Planar Beam-forming Antenna Array for 60-GHz Broadband Communication Planar Beam-forming Antenna Array for 60-GHz Broadband Communication PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op maandag 16 maart 2009 om 16.00 uur door Johannes Antonius Gerardus Akkermans geboren te Wouw Dit proefschrift is goedgekeurd door de promotoren: prof.dr.ir. E.R. Fledderus en prof.Dr.-Ing. T. Ku¨rner Copromotor: dr.ir. M.H.A.J. Herben AcataloguerecordisavailablefromtheEindhovenUniversityofTechnologyLibrary. CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Akkermans, Johannes A.G. Planar Beam-forming Antenna Array for 60-GHz Broadband Communication / by Johannes A.G. Akkermans. - Eindhoven : Technische Universiteit Eindhoven, 2009. Proefschrift. - ISBN 978-90-386-1528-8 NUR 959 Trefwoorden: millimetergolf antennes / antennestelsels / antenne metingen / bun- delvorming / elektromagnetisme ; numerieke methoden / antenne optimalisatie / antenne verpakking. Subject Headings: millimetre-wave antennas / antenna arrays / antenna measure- ments / beam-forming / computational electromagnetics / antenna optimisation / antenna packaging. c 2009 by J.A.G. Akkermans, Eindhoven (cid:13) Cover title “Riding the millimeter wave”; cover design by Johannes Akkermans. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or anyinformationstorageandretrievalsystem, withoutthepriorwrittenpermissionof the copyright owner. Typeset using LATEX, printed by PrintPartners Ipskamp, Enschede, the Netherlands. Samenstelling van de promotiecommissie: prof. dr. ir. A.C.P.M. Backx, voorzitter prof. dr. ir. E.R. Fledderus, Technische Universiteit Eindhoven, eerste promotor prof. Dr.-Ing. T. Ku¨rner, Technische Universit¨at Braunschweig, tweede promotor dr. ir. M.H.A.J. Herben, Technische Universiteit Eindhoven, co-promotor dr. ir. P.F.M. Smulders, Technische Universiteit Eindhoven prof. dr. ir. D. de Zutter, Universiteit Gent dr. ir. D. Liu, Thomas J. Watson Research Center dr. ir. M.C. van Beurden, Technische Universiteit Eindhoven ThestudiespresentedinthisthesishavebeenperformedintheElectromagneticsand Wireless group, department of Electrical Engineering of the Eindhoven University of Technology, Eindhoven, The Netherlands. The work leading to this thesis has been performed within the SiGi-Spot project (IGC0503) that is part of the IOP-GenCom programme of Senternovem, an agency of the Dutch ministry of Economic affairs. SiGi Sp t Summary i ii Summary The 60-GHz frequency band can be employed to realise the next-generation wireless high-speed communication that is capable of handling data rates of multiple gigabits per second. Advances in silicon technology allow the realisation of low-cost radio fre- quency (RF) front-end solutions. Still, to obtain the link-budget that is required for wireless gigabit-per-second communication, antenna arrays are needed that have suf- ficient gain and that support beam-forming. This requires the realisation of antenna arrays that maintain a high radiation efficiency while operating at millimeter-wave frequencies. Moreover, the antenna array and the RF front-end should be integrated into a single low-cost package that can be realised in a standard production process. In this work, an antenna solution is presented that meets these requirements. Therelevantproductionprocessesthatcanbeusedforantennasandpackagingrealise planar multi-layered structures. Therefore, the modelling of passive electromagnetic structures in stratified media is investigated. A computationally efficient modelling technique is employed that provides an in-depth analysis of the physical behaviour of the electromagnetic structure. The modelling technique is used to design an antenna element that can be realised in planar technology and that can be placed in an array configuration. This antenna element is named the balanced-fed aperture-coupled patch antenna. In the design, the radiation efficiency is optimised through the use of two distant coupling apertures that minimise surface-wave losses and significantly enlarge the bandwidth of the antenna. To improve the front-to-back ratio, a reflector element is introduced. Both these design strategies are used together for the first time, to enhance the global efficiency of the antenna. The antenna is realised in printed circuit-board (PCB) technology. To validate the performance of the antenna element, a special measurement setup is developed that characterises the bandwidth and radiation pattern of millimeter-wave antennas. To maximise the performance of the antenna, an optimisation algorithm is presented that optimises the bandwidth and radiation efficiency of the antenna element. This algorithm gives the designer the flexibility to obtain the best antenna design for the iv considered application. Hereafter, the antenna element is placed in an array config- uration that enables beam-forming. The performance of the beam-forming antenna array is investigated in terms of radiation efficiency, bandwidth and gain. Measure- ments of realised antenna arrays show that the antenna array can be employed to obtain the required gain under beam-forming conditions. Furthermore, the integration of the antenna array and the RF front-end is investi- gated. The packaging of antenna array and RF front-end is discussed and a demon- strator is realised in PCB technology that integrates an RF power amplifier and an antenna element. It is shown that planar technology can be successfully employed to realiseapackagethatembedstheantennaarrayandthatsupportstheRFfront-end. The presented concepts can be readily used for the realisation of a transceiver pack- agethatembedsabeam-formingantennaarrayandthatsupportsgigabit-per-second communication.
Description: