Astronomy&Astrophysicsmanuscriptno.Planck2011-1.3 (cid:13)c ESO2012 January4,2012 Planck Collaboration: Planck Early Results. II. The thermal performance of Planck PlanckCollaboration:P.A.R.Ade76,N.Aghanim49,M.Arnaud62,M.Ashdown60,4,J.Aumont49,C.Baccigalupi74,M.Baker34,A.Balbi29, A.J.Banday81,8,67,R.B.Barreiro56,E.Battaner82,K.Benabed50,A.Benoˆıt48,J.-P.Bernard81,8,M.Bersanelli26,41,P.Bhandari58,R.Bhatia5, J.J.Bock58,9,A.Bonaldi37,J.R.Bond6,J.Borders58,J.Borrill66,77,F.R.Bouchet50,B.Bowman58,T.Bradshaw73,E.Bre´elle3,M.Bucher3, C.Burigana40,R.C.Butler40,P.Cabella29,P.Camus48,C.M.Cantalupo66,B.Cappellini41,J.-F.Cardoso63,3,50,A.Catalano3,61,L.Cayo´n19, A.Challinor53,60,11,A.Chamballu46,J.P.Chambelland58,J.Charra49,M.Charra49,L.-YChiang52,C.Chiang18,P.R.Christensen70,30, D.L.Clements46,B.Collaudin79,S.Colombi50,F.Couchot65,A.Coulais61,B.P.Crill58,71,M.Crook73,F.Cuttaia40,C.Damasio35,L.Danese74, R.D.Davies59,R.J.Davis59,P.deBernardis25,G.deGasperis29,A.deRosa40,J.Delabrouille3,J.-M.Delouis50,F.-X.De´sert44,K.Dolag67, S.Donzelli41,54,O.Dore´58,9,U.Do¨rl67,M.Douspis49,X.Dupac33,G.Efstathiou53,T.A.Enßlin67,H.K.Eriksen54,C.Filliard65,F.Finelli40, S.Foley34,O.Forni81,8,P.Fosalba51,J.-J.Fourmond49,M.Frailis39,E.Franceschi40,S.Galeotta39,K.Ganga3,47,E.Gavila79,M.Giard81,8, G.Giardino35,Y.Giraud-He´raud3,J.Gonza´lez-Nuevo74,K.M.Go´rski58,84,S.Gratton60,53,A.Gregorio27,A.Gruppuso40,G.Guyot43, 2 1 D.Harrison53,60,G.Helou9,S.Henrot-Versille´65,C.Herna´ndez-Monteagudo67,D.Herranz56,S.R.Hildebrandt9,64,55,E.Hivon50,M.Hobson4, 0 W.A.Holmes58,A.Hornstrup13,W.Hovest67,R.J.Hoyland55,K.M.Huffenberger83,U.Israelsson58,A.H.Jaffe46,W.C.Jones18,M.Juvela17, 2 E.Keiha¨nen17,R.Keskitalo58,17,T.S.Kisner66,R.Kneissl32,5,L.Knox21,H.Kurki-Suonio17,36,G.Lagache49,J.-M.Lamarre61,P.Lami49, A.Lasenby4,60,R.J.Laureijs35,A.Lavabre65,C.R.Lawrence58(cid:63),S.Leach74,R.Lee58,R.Leonardi33,35,22,C.Leroy49,81,8,P.B.Lilje54,10, n M.Lo´pez-Caniego56,P.M.Lubin22,J.F.Mac´ıas-Pe´rez64,T.Maciaszek7,C.J.MacTavish60,B.Maffei59,D.Maino26,41,N.Mandolesi40, a J R.Mann75,M.Maris39,E.Mart´ınez-Gonza´lez56,S.Masi25,S.Matarrese24,F.Matthai67,P.Mazzotta29,P.McGehee47,P.R.Meinhold22, A.Melchiorri25,F.Melot64,L.Mendes33,A.Mennella26,39,M.-A.Miville-Descheˆnes49,6,A.Moneti50,L.Montier81,8,J.Mora58,G.Morgante40, 2 N.Morisset45,D.Mortlock46,D.Munshi76,53,A.Murphy69,P.Naselsky70,30,A.Nash58,P.Natoli28,2,40,C.B.Netterfield15,D.Novikov46, ] I.Novikov70,I.J.O’Dwyer58,S.Osborne78,F.Pajot49,F.Pasian39,G.Patanchon3,D.Pearson58,O.Perdereau65,L.Perotto64,F.Perrotta74, M F.Piacentini25,M.Piat3,S.Plaszczynski65,P.Platania57,E.Pointecouteau81,8,G.Polenta2,38,N.Ponthieu49,T.Poutanen36,17,1,G.Pre´zeau9,58, M.Prina58,S.Prunet50,J.-L.Puget49,J.P.Rachen67,R.Rebolo55,31,M.Reinecke67,C.Renault64,S.Ricciardi40,T.Riller67,I.Ristorcelli81,8, I . G.Rocha58,9,C.Rosset3,J.A.Rubin˜o-Mart´ın55,31,B.Rusholme47,M.Sandri40,D.Santos64,G.Savini72,B.M.Schaefer80,D.Scott16, h M.D.Seiffert58,9,P.Shellard11,G.F.Smoot20,66,3,J.-L.Starck62,12,P.Stassi64,F.Stivoli42,V.Stolyarov4,R.Stompor3,R.Sudiwala76, p - J.-F.Sygnet50,J.A.Tauber35,L.Terenzi40,L.Toffolatti14,M.Tomasi26,41,J.-P.Torre49,M.Tristram65,J.Tuovinen68,L.Valenziano40,L.Vibert49, o P.Vielva56,F.Villa40,N.Vittorio29,L.A.Wade58,B.D.Wandelt50,23,C.Watson34,S.D.M.White67,A.Wilkinson59,P.Wilson58,D.Yvon12, r A.Zacchei39,B.Zhang58,andA.Zonca22 t s a (Affiliationscanbefoundafterthereferences) [ Preprintonlineversion:January4,2012 2 v 3 ABSTRACT 2 0 TheperformanceofthePlanck’sinstrumentsinspaceisenabledbytheirlowoperatingtemperatures,20KforLFIand0.1KforHFI,achieved 2 through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency . coverageledtotwodetectortechnologieswithwidelydifferenttemperatureandcoolingneeds.Activecoolerscouldsatisfytheseneeds;ahelium 1 cryostat,asusedbypreviouscryogenicspacemissions(IRAS,COBE,ISO,Spitzer,Akari),couldnot.RadiativecoolingisprovidedbythreeV- 0 grooveradiatorsandalargetelescopebaffle.Theactivecoolersareahydrogensorptioncooler(<20K),a4HeJoule-Thomsoncooler(4.7K),anda 1 3He-4Hedilutioncooler(1.4Kand0.1K).Theflightsystemwasatambienttemperatureatlaunchandcooledinspacetooperatingconditions.The 1 HFIbolometerplatereached93mKon3July2009,50daysafterlaunch.ThesolarpanelalwaysfacestheSun,shadowingtherestofPlanck,and : v operatesatameantemperatureof384K.Attheotherendofthespacecraft,thetelescopebaffleoperatesat42.3Kandthetelescopeprimarymirror i operatesat35.9K.Thetemperaturesofkeypartsoftheinstrumentsarestabilizedbybothactiveandpassivemethods.Temperaturefluctuations X aredrivenbychangesinthedistancefromtheSun,sorptioncoolercyclingandfluctuationsingas-liquidflow,andfluctuationsincosmicrayflux r onthedilutionandbolometerplates.Thesefluctuationsdonotcompromisethesciencedata. a Keywords. Cosmology–Cosmicmicrowavebackground–Spaceinstrumentation–Instrumentdesignandcalibration 1. IntroductionPlanck Planck1 (Tauberetal.2010;PlanckCollaboration2011a)isthe thirdgenerationspacemissiontomeasuretheanisotropyofthe 1 Planck (http://www.esa.int/Planck) is a project of the EuropeanSpaceAgency(ESA)withinstrumentsprovidedbytwosci- (cid:63) Corresponding author: C. R. Lawrence <charles.lawrence@ entificconsortiafundedbyESAmemberstates(inparticularthelead jpl.nasa.gov> countriesFranceandItaly),withcontributionsfromNASA(USA)and 1 PlanckCollaboration:ThethermalperformanceofPlanck cosmic microwave background (CMB). It observes the sky in ements,threeV-grooveradiators,andatelescopebafflewithlow ninefrequencybandscovering30–857GHzwithhighsensitiv- emissivityinsideandhighemissivityoutside. ity and angular resolution from 31(cid:48) to 5(cid:48). The Low Frequency Instrument (LFI; Mandolesi et al. 2010; Bersanelli et al. 2010; 2.1.1. Missiondesign,scientificrequirements,andthermal Mennella et al. 2011) covers the 30, 44, and 70GHz bands architecture withamplifierscooledto20K.TheHighFrequencyInstrument (HFI;Lamarreetal.2010;PlanckHFICoreTeam2011a)covers Planck is designed to extract all information in the tempera- the 100, 143, 217, 353, 545, and 857GHz bands with bolome- tureanisotropiesoftheCMBdowntoangularscalesof5(cid:48),and ters cooled to 0.1K. Polarisation is measured in all but the to provide a major advance in the measurement of polarisation two highest bands (Leahy et al. 2010; Rosset et al. 2010). A anisotropies. This requires both extremely low noise and broad combination of radiative cooling and three mechanical cool- frequencycoveragefromtenstohundredsofgigahertztosepa- ers produces the temperatures needed for the detectors and op- rateforegroundsourcesofradiationfromtheCMB.Theneces- tics(PlanckCollaboration2011b).Twodataprocessingcentres sary noise level can be reached only with cryogenically-cooled (DPCs) check and calibrate the data and make maps of the sky detectors.Thelowestnoiseisachievedwithamplifierscooledto (Planck HFI Core Team 2011b; Zacchei et al. 2011). Planck’s ≤ 20Kandbolometerscooledto∼ 0.1K.Temperaturefluctua- sensitivity,angularresolution,andfrequencycoveragemakeita tionsmustnotcompromisethesensitivity.Additionalconstraints powerfulinstrumentforGalacticandextragalacticastrophysics on Planck that affect the thermal design include: 1) no deploy- as well as cosmology. Early astrophysics results are given in ables (e.g., a shield that could block the Sun over a large solid PlanckCollaboration(2011d–u). angle);2)noopticalelementssuchaswindowswithwarmedges The unprecedented performance of the Planck instruments between the feed horns and telescope; 3) 1.5yr minimum total in space is enabled by their low operating temperatures, 20K lifetime;4)aspinningspacecraft;5)anoff-axistelescopebelow for LFI and 0.1K for HFI, achieved through a combination of 60K;6)feedhornsforthebolometersbelow5Kandabolome- passive radiative cooling and three active coolers. This archi- ter environment below 2K; 7) reference targets (loads) for the tecture is unlike that of the previous CMB space missions, the pseudo-correlationamplifierradiometersbelow5Ktominimize CosmicBackgroundExplorer(COBE;Boggessetal.1992)and 1/f noise;and8)0.5Wheatliftforthe20Kamplifiers. the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett These requirements (stated precisely in Tables 1, 2, and 5, etal.2003).COBEusedaliquidheliumcryostattoenablecool- andinSect.2.1.2)ledtoadesignthatincludesthefollowing: ing of the bolometers on its Far-Infrared Absolute spectropho- tometer(FIRAS)instrument(Matheretal.1990)to1.5K.This approachwasnotadoptedforPlanckasitwouldrestricttheon- – A“warmlaunch”scenario,inwhichtheentireflightsystem orbitlifetimefortheHFI,requireadditionalcoolerstoreachsub- isatambienttemperatureforlaunch.Thisallowsaveryclean Kelvin temperatures, and be entirely infeasible for cooling the environmentfromthestraylightpointofview. activeheatloadfromtheLFI.WMAPreliedonpassiveradiative – The overall thermal architecture shown in Fig. 1, with the coolingalonewhich,whilesimpler,resultedinahigheroperat- solarpanelactingasaSunshield,andtemperaturedecreas- ingtemperatureforitsamplifiersandahighernoisetemperature. ingalongthespinaxistowardthecoldendandthepassively Additionally,purelypassivecoolingisunabletoreachthesub- cooledtelescope. kelvinoperatingtemperaturesrequiredbyHFI’shigh-sensitivity – Extensive use of passive (radiative) cooling, especially the bolometers. V-grooveradiatorsandthetelescopeandtelescopebaffle. In this paper we describe the design and in-flight perfor- – Detectorsbasedonamplifiersat30,44,and70GHz,andon manceofthemission-enablingPlanckthermalsystem. bolometersat100,143,217,353,545,and857GHz. – An active cooling chain with three mechanical coolers. No large helium cryostat had ever been flown on a spinning 2. ThermalDesign spacecraft. A focal plane with detectors at 0.1K and 20K and reference loads at less than 5K would have been diffi- 2.1. Overview,philosophy,requirements,andredundancy culttoaccomodateinacryostat.Aheatliftof0.5Wat20K would have required a huge cryostat of many thousands of The thermal design of Planck is driven by the scientific re- liters. quirement of very broad frequency coverage, implying two in- strumentswithdetectortechnologiesrequiringdifferentcooling 1. The “sorption cooler” (Fig. 2), a closed-cycle sorption temperatures (20K and 0.1K) and heatlifts (0.5W and 1µW). coolerusinghydrogenastheworkingfluidwithaJoule- This, combined with a scanning strategy based on a spinner Thomson (JT) expansion, which produces temperatures satellite,ledtothechoiceofanactivecoolingsystem.Theover- below 20K and a heat lift close to 1W. The sorption all architecture can be understood from Fig. 1. The solar panel coolercoolstheLFIfocalplaneto< 20Kandprovides always faces the Sun and the Earth, the only two significant precooling to lower temperature stages. Although this sources of heat in the sky, and operates at 385K. The service cooler was a new development, it was the only one that vehiclemodule(SVM)operatesatroomtemperature.Thetele- could provide such a large heatlift at the required tem- scope, at the opposite end of the flight system, operates below perature. 40K. The detectors at the focus of the telescope are actively 2. The“4He-JTcooler”(Fig.3),aclosed-cyclecoolerusing cooled to 20K (amplifiers) or 0.1K (bolometers). Between the aStirlingcyclecompressorand4Heastheworkingfluid SVMandthe“coldend,”aggressivemeasuresaretakentomin- withaJTexpansion,whichproducestemperaturesbelow imize heat conduction and to maximize the radiation of heat to 5K. The 4He-JT cooler cools the structure hosting the coldspace.Thesemeasuresincludelow-conductivitysupportel- HFIfocalplaneandtheLFIreferenceloadsto<5Kand provides precooling to the dilution cooler. The chosen telescopereflectorsprovidedbyacollaborationbetweenESAandasci- technologyhadalongflightheritageforthecompressors entificconsortiumledandfundedbyDenmark. andaspecificdevelopmenttominimizemicrovibrations. 2 PlanckCollaboration:ThethermalperformanceofPlanck 36 K Primary mirror 42 K Telescope baffle FPU Secondary mirror 46 K V-groove 3 90 K V-groove 2 140 K V-groove 1 270 K SVM 385 K Solar panel Fig.1.CutawayviewofPlanck,withthetemperaturesofkeycomponentsinflight.Thesolarpanelatthebottomalwaysfacesthe SunandtheEarth,andistheonlypartoftheflightsystemilluminatedbytheSun,theEarth,andtheMoon.Temperaturedecreases steadily towards the telescope end, due to low-conductivity mechanical connections and aggressive use of radiative cooling. The focalplanedetectorsareactivelycooledto20Kand0.1K. 3. The“dilutioncooler”(Fig.4),a3He-4Hedilutioncooler made the cryogenic chain the most challenging element in the that vents combined 3He and 4He to space, and which Planckmission. producestemperaturesof1.4KthroughJTexpansionof the3Heand4He,and∼0.1Kforthebolometersthrough the dilution of 3He into 4He. Although this was a new 2.1.2. Requirementsonthecoolers technology,itwaschosenforitssimplearchitecture,con- The three coolers were required to deliver temperatures of < tinuous operation, and temperature stability. An ADR 20K, < 5K, and 0.1K, continuously. Although use of proven suitable for HFI would have to operate from a 4K heat technology is preferred in space missions, the special require- sinkratherthanthe1.5KheatsinkavailableonAstro-E, mentsofPlanck ledtothechoiceoftwonew-technologycool- and would have to be scaled up in mass by a factor of ers. 10tolift8µWat0.1K(Triqueneauxetal.2006).Thisis The first is a hydrogen sorption cooler developed by the becausethedilutionliftsheatnotonlyat100mKwhere JetPropulsionLaboratoryinCalifornia,whichprovidesalarge the3Heand4Helinescombine,butalsoallalongthere- heat lift with no mechanical compressors (avoiding vibration). turn line (which is attached to the struts and wiring) as The sorption cooler requires precooling of the hydrogen to ≤ themixturewarms,reducingtherequiredliftat100mK 60K.Theprecoolingtemperaturerequiredbythe4He-JTcooler, fromabout8µWtoonly1µW.IfanADRsimilartothat which is supplied by the sorption cooler, is ≤ 20K. This in- ofastro-ewereusedforPlanck,itwouldhavetoliftthe terface temperature is critical in the cooling chain: the 4He-JT entire8µWat100mK.Furthermore,ADRsrequirehigh coolerheatloadincreaseswiththeinterfacetemperaturewhen, magnetic fields and cycling, not easily compatible with atthesametime,itsheatliftdecreases.Thusthegoalforthepre- continuousmeasurementsandtheveryhighstabilityre- cooltemperaturesuppliedbythesorptioncoolerwas18K,with quirementsofPlanck. astrictrequirementof≤ 19.5Ktoleaveadequatemargininthe coolingchain. The above design results in a complicated architecture and The second new cooler is a 3He-4He dilution cooler. The testphilosophy.Thetwoinstruments,passiveradiators,andac- microgravity dilution cooler principle was invented and tested tivecoolerscannotbeseparatedeasilyfromthespacecraft,either by A. Benoˆıt (Benoˆıt et al. 1997) and his team at Institut Ne´el, mechanicallyorthermally.Thecomponentsoftheflightsystem Grenoble,anddevelopedintoaspacequalifiedsystembyDTA are highly interdependent, and difficult to integrate. All of this Air Liquide (Triqueneaux et al. 2006) under a contract led by 3 PlanckCollaboration:ThethermalperformanceofPlanck Fig.2. Sorption cooler system. The system is fully redundant. One of the compressor assemblies, mounted on one of the warm radiator panels, which faces cold space, is highlighted in orange. Heat pipes run horizontally connecting the radiators on three sidesoftheservicevehicleoctagon.Thesecondcompressorassemblyistheblackboxontheright.Atube-in-tubeheatexchanger carrieshighpressurehydrogengasfromthecompressorassemblytothefocalplaneassemblyandlowpressurehydrogenbackto thecompressor,withheat-exchangingattachmentstoeachofthethreeV-grooves.Coloursindicatetemperature,fromwarm(red, orange,purple)tocold(blue). Fig.3. 4He-JT cooler system. The back-to-back compressors are highlighted in gold on the left-hand side of the service vehicle, adjacenttocontrolelectronicsboxes.Thehighandlowpressure4HegastubesconnectingthecompressorswiththeJTvalveinthe focalplanearecolouredfrompurpletoblue,indicatingtemperatureasinFig.2. 4 PlanckCollaboration:ThethermalperformanceofPlanck Fig.4.Dilutioncoolersystem.Fourhighpressuretanksof3Heand4Hearehighlightedinsilver.Thedilutioncoolercontrolunit (DCCU),towhichpipingfromthetanksandtothefocalplaneunitisattached,ishighlightedontheleft. GuyGuyotandthesystemgroupatIAS.Itprovidestwostages mance significantly. The 4He-JT cooler provides the reference of cooling at 1.4K and 100mK. The total heat lift requirement loadsfortheLFI,andisthusaquasi-singlepointfailure;how- at100mKwas0.6µW,andcouldbeachievedwithanopencir- ever, it was not made redundant because of its good flight her- cuit system carrying enough 3He and 4He for the mission. The itage and in view of the extra resources it would have required precoolingtemperaturerequiredwaslessthan4.5K. fromthespacecraft. Thisprecoolisprovidedbythethirdcooler,aclosed-circuit 4He JT expansion cooler driven by two mechanical compres- 2.1.4. Thecriticalimportanceofpassivecooling sors in series (Bradshaw & Orlowska 1997, p.465) developed byRALandEADSAstriuminStevenage,UK(formerlyBritish Nearly14kWofsolarpowerilluminatesthesolarpanel.Ofthis, Aerospace).Thedriveelectronicsweredesignedandbuiltbya less than 1W reaches the focal plane, a result of careful ther- consortium of RAL and Systems Engineering and Assessment mal isolation of components, extremely effective passive cool- (SEA)inBristol.Thepre-chargeregulatorwasbuiltbyCRISA ingfromtheV-groovesandthetelescopebaffle,andtheoverall in Madrid with oversight from ESA and the University of geometry.Thelowtemperaturesachievedpassivelyhaveadra- Granada.Thenetheatliftrequirementforthiscoolerwas15mW maticeffectonthedesignoftheactivecoolers.Inparticular,the ataprecoolingtemperatureof20K.Sincebolometersaresensi- efficiency and heat lift of the sorption cooler increase rapidly tivetomicrovibrations,thiscoolerincludesanewvibrationcon- astheprecoolingtemperatureprovidedbytheV-grooves,espe- trol system. The major components of the system are shown in cially V-groove 3, decreases. The 4He-JT cooler heat lift also Fig.3,andthebasiccharacteristicsaresummarizedinTable2. increases as its precool temperature — the ∼18K provided by the sorption cooler — decreases. The low temperatures of the primaryandsecondarymirrorsmeanthattheirthermalemission 2.1.3. Redundancyphilosophy contributesnegligiblytotheoverallnoiseoftheinstruments(see A redundant sorption cooler system was required because both Sect. 4.1.), and the radiative heat load from the baffle and mir- instruments depend on it. Furthermore the hydride used in the rorsonthefocalplaneunit(FPU)isextremelylow.Noneofthis sorption beds ages. The other two coolers are needed only by couldworkasitdoeswithoutthepassivecooling. theHFI,andwerenotrequiredtoberedundant.Thecriticalel- ements of the dilution cooler are passive. Although the flow of 3Heand4Heisadjustable,aminimumflowisalwaysavailable. 2.2. Passivecomponents Theonlysinglepointfailureistheopeningofthevalvesonthe 2.2.1. V-grooves high pressure tanks of 3He and 4He at the start of the mission. Making those redundant would increase the risk of leaks with- TheV-grooveradiatorsareconesbuiltfromflatwedgesofcar- outimprovingreliabilitysignificantly.Thecompressorsusedin bonfibrehoneycombpanelcoveredwithaluminiumfacesheets. the4He-JTcoolerhavegoodflightheritage.Thevibrationcon- All surfaces are low emissivity except the exposed top of V- trolsystemwasnotconsideredasinglepointfailureforthehigh groove 3, which is painted black for good radiative coupling frequencyinstrument,althoughitsfailurewoulddegradeperfor- to cold space. The vertex angle of successive cones decreases 5 PlanckCollaboration:ThethermalperformanceofPlanck byabout 7◦, thus facing cones are not parallel, and photons be- Table1.Requirementsonthesorptioncoolersystem. tween them are redirected to cold space in a few reflections. V-grooves are extremely effective at both thermal isolation and Item Requirement radiativecooling,withmanyadvantagesovermultilayerinsula- Coldendtemperature .... 17.5K<LVHX1<19.02K tion (MLI), including negligible outgassing after launch. Three 17.5K<LVHX2<22.50K V-grooves are required to achieve the ≤ 60K requirement on precool temperature for the sorption cooler, with margin. More Coolingpower......... atLVHX1>190mW wereunnecessary,butwouldhaveaddedcostandmass. atLVHX2>646mW Inputpower........... <426W,beginningoflife 2.2.2. Telescopebaffle Coldendtemperature .... ∆T atLVHX1<450mK fluctuations ∆T atTSA<100mK The telescope baffle provides both radiative shielding and pas- sivecooling.Itsinterioriscoveredwithpolishedaluminiumfor lowemissivity,whileitsoutsideiscoveredwithopenhex-cells paintedblack,forhighemissivity. valves that allow gas flow in a single direction only. The high pressure is stabilized by a 4litre ballast tank, the high-pressure stabilization tank (HPST). On the low pressure side, the low 2.3. Activecomponents pressurestoragebed(LPSB),filledwithhydrideandmaintained at a temperature near that of the warm radiator, stores a large 2.3.1. Sorptioncoolerandwarmradiator fraction of the H required to operate the cooler during flight 2 Eachofthetwohydrogensorptioncoolerscomprisesacompres- and ground testing, while minimizing the pressure in the non- sorassembly,warmradiator,pipingassembly(includingheatex- operationalcoolerduringlaunchandtransportation. changers onthree V-groove radiators),a JTexpander, and con- Asinglecompressorelementcomprisesacylindersupported trol electronics. The major components of the system are high- at its ends by low thermal conductivity tubes connected to a lightedinFig.2.Theonlymovingpartsarepassivecheckvalves. largersemi-cylinderwithaflatside.Theinnercylindercontains Six “compressor elements” containing a La Ni Sn alloy the La Ni Sn ; the outer semi-cylinder creates a volume 1.0 4.78 0.22 1.0 4.78 0.22 absorb hydrogen at 270K and 1/3atmosphere, and desorb it at aroundtheinnercylinder,anditsflatsideisboltedtothe“warm 460Kand30atmospheres.Byvaryingthetemperatureofthesix radiator.”Thevolumebetweenthetwoisevacuatedorfilledwith beds sequentially with resistance heaters and thermal connec- lowpressurehydrogenbyagas-gapheatswitchusingasecond tions to the warm radiator, a continuous flow of high-pressure metal hydride, ZrNi. When filled with low pressure hydrogen, hydrogenisproduced. there is a good thermal connection from the inner hydride bed Sorption coolers provide vibration-free cooling with no ac- tothewarmradiator.Whenhydrogenisevacuated,theinnerhy- tive moving parts, along with great flexibility in integration of dridebedisthermallyisolated,andcanbeheatedupefficiently. the cooler to the cold payload (instrument, detectors, and tele- Thecompressorelementsaretakensequentiallythroughfour scope mirrors) and the warm spacecraft. No heat is rejected in steps:heatuptopressurize;desorb;cooldowntodepressurize; ornearthefocalplane.TherefrigerantfluidinthePlancksorp- absorb.Atagiveninstant,oneofthesixcompressorelementsis tioncoolersishydrogen,selectedforoperationatatemperature heatingup,oneisdesorbing,oneiscoolingdown,andthreeare of ∼17K. The Planck sorption coolers are the first continuous absorbing. Heating is achieved by electrical resistance heaters. cyclesorptioncoolerstobeusedinspace. Coolingisachievedbythermallyconnectingthecompressorel- Table 1 gives the requirements on the sorption cooler sys- ementtotheso-calledwarmradiator,whosetemperatureiscon- tem. The temperature stability requirement listed is an inade- trolled(Sect.2.4.2)byelectricalheatersatatemperatureinthe quatesimplificationofacomplicatedreality.Fluctuationsinthe range272±10K. temperaturesofthesorptioncoolerinterfacestotheLFIandHFI The warm radiator covers three of the eight panels of the havenointrinsicsignificance.Whatmattersistheeffectoftem- SVM. The two compressor assemblies are mounted on the end perature fluctuations on the science results. Fluctuations at the panelsofthethree,eachofwhichcontains16straightheatpipes cooler interfaces with HFI and LFI (LVHX1 and LVHX2, re- running parallel to the spacecraft spin axis and perpendicular spectively)propagatetothedetectorsthemselvesthroughcom- tothecompressorelements.Theseheatpipesmaintainanearly plicated conductive and radiative paths (quite different for the isothermal condition across the panel, in particular distributing twoinstruments).Temperaturecontrols,passivecomponentsof the heat of the compressor element that is in the cooldown cy- varyingemissivitiesintheopticalpaths,thestructureofthede- cle.Eightlong,bent,heatpipesrunperpendiculartotheothers, tectorsandtheeffectofthermalfluctuationsontheiroutput,and connectingallthreepanelsoftheradiatortogether.Theexternal theeffectsofthespinningscanstrategyanddataprocessingall surfacesofallthreepanelsarepaintedblack. mustbetakenintoaccount.Fluctuationsatfrequencieswellbe- Upon expansion through the JT valve, hydrogen forms liq- lowthespinfrequency(16.67mHz)cannotbeduetothesky,and uiddropletswhoseevaporationprovidesthecoolingpower.The areeasilyremovedbythespinanddataprocessing.Fluctuations liquid/vapourmixturethenflowsthroughtwoliquid/vapourheat atfrequencieswellabovethespinfrequencyareheavilydamped exchangers (LVHX), the first thermally and mechanically cou- bythefront-endstructureoftheinstruments.Theimpactofthese pled to the HFI interface, where it provides precooling for the factors could not be calculated accurately at the time a cooler 4He-JT cooler (Sect. 2.3.2) and the 3He-4He dilution cooler fluctuation requirement had to be devised, and therefore it was (Sect.2.3.3).ThesecondiscoupledtotheLFIinterface,whereit not possible to derive a power spectral density limit curve — coolstheLFIfocalplaneassemblyto∼20K.Anyremainingliq- theonlykindofspecificationthatcouldcapturethetruerequire- uid/vapourmixtureflowsthroughathirdLVHX,whichismain- ments—withhighfidelity.WewillreturntothispointinSect.7. tained above the hydrogen saturated vapour temperature. This Eachcompressorelementisconnectedtoboththehighpres- thirdLVHXservestoevaporateanyexcessliquidthatreachesit, sureandlowpressuresidesofthepipingsystemthroughcheck preventing flash boiling and thereby maintaining a nearly con- 6 PlanckCollaboration:ThethermalperformanceofPlanck 4K optical plate Table2.Requirementsandcharacteristicsofthe4He-JTcooler. 1.4 K optical plate Workingfluid .......................... 4Helium bolometer plate Heatliftat17.5Kpre-cooltemperature 100 mK dilution plate Maximum ......................... 19.2mW dilution Required .......................... 13.3mW Pre-coolrequirements ThirdV-groove...................... ≤54K 20 K 20 K mechanical mechanical LFI SorptioncoolerLVHX1................ 17.5–19K interface dilution interface Nominaloperatingtemperature .............. 4.5K exchanger Mass 1.4K box Compressors,pipes,coldstage........... 27.7kg 1.4K JT Electronicsandcurrentregulator ......... 8.6kg heat switch LVHX2 Powerintocurrentregulator ................ ≤120W 4K box 4K cold stage heat switch 18K stage tached to the bottom of the 4K box of the HFI FPU, as can be LVHX1 seeninFig.5.Itprovidescoolingforthe4Kshieldandalsopre- coolingforthegasinthedilutioncoolerpipesdescribedinthe V-groove interfaces nextsection. The cooling power and thermal properties of the 4He-JT 4HeJT sorption warm cooler,measuredbytheRALteamatsubsystemlevelandthen compressors DCCU and panel cooler radiator in the system thermal vacuum tests, are summarised in the fol- lowing relationships, which depend linearly on the adjustable Fig.5. Schematic of the HFI FPU. The designations “20K”, parametersinthevicinityoftheflightoperatingpoint: “18K”, “4K”, “1.4K”, and “100mK” are nominal. Actual op- eratingtemperaturesaregiveninSect.4. HL = 15.9mW+6.8(∆S −3.45mm) max −1.1(T −17.3K)+0.6(P −4.5bar); (1) pc fill stantpressureinthelow-pressurepiping.Low-pressuregaseous Heatload = 10.6mW+0.5(T −17.3K) hydrogenisre-circulatedbacktothecoolsorbentbedsforcom- pc pression. +0.065(Tvg3−45K)+Heaters; (2) Regulationofthesystemisdonebysimpleheatingandcool- T = 4.4K−0.035(HL −Heatload). (3) ing;noactivecontrolofvalvesisnecessary.Theheatersforthe JT4K max compressorsarecontrolledbyatimedon-offheatersystem. The flight sorption cooler electronics and software were HereHLmaxisthemaximumheatlift,Tpcisthepre-coolingtem- developed by the Laboratoire de Physique Subatomique et de perature,Tvg3 isthetemperatureofV-groove3,∆S isthestroke Cosmologie (LPSC) in Grenoble. These electronics and their halfamplitudeofthecompressors,andPfill istheheliumfilling controllingsoftwareprovideforthebasicsequentialoperationof pressure. the compressor beds, temperature stabilization of the cold end, The heat load on the 4K box was predicted using the ther- and monitoring of cooler performance parameters. In addition, malmodelandverifiedontheflightmodelduringtheCSLther- they automatically detect failures and adapt operations accord- malbalance/thermalvacuumtest.Performanceinflightwasun- ingly. Operational parameters can be adjusted in flight to max- changed(Sect.4.3). imisethelifetimeandperformanceofthesorptioncoolers. Thestrokeamplitude,andtosomedegreethesorptioncooler The total input power to the sorption cooler at end of life precooltemperature,areadjustableinflight.Theinterfacewith (maximumaveragepower)is470W.Another110Wisavailable thesorptioncooler,includingthewarmradiatortemperature,is tooperatethesorptioncoolerelectronics. themostcriticalinterfaceoftheHFIcryogenicchain.The4He- JT cooler heat load increases and its heat lift decreases as the sorption cooler precool temperature increases (see Fig. 6). The 2.3.2. 4He-JTcooler 4He-JTcoolingpowermargindependsstronglyonthistemper- Figure 5 shows schematically the thermal interfaces of the ature,itselfdrivenmostlybythetemperatureofthewarmradi- HFIcoolingsystem.Thecompressorsofthe 4He-JTcoolerare ator. Warm radiator temperatures of 272K (±10K, Sect. 2.3.1) mounted in opposition (Lamarre et al. 2010) to cancel to first leadtosorptioncoolertemperaturesbetween16.5Kand17.5K order momentum transfer to the spacecraft. Force transducers (Bersanellietal.2010).ItcanbeseenfromFig.6thatata20K betweenthetwocompressorsprovideanerrorsignalprocessed precool temperature even the largest possible stroke amplitude bythedriveelectronicsservosystemthatcontrolstheprofileof leavesnomargin. thepistonmotionstominimisethefirstsevenharmonicsofthe The two mechanical compressors produce microvibrations periodicvibrationinjectedintothespacecraft. andalsoinduceelectromagneticinterference,potentiallyaffect- The4Kcoldheadisasmallreservoirofliquidheliumina ingthesciencesignalsofbolometers.Therisksassociatedwith sinteredmaterial,locatedaftertheexpansionofthegasthrough these effects were taken into account early in the design of the theJTorifice.Thisprovidesanimportantbufferwithhighheat HFIbyphase-lockingthesamplefrequencyofthedatatoahar- capacitybetweentheJTorificeandtherestoftheHFI.Itisat- monicofthecompressorfrequency. 7 PlanckCollaboration:ThethermalperformanceofPlanck Fig.6. Heat lift of the 4He-JT cooler as a function of precool Fig.7. Heat lift margin of the dilution cooler as a function of temperature, stroke half amplitude ∆S (“DS” in the figure), dilution temperature and helium flow, with the dilution cooler and proportional, integral, differential (PID) control power. For controlunitat19◦C.Foroperationinflightat101mK,115nW ∆S = 3.45mm,aprecooltemperatureof19.5Kgivesthemin- is available to accommodate the heating from cosmic rays and for temperature regulation even at the lowest flow (Fmin2 = imumrequiredheatlift(Table2)of13.3mW.Thein-flightpre- 19.8µmol−1)usedinflight(seeTable3andSect.4.4). cooltemperatureof∼17.0K(verticaldottedline,andTable10) allowstheuseofalowstrokeamplitude,minimisingstresseson thecooler,andprovidesalargemargininheatlift. Thismarginisgivenby: Table3.Heliumflowoptionsforthedilutioncooler. (cid:18)T (cid:19)−1.5 HL [nW]=3.210−3He [µmols−1]T2 DCCU margin flow dilu 273 4He 4He+3He 3He −250(T1.4K−1.28)−20(Tbolo−Tdilu) FlowLevel [µmols−1] [µmols−1] [µmols−1] −490, (4) Fmin2 ........ 14.5 19.8 5.4 wherethelasttwolinesare,respectively,theheatloadsfromthe Fmin ......... 16.6 22.9 6.3 1.4Kstage,thebolometerplate,andfixedconductionparasitics, FNOM1 ....... 20.3 27.8 7.5 allinnanowatts. FNOM2 ....... 22.6 30.8 8.2 As shown in Fig. 7, even at the highest temperature of the dilutionpanelinthespacecraft(19◦C,thusminimumflowfora givenrestrictionduetohigherviscosityofthehelium),101mK 2.3.3. Dilutioncooler can be achieved in flight with the lowest flow (Fmin2), with 115nWofpoweravailableforregulation,andwiththeextraheat The dilution cooler operates on an open circuit using a large inputinflightfromcosmicraysandvibration. quantityof4Heand3Hestoredinfourhighpressuretanks.The majorcomponentsofthesystemareshowninFig.4,including a JT expansion valve producing cooling power for the “1.4K 2.4. Temperaturecontrol stage” of the FPU and pre-cooling for the dilution cooler. The 2.4.1. ServiceVehicleModule gasfromthetanks(300baratthestartofthemission)isreduced to19barthroughtwopressureregulators,andtheflowthrough The SVM thermal control system maintains all SVM compo- thedilutioncircuitsisregulatedbyasetofdiscreterestrictions nentsattheirpropertemperature,minimizestheheatfluxtothe chosenbytelecommand.Theflowratesfordifferentconfigura- payload module, and guarantees a stable thermal environment tionsoftherestrictionsaregiveninTable3forthehotspacecraft tothepayloadmodule.Nospecificeffortismadetocontrolthe case. The flow depends on the restriction temperature through temperatureofthethrustersortheirheatingeffect. changesoftheheliumviscosity. The solar panels are nearly normal to the Sun and, as men- TheheatliftmarginHLmargin (availablefortemperaturereg- tionedinSect.2.1,operateat385K.Tominimizetheirheatflux ulation)isdeterminedby: totheSVMtheyarecoveredby20layersofmultilayerinsula- tion(MLI)andmountedwithlowthermalconductivitytitanium – He ,theflowrateoftheheliumisotopesinµmols−1given brackets.ThelaunchvehicleadaptorisalwaysSun-exposed;to flow bythechosenrestrictionconfiguration—foreachrestriction minimize its flux to the SVM, it is covered with MLI to the the flow is expressed when the temperature of the dilution maximumextentand,wherenotpossible,withaproper“cold” coolercontrolunit(DCCU)isat273K; thermo-opticalcoating. – T ,thetemperatureoftheDCCUinflight; The SVM is octagonal. Internal SVM components are dis- DCCU – the heat loads from the bolometer plate, determined by the tributed on the eight panels, each of which is provided with its temperaturedifferencebetweenT andT ,andfromthe own external radiator. Three of the panels — power, downlink bolo dilu 1.4KstageatatemperatureofT ;and transponder,andstartracker/computer(STR/DPU)—havetem- 1.4K – T ,thetemperatureofthedilutioncoldend. peraturecontrolofsomesort.Thepowerpanelisstableindis- dilu 8 PlanckCollaboration:ThethermalperformanceofPlanck Table 4. Power levels and temperature ranges of the seven in- dependent heater lines of the warm radiator temperature con- trolsystem.Heatersarealwayson,alwaysoff,orcontrolledon- off(“bang-bang”control).Thesampleconfigurationwastypical duringthefirstmonthsofoperation. Power Sample T Range LoopNumber [W] Configuration [◦C] 13............. 78 On −8to−9 14............. 78 On −9to−10 8............. 91 On-Off −10to−11 12............. 91 Off −11to−12 32............. 91 Off −12to−13 28............. 91 Off −13to−14 27............. 91 Off −14to−15 Fig.8. Schematic of the temperature stabilization assembly (TSA).TheheateriscontrolledbyahybridPID+predictivecon- troller. Stainless steel strips provide thermal resistance with a sipation and consequently in temperature. The other two pan- highheatcapacity. elsexperiencetemperaturefluctuationsfordifferentreasons(see Sect.5.1). Another three panels are dedicated to the sorption coolers 2.4.3. 20Kstage (Sect.2.3.1).Thesorptioncoolercompressorelementshavein- termittenthighdissipation.Tominimizetheimpactontherestof LVHX1 provides a temperature below 18K, with fluctuations SVM,thesorption coolercavityisinternallywrappedby MLI. drivenbythecooler(bed-to-bedvariations,cycling,instabilities To maintain the sorption coolers above their minimum temper- inthehydrogenliquid-gasflowaftertheJT,etc.).Stabilizationof aturelimits(253Knon-operatingand260Koperating),several the temperature of this interface with the HFI is not necessary, heaters have been installed on the eight horizontal heat pipes as temperature control of the subsequent colder stages is more andgroupedinsevenheaterlinesworkingatdifferenttempera- efficientandveryeffective. tures. Temperature control of the warm radiator is described in LVHX2 provides a temperature of about 18K. To reduce Sect.2.4.2below. coldendfluctuationstransmittedtotheradiometers,aninterme- The warm compressors of the 4He-JT cooler are installed diatestage,thetemperaturestabilizationassembly(TSA,Fig.8), on another panel equipped with heaters to maintain a mini- is inserted between LVHX2 and the LFI FPU. The TSA com- mumtemperature.TheLFIradiometerelectronicbackendunits prises a temperature sensor and heater controlled by a hybrid (REBAs) and the dilution cooler control unit (DCCU) are in- PIDandpredictivecontroller,plusahigh-heat-capacitythermal stalledonthelastpanel.HeaterswithPIDcontrolmaintainthe resistance.Theset-pointtemperatureoftheTSAisanadjustable REBAsandtheDCCUatastabletemperatureat2.75 ◦C. parameter of the sorption cooler system, chosen to provide dy- namic range for control, but not to require more than 150mW ThetopsurfaceoftheSVMiscoveredwith20layersofMLI ofpowerfromtheheater.Asthehydrideinthesorptioncooler tominimizeradiationontothepayload. ages,thereturngaspressureandthusthetemperatureofLVHX2 rise slowly. The temperature of the warm radiator (Sect. 2.4.2) 2.4.2. Warmradiator also affects the temperature of LVHX2. Small adjustments of theset-pointtemperaturearerequirednowandthen.Thereisno Thewarmradiatoristhemeansbywhichtheheatgeneratedin- othertemperatureregulationintheLFIfocalplane. side the compressor elements during heat-up and desorption is The heater/thermometer is redundant. The thermal resis- rejected to cold space. (Most of the heat lifted from the focal tance between LVHX2 and the TSA causes a temperature dif- plane is rejected to space by the V-groove radiators.) The tem- ference proportional to the heat flux through it; thus the stage peratureofthewarmradiatordeterminesthetemperatureofthe is stabilized to (or above) the highest temperature expected for hydridebedsduringtheabsorptionpartofthecoolercycle.The LVHX2.Thermalvariationofthecontrolledstageisdetermined lowerthetemperature,thelowerthepressureofhydrogenonthe byseveralfactors,includingthermometerresolution,thermome- low pressure side of the JT expansion, and therefore the lower ter sampling/feedback cycle time, heater power resolution, and the temperature of the thermal interfaces with the HFI and LFI heater power slew rate. Attached on the other side of the con- (LVHX1 and LVHX2, respectively). The strict requirement on trolledstageisanotherthermalresistance,throughwhichflows thetemperatureofLVHX1giveninTable1translatesintoare- alloftheheatliftedfromLFI.Thetransferfunctionofthermal quirementonthetemperatureofthewarmradiator. noisefromthecontrolledstagetotheLFIFPUisdeterminedby thisresistanceandbytheeffectiveheatcapacityofLFI. Temperature control of the warm radiator is achieved with sevenindependentheaterlines.Thetemperatureofthewarmra- diator depends on the total heat input from the sorption cooler 2.4.4. 4K,1.4K,and0.1Kstages plustheheaters.Alistingoftheheatersalongwiththeircontrol bands is given in Table 4. The average of three warm radiator The noise produced by thermal fluctuations of sources of stray thermistors, calculated once per minute for each loop, is used radiationshouldbesmallrelativetothephotonnoiseifnocor- forcontrolofallsevenheaters. rection is applied to the signal. This leads to a conservative re- 9 PlanckCollaboration:ThethermalperformanceofPlanck Table 5. Temperature stability requirements on HFI compo- nents,overthefrequencyrange16mHz–100Hz. Component Requirement 4Khornsandfilters(30%emissivity) ........ ≤10µKHz−1/2 1.4Kfilters(20%emissivity) .............. ≤28µKHz−1/2 0.1Kbolometerplate .................... ≤20nKHz−1/2 quirement (Lamarre et al. 2003) that the temperatures of the cryogenicstagesthatsupportopticalelementsmustmeetthesta- bilityrequirementsgiveninTable5. Activethermalcontrolofthe4K,1.4K,and100mKstages (Piat et al. 2003, 2000) is needed to meet these requirements. Fig.10.Heatliftofthesorptioncoolerasafunctionofprecool Temperature is measured with sensitive thermometers made of (V-groove3)temperature. optimisedNTDGe(Piatetal.2001,2002)andreadoutbythe same electronics as the bolometers. Details of the temperature stabilitytestsaregivenbyPajotetal.(2010). Regulationofthestagesisachievedbyactivecontroloflow aroundwhichthedilutiontubesarewound.Thefirstregulation frequencyfluctuations(f <∼0.1Hz)andpassivefilteringofhigh system(PID1)isdirectlyattachedtothiscylinderandprovides frequencyfluctuations(f >∼ 0.1Hz).Theactivesystemusesthe stabilityonlongtimescales.ItisahollowNb-Tialloycylinder NTDGethermometersmentionedaboveandaPIDcontrolim- containinganI-shapedpieceofcopperwithredundantPIDs(i.e., plementedintheon-boardsoftware.Eachheaterisbiasedbya twoheatersandtwothermometers)inthethinpartoftheI(Piat 24bitADC(madeoftwo12bitADCs).Apassiveelectricalcir- etal.2003).Itsfunctionistoactivelydampfluctuationsinduced cuit connects the ADC to the heater to fix the maximum heat bythedilutioncooler.ThedilutionplatesupportsthePID1box, depositionandthefrequencyrange. wiring,andconnectors.Yttrium-holmium(YHo)strutssupport 4K — The main sources of thermal fluctuations on the 4K the bolometer plate. They provide passive filtering with a ther- platearethe4He-JTcoolerandthemechanicalsupportstoLFI maltimeconstantofseveralhoursthankstoaverylargeincrease of heat capacity in YHo at low temperature (Madet 2002; Piat (Fig. 9), which conduct thermal fluctuations introduced by the 2000). The bolometer plate is made of stainless steel covered sorptioncoolerontheLFIchassis.Theactivelycontrolledheater with a 250µm film of copper, itself covered with a thin gold isaringlocatedatthetopofthecylindricalpartofthe4Kbox plating. This architecture was defined after thermal simulation (Fig.9).Passivefilteringisprovidedbythethermalpathandthe of high energy particle interactions. A second regulation stage heatcapacityofthe4Kplateandbox. (PID2)isplaceddirectlyonthebolometerplate.Itensurescon- 1.4K—The1.4Kstageisacylindricalboxwithaconicaltop troloftheabsolutetemperatureoftheplateandcompensatesfor (Fig.9).Temperaturefluctuationsarise:(i)atthebottomofthe fluctuationsinducedbyexternalsourcessuchascosmicraysor boxwheretheJTexpansionislocated;and(ii)onthesideofthe backgroundradiationfluctuations.Groundtestsshowedthatthe cylinder,atabout2/3ofitslength,wheremechanicalsupportsat- regulation systems would meet requirements as long as the in- tachatthreepointssymmetricallylocatedonthecircumference. flightfluctuationsoftheheatloadsdidnotexceedpredictions. Tousethenaturalsymmetryofthisstage,theheaterisaribbon placed after the mechanical supports. A sensitive thermometer on the 1.4K filter plate is used as the sensor in the regulation 2.5. Dependencies loop. Passive filtering is provided by the long thermal path be- ThePlanckcoolingchainiscomplicated,withcriticalinterfaces. tweenthesourcesoffluctuationsandthefilters,aswellasbythe Themostcriticalare: heatcapacityoftheopticalfilterplate. 0.1K—Theprincipalsourcesoftemperaturefluctuationsonthe – thetemperatureofthepassivecooling/sorptioncoolerinter- 100mKbolometerplatearethedilutioncooleritself,theback- face at V-groove 3. The heat lift of the sorption cooler de- groundradiation,andfluctuationsincosmicrays.Thisstagehas pendssteeplyonthisprecooltemperature(Fig.10). been carefully optimised, since it is one of the main sources – the 4He-JT cooler helium precooling interface with the of noise on the bolometers themselves. The principles of the LVHX1liquidreservoirofthesorptioncooler.Theheatlift 100mKarchitectureare(Piat2000):(i)controlallthermalpaths of the 4He-JT cooler depends steeply on the cold-end tem- betweensourcesoftemperaturefluctuationsandpartsthatmust perature(Fig.11).Theprecooltemperatureisalsothedom- bestable;(ii)activelycontrolthestructurearoundthebolometer inantparameterfortheheatloadofthe4He-JTcooler. plateandthebolometerplateitselftoensurelongperiodstabil- ity; and (iii) low-pass filter the structure to remove artifacts of Temperaturefluctuationsofthesorptioncooleraredrivenby theactivesystemandtoallowshort-termstability. thevariationofpressurewithhydrogenconcentrationinthehy- Figure9showsaschematicofthe100mKarchitecture.The dride beds during the desorption cycle, as well as by inhomo- mechanical support of the heat exchanger consists of struts of geneitiesinthehydridebeds.Thisleadstofluctuationsofrather Nb-Ti alloy and plates used to thermalise the heat exchanger large amplitude at both the bed-to-bed cycle frequency and the tubesandthewiring.Acounterflowheatexchangeristhermally overall 6-bed cycle frequency. These are controlled at LVHX2 connectedtoallplatesexceptthecoldestone,thedilutionplate. (Sect. 2.4.3), but not at LVHX1, the 4He-JT cooler interface. It goes directly from the next-to-last plate (at about 105mK) Temperature fluctuations in precooling the helium of the 4He- to the dilution exchanger. The dilution exchanger is a cylinder JTcooleraretransferredtothecoldheadat7–8mKK−1. 10