.Theseresultsareingoodagreementwith theexpectedvaluesofcoldcores(e.g. Bergin&Tafalla 2007) and consistentwith the results of our Monte-Carlosimulations demonstratingthat our source extractionmethodaccuratelyre- Fig.6.Distributionofthetemperatureofthecoldclumps(blue), coversthe cold source parametersin the presence of a warmer of the warm envelope (red) and of the total (green) estimated background. inside the elliptical Gaussian of the clump itself. The averaged temperature of the local background is plotted in red dot-dash Inasecondanalysis,weperformedathreeparameter(A,T line. and β) χ2 fit leading to the temperature distributions shown in thelowerpanelofFig.6.Theχ2 fitisperformedonagridtak- ingintoaccountthecolourcorrectionasdefinedinPlanckHFI 4. PhysicalProperties Core Team (2011b) and gives the exact minimum of the χ2 in 4.1.Temperature the(A,T,β)spaceandprovidingtheassociated1-σuncertainty. Evaluatingtheχ2obtainedwithβ=2asafunctionofthebestfit ThetemperatureofthesourcesisestimatedfromSEDsusing4 temperatureobtained from the full three parameter fits, we see bands:theIRAS100µmandthethreehighestfrequencyPlanck that a modelβ = 2 is reasonable for temperaturesin the range bands857GHz,545GHzand353GHz.Theassumedemission 10K < T < 18K (forwhichthe χ2 < 1),butdoesnotprovide modelisamodifiedblack-bodylaw,definedas: a good fit at lower temperature T < 10K (see Fig. 7). In fact, the lower the temperature, the worse the fit. Using β as a free S = AB (T)νβ, (4) ν ν parameter, the temperature distributions peak at 13K, 13.9K, 15.5Kand17KforT ,T ,T andT respectively,withan where S is the flux integrated over the solid angle C tot env bkg ν error of about7%. The associated spectral index β varies from Ω = πσ σ , A is the amplitude, T is the temperature, C Maj Min 1.5to3,withanuncertaintyof21%andameanvalueof2.1for βisthespectralindexandB isthePlanckfunction. ν coldclumpsand1.8forthetotalemission,consistentwithother Foreachsource,asetoffourtemperaturesismeasured:(1) studiesbased on Planck data (PlanckCollaboration2011o,t,u). the temperature of the clump T is defined as the temperature C Thetemperatureofthecoldclumpsspantherange7Kto17K. basedontheSEDsofthecoldresidualasdescribedinSect.2.3; (2)thetemperatureofthewarmenvelopeT isobtainedfrom Thebiasandtheuncertaintyofthetemperatureandspectral env aperturephotometryoverthesameregionbutperformedonthe indexhavetobeadjusted,takingintoaccounttheMonte-Carlo warmcomponent;(3)thetotaltemperatureT isdefinedasthe analysisofthephotometryalgorithm(seeSect.2.4),andtheim- tot temperatureofthesourceintheinitialmap,i.e.withoutremov- pactofthecalibrationuncertaintydetailedinSect.B.Werecall inganywarmcomponent;(4)thetemperatureofthelocalback- thatabiasof -2%onTand 7%onβisinducedbythepho- ∼ ∼ groundT isdefinedasthetemperatureoftheaveragesurface tometryitself. Ontheotherhand,thecalibrationuncertaintyof bkg brightnessaroundthesource. fluxesdoesnotintroducedanybiasonT orβ,butgeneratesan We have first fixed the spectral index to β = 2 (Boulanger errorof 8%onβandfrom3%to5%onT,thatshouldbeadded etal.1996).Aχ2 fitisperformedontheSEDstoderivealles- quadrati∼callytotheuncertaintyduetostatisticalerrors.Allthese timatesoftemperaturesandassociated1-σerrors.Thedistribu- considerationsleadtoafinalrangeoftemperaturespanningthe tionofthesetemperaturesisshownontheupperpanelofFig.6. range7Kto17Kwithanuncertaintyofabout9%,andaspec- ThetemperatureofthecoresT (blueline)peaksat13.4Kand tralindexβvaryingfrom1.4to2.8withanuncertaintyofabout C spansfrom9Kto16K.ThetemperatureofthetotalT (green 23%. tot

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.