ebook img

PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope

DRAFTVERSIONJANUARY21,2010 PreprinttypesetusingLATEXstyleemulateapjv.04/20/08 PKS1502+106:ANEWANDDISTANTGAMMA-RAYBLAZARINOUTBURST DISCOVEREDBYTHEFERMILARGEAREATELESCOPE A.A.ABDO2,3,M.ACKERMANN4,M.AJELLO4,W.B.ATWOOD5,M.AXELSSON6,7,L.BALDINI8,J.BALLET9,G.BARBIELLINI10,11, D.BASTIERI12,13,B.M.BAUGHMAN14,K.BECHTOL4,R.BELLAZZINI8,B.BERENJI4,E.D.BLOOM4,G.BOGAERT15, E.BONAMENTE16,17,A.W.BORGLAND4,J.BREGEON8,A.BREZ8,M.BRIGIDA18,19,P.BRUEL15,T.H.BURNETT20, G.A.CALIANDRO21,R.A.CAMERON4,P.A.CARAVEO22,J.M.CASANDJIAN9,E.CAVAZZUTI23,C.CECCHI16,17,O¨.C¸ELIK24,25,26, A.CHEKHTMAN2,27,C.C.CHEUNG2,3,J.CHIANG4,S.CIPRINI17,1,R.CLAUS4,J.COHEN-TANUGI28,J.CONRAD29,7,30,S.CUTINI23, 0 C.D.DERMER2,A.DEANGELIS31,F.DEPALMA18,19,S.W.DIGEL4,E.DOCOUTOESILVA4,P.S.DRELL4,R.DUBOIS4, 1 D.DUMORA32,33,C.FARNIER28,C.FAVUZZI18,19,S.J.FEGAN15,E.C.FERRARA24,W.B.FOCKE4,M.FRAILIS31,L.FUHRMANN34, 0 Y.FUKAZAWA35,S.FUNK4,P.FUSCO18,19,F.GARGANO19,D.GASPARRINI23,N.GEHRELS24,36,37,S.GERMANI16,17,B.GIEBELS15, 2 N.GIGLIETTO18,19,F.GIORDANO18,19,M.GIROLETTI38,T.GLANZMAN4,G.GODFREY4,I.A.GRENIER9,M.-H.GRONDIN32,33, J.E.GROVE2,L.GUILLEMOT34,S.GUIRIEC39,Y.HANABATA35,A.K.HARDING24,M.HAYASHIDA4,E.HAYS24,R.E.HUGHES14, n G.JO´HANNESSON4,A.S.JOHNSON4,R.P.JOHNSON5,W.N.JOHNSON2,M.KADLER40,25,41,42,T.KAMAE4,H.KATAGIRI35, a J.KATAOKA43,M.KERR20,J.KNO¨DLSEDER44,M.L.KOCIAN4,F.KUEHN14,M.KUSS8,J.LANDE4,L.LATRONICO8, J M.LEMOINE-GOUMARD32,33,F.LONGO10,11,F.LOPARCO18,19,B.LOTT32,33,M.N.LOVELLETTE2,P.LUBRANO16,17, 1 G.M.MADEJSKI4,A.MAKEEV2,27,M.MARELLI22,E.MASSARO45,W.MAX-MOERBECK46,M.N.MAZZIOTTA19, 2 W.MCCONVILLE24,37,J.E.MCENERY24,37,C.MEURER29,7,P.F.MICHELSON4,W.MITTHUMSIRI4,T.MIZUNO35, A.A.MOISEEV25,37,C.MONTE18,19,M.E.MONZANI4,A.MORSELLI47,I.V.MOSKALENKO4,S.MURGIA4,P.L.NOLAN4, ] J.P.NORRIS48,E.NUSS28,T.OHSUGI35,N.OMODEI8,E.ORLANDO49,J.F.ORMES48,M.OZAKI50,D.PANEQUE4,J.H.PANETTA4, E D.PARENT32,33,V.PAVLIDOU46,T.J.PEARSON46,V.PELASSA28,M.PEPE16,17,M.PESCE-ROLLINS8,F.PIRON28,T.A.PORTER5, H S.RAINO`18,19,R.RANDO12,13,M.RAZZANO8,S.RAZZAQUE2,3,A.READHEAD46,A.REIMER51,4,O.REIMER51,4,T.REPOSEUR32,33, J.L.RICHARDS46,S.RITZ5,5,L.S.ROCHESTER4,A.Y.RODRIGUEZ21,R.W.ROMANI4,M.ROTH20,F.RYDE52,7, h. H.F.-W.SADROZINSKI5,D.SANCHEZ15,A.SANDER14,P.M.SAZPARKINSON5,J.D.SCARGLE53,C.SGRO`8,M.S.SHAW4, p E.J.SISKIND54,D.A.SMITH32,33,P.D.SMITH14,G.SPANDRE8,P.SPINELLI18,19,M.STEVENSON46,M.S.STRICKMAN2, - D.J.SUSON55,H.TAJIMA4,H.TAKAHASHI35,T.TANAKA4,J.B.THAYER4,J.G.THAYER4,D.J.THOMPSON24,L.TIBALDO12,13,9, o O.TIBOLLA56,D.F.TORRES57,21,G.TOSTI16,17,A.TRAMACERE4,58,P.UBERTINI59,Y.UCHIYAMA4,T.L.USHER4, r V.VASILEIOU25,26,N.VILCHEZ44,V.VITALE47,60,A.P.WAITE4,P.WANG4,B.L.WINER14,K.S.WOOD2,H.YASUDA35, st T.YLINEN52,61,7,J.A.ZENSUS34,M.ZIEGLER5, a (THEFERMILATCOLLABORATION), [ AND E.ANGELAKIS34,T.HOVATTA62,E.HOVERSTEN36,Y.IKEJIRI35,K.S.KAWABATA63,Y.Y.KOVALEV64,34,YU.A.KOVALEV64, 2 T.P.KRICHBAUM34,M.L.LISTER65,A.LA¨HTEENMA¨KI62,N.MARCHILI34,P.OGLE46,C.PAGANI36,A.B.PUSHKAREV66,34,67, v K.SAKIMOTO35,M.SASADA35,M.TORNIKOSKI62,M.UEMURA63,M.YAMANAKA35,T.YAMASHITA63 9 DraftversionJanuary21,2010 2 0 ABSTRACT 4 The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovereda rapid ( . 2 5 days duration),high-energy(E > 100MeV) gamma-rayoutburstfroma source identified with the blaza∼r 1 PKS 1502+106(OR 103, S3 1502+10, z=1.839) starting on August 05, 2008 ( 23 UTC, MJD 54683.95), 9 andfollowedbybrightandvariablefluxoverthenextfewmonths.Resultsonthe∼gamma-raylocalizationand 0 identification,aswellasspectralandtemporalbehaviorduringthefirstmonthsoftheFermiall-skysurveyare : v reportedhereinconjunctionwithamulti-wavebandcharacterizationasaresultofoneofthefirstFermimulti- i frequencycampaigns.ThecampaignincludedaSwiftToO(followedupby16-dayobservationsonAugust07- X 22,MJD54685-54700),VLBA(withintheMOJAVEprogram),OwensValley(OVRO)40m,Effelsberg-100m, r Metsa¨hovi-14m,RATAN-600andKanata-Hiroshimaradio/opticalobservations. Resultsfromtheanalysisof a archival observations by INTEGRAL, XMM-Newton and Spitzer space telescopes are reported for a more completepictureofthisnewgamma-rayblazar. PKS1502+106isasub-GeVpeaked,powerfulflatspectrum radioquasar(luminosityatE >100MeV,L ,isabout1.1 1049ergs−1,andblackholemasslikelycloseto γ × 109 M⊙),exhibitingmarkedgamma-raybolometricdominance,inparticularduringtheasymmetricoutburst (L /L 100, and 5-day averaged flux F = 2.91 1.4 10−6 ph cm−2 s−1), which was γ opt E>100MeV ∼ ± × characterized by a factor greater than 3 of flux increase in less than 12 hours. The outburst was observed simultaneouslyfromopticaltoX-raybands(F0.3−10keV =2.18+−00..1152×10−12ergcm−2s−1,andhardphoton index 1.5, similar to past values) with a flux increase of less than one order of magnitudewith respectto ∼ pastobservations,andwaslikelycontrolledbyComptonizationofexternal-jetphotonsproducedinthebroad line region (BLR) in the gamma-ray band. No evidence of a possible blue bump signature was observed in the optical-UV continuum spectrum, while some hints for a possible 4-day time-lag with respect to the gamma-rayflarewerefound. Nonetheless,thepropertiesofPKS1502+106andthestrictoptical/UV,X-and gamma-raycrosscorrelationssuggestthecontributionofthesynchrotronselfCompton(SSC),in-jet,process shoulddominatefromradiotoX-rays.Thismechanismmayalsoberesponsiblefortheconsistentgamma-ray variabilityobservedbytheLATonlongertimescales, afterthe ignitionofactivityattheseenergiesprovided bythe BLR-dissipatedoutburst. Modulationsandsubsequentminor, rapidflare eventswere detected,with a 2 Abdoetal. generalfluctuationmodebetweenpink-noiseandarandom-walk. Theaveragedgamma-rayspectrumshowed adeviationfromasimplepower-law,andcanbedescribedbyalog-parabolacurvedmodelpeakingaround0.4- 0.5GeV.ThemaximumenergyofphotonsdetectedfromthesourceinthefirstfourmonthsofLATobservations was15.8GeV,withnosignificantconsequencesonextragalacticbackgroundlightpredictions.Apossibleradio counterpartof the gamma-rayoutburstcan be assumed only if a delay of more than 3 months is considered onthebasisofopacityeffectsatcmandlongerwavelengths. Therotationoftheelectricvectorpositionangle observedbyVLBAfrom2007to2008couldrepresentaslowfieldorderingandalignmentwithrespecttothe jet axis, likely a precursorfeature of the ejection of a superluminalradio knotand the high-energyoutburst. ThisobservingcampaignprovidesmoreinsightintotheconnectionbetweenMeV-GeVflaresandthemoving, polarizedstructuresobservedbytheVLBI. Subjectheadings:gamma-rays:observations–quasars:individual:PKS1502+106–quasars:general–galax- ies: active–galaxies:jets–X-rays:galaxies 1Correspondingauthor:S.Ciprini,[email protected]. Fisica Nucleare, Sezione di Trieste, Gruppo Collegato di Udine, I-33100 2Space Science Division, Naval Research Laboratory, Washington, DC Udine,Italy 20375,USA 32Universite´deBordeaux,Centred’E´tudesNucle´airesBordeauxGradig- 3National Research Council Research Associate, National Academy of nan,UMR5797,Gradignan,33175,France Sciences,Washington,DC20001,USA 33CNRS/IN2P3,Centred’E´tudesNucle´airesBordeauxGradignan,UMR 4W.W.HansenExperimentalPhysicsLaboratory,KavliInstituteforParti- 5797,Gradignan,33175,France cleAstrophysicsandCosmology,DepartmentofPhysicsandSLACNational 34Max-Planck-Institut fu¨r Radioastronomie, Auf dem Hu¨gel 69, 53121 AcceleratorLaboratory,StanfordUniversity,Stanford,CA94305,USA Bonn,Germany 5SantaCruzInstituteforParticlePhysics,DepartmentofPhysicsandDe- 35Department of Physical Sciences, Hiroshima University, Higashi- partmentofAstronomyandAstrophysics,UniversityofCaliforniaatSanta Hiroshima,Hiroshima739-8526,Japan Cruz,SantaCruz,CA95064,USA 6DepartmentofAstronomy,StockholmUniversity,SE-10691Stockholm, 36DepartmentofAstronomyandAstrophysics, Pennsylvania StateUni- Sweden versity,UniversityPark,PA16802,USA 7TheOskarKleinCentreforCosmoparticlePhysics,AlbaNova,SE-106 37Department of Physics and Department of Astronomy, University of 91Stockholm,Sweden Maryland,CollegePark,MD20742,USA 8IstitutoNazionalediFisicaNucleare,SezionediPisa,I-56127Pisa,Italy 38INAFIstitutodiRadioastronomia,40129Bologna,Italy 9Laboratoire AIM,CEA-IRFU/CNRS/Universite´ Paris Diderot, Service 39CenterforSpacePlasmaandAeronomicResearch(CSPAR),University d’Astrophysique,CEASaclay,91191GifsurYvette,France ofAlabamainHuntsville,Huntsville,AL35899,USA 10IstitutoNazionale diFisicaNucleare, SezionediTrieste, I-34127Tri- 40Dr. Remeis-Sternwarte Bamberg, Sternwartstrasse 7, D-96049 Bam- este,Italy berg,Germany 11DipartimentodiFisica,Universita`diTrieste,I-34127Trieste,Italy 41ErlangenCentreforAstroparticlePhysics,D-91058Erlangen,Germany 12Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 42Universities Space Research Association (USRA), Columbia, MD Padova,Italy 21044,USA 13Dipartimento di Fisica “G. Galilei”, Universita` di Padova, I-35131 43Waseda University, 1-104 Totsukamachi, Shinjuku-ku, Tokyo, 169- Padova,Italy 8050,Japan 14Department of Physics, Center for Cosmology and Astro-Particle 44Centred’E´tudeSpatialedesRayonnements,CNRS/UPS,BP44346,F- Physics,TheOhioStateUniversity,Columbus,OH43210,USA 30128ToulouseCedex4,France 15Laboratoire Leprince-Ringuet, E´cole polytechnique, CNRS/IN2P3, 45Universita`diRoma“LaSapienza”,I-00185Roma,Italy Palaiseau,France 46CahillCenterforAstronomyandAstrophysics, CaliforniaInstitute of 16IstitutoNazionalediFisicaNucleare,SezionediPerugia,I-06123Peru- Technology,Pasadena,CA91125,USA gia,Italy 47IstitutoNazionalediFisicaNucleare,SezionediRoma“TorVergata”, 17DipartimentodiFisica,Universita`degliStudidiPerugia,I-06123Peru- I-00133Roma,Italy gia,Italy 48DepartmentofPhysicsandAstronomy,UniversityofDenver,Denver, 18DipartimentodiFisica“M.Merlin”dell’Universita` edelPolitecnicodi CO80208,USA Bari,I-70126Bari,Italy 49Max-PlanckInstitutfu¨rextraterrestrischePhysik,85748Garching,Ger- 19IstitutoNazionalediFisicaNucleare,SezionediBari,70126Bari,Italy many 20DepartmentofPhysics,UniversityofWashington,Seattle,WA98195- 50InstituteofSpaceandAstronauticalScience,JAXA,3-1-1Yoshinodai, Sagamihara,Kanagawa229-8510,Japan 1560,USA 21Institut de Ciencies de l’Espai (IEEC-CSIC), Campus UAB, 08193 51Institut fu¨r Astro- und Teilchenphysik and Institut fu¨r Theoretische Barcelona,Spain Physik,Leopold-Franzens-Universita¨tInnsbruck,A-6020Innsbruck,Austria 22INAF-IstitutodiAstrofisicaSpazialeeFisicaCosmica,I-20133Milano, 52Department of Physics, Royal Institute of Technology (KTH), Al- Italy baNova,SE-10691Stockholm,Sweden 23AgenziaSpazialeItaliana(ASI)ScienceDataCenter,I-00044Frascati 53SpaceSciencesDivision,NASAAmesResearchCenter,MoffettField, CA94035-1000,USA (Roma),Italy 54NYCBReal-TimeComputingInc.,Lattingtown,NY11560-1025,USA 24NASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA 55Department of Chemistry and Physics, Purdue University Calumet, 25CenterforResearchandExplorationinSpaceScienceandTechnology Hammond,IN46323-2094,USA (CRESST)andNASAGoddardSpaceFlightCenter,Greenbelt,MD20771, 56Max-Planck-Institutfu¨rKernphysik,D-69029Heidelberg,Germany USA 26DepartmentofPhysicsandCenterforSpaceSciencesandTechnology, 57Institucio´CatalanadeRecercaiEstudisAvanc¸ats(ICREA),Barcelona, Spain UniversityofMarylandBaltimoreCounty,Baltimore,MD21250,USA 27GeorgeMasonUniversity,Fairfax,VA22030,USA 58Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino,Italy 28LaboratoiredePhysiqueThe´oriqueetAstroparticules,Universite´Mont- 59INAF-IstitutodiAstrofisicaSpazialeeFisicaCosmica,I-00133Roma, pellier2,CNRS/IN2P3,Montpellier,France Italy 29Department ofPhysics, Stockholm University, AlbaNova, SE-10691 60Dipartimento di Fisica, Universita` di Roma “Tor Vergata”, I-00133 Stockholm,Sweden 30Royal Swedish Academy of Sciences Research Fellow, funded by a Roma,Italy grantfromtheK.A.WallenbergFoundation 61School of Pure and Applied Natural Sciences, University of Kalmar, 31Dipartimento diFisica, Universita` diUdine and Istituto Nazionale di SE-39182Kalmar,Sweden PKS1502+106:anewanddistantgamma-rayblazarinoutburstdiscoveredbytheFermiLAT 3 1. INTRODUCTION This radio blazar was identified in the optical band by Blake(1970)withapositionrefinementbyArgue&Sullivan The Large Area Telescope (LAT), on board the Fermi (1980), while an initial spectroscopic inspection was per- Gamma-raySpaceTelescope(formerlyGLAST; Ritz2007), formedbyBurbidge&Strittmatter(1972). Variations> 2.5 wassuccessfullylaunchedbyNASAon2008,June11,from magwereobservedinitsopticalfluxhistory(Palomar-Quest Cape Canaveral, Florida, on a Delta II Heavy launch vehi- andCatalinaSkySurveys,ATel#1661),togetherwithavari- cle. While still in the commissioning and checkout phase, able and relatively high degree (up to 20%) of linear polar- itdiscoveredandmonitoredbright,flaringgamma-rayemis- ization, pointing out a dominant synchrotron emission with sionabove100MeVfromasourceidentifiedwiththeblazar noobserveddilutionbythermalcomponents. Theredshiftof PKS 1502+106 (historically also known as OR 103 and S3 PKS1502+106,asconfirmedbythegoodS/Nspectrumofthe 1502+10).Thelargefieldofview,effectiveareaandsensitiv- SloanDigitalSkySurvey(z =1.8385 0.0024athighcon- ity andthe nominalsurveyobservationalmodemake Fermi- ± fidence),isinagreementwiththevaluez = 1.839estimated LAT an unprecedented all-sky monitor of γ-ray flares and previouslyby Smithetal. (1977). A less remotevalue (z = sourcevariability(see,e.g. McEnery2006;Thompson 2006; 0.56) is reported in other works (Burbidge&Strittmatter Lottetal.2007;Atwoodetal.2009). 1972; Wrightetal. 1979; Wilkesetal. 1983), although the Atthe beginningofAugust2008,PKS 1502+106was the possible multiple MgII absorption system (pointed out by a second brightest extragalactic source in the γ-ray sky, ex- hibiting a sudden high-energy outburst announced in ATel featureshortwardofthe4388A˚ emissionline)wouldbevery #1650. This outburst successfully triggered the first (un- unusualforalowredshiftobject. planned) Fermi multi-frequency campaign. Major renewed Serendipitous X-ray data of PKS 1502+106 are available gamma-rayactivity observedby Fermi in January 2009 was becausethesourceliesabout7′NEofthebrightSeyferttype- announcedviaATel#1905. 1 galaxy Mkn 841, although only one multifrequency work PKS1502+106isaluminous,quasar-like(opticallybroad- dedicatedtothisblazar(Georgeetal.1994)hasappearedpre- lineandflatradiospectrum)AGNdiscoveredduringthe178 viously. Early X-ray observations (ROSAT, ASCA) showed MHzpencilbeamsurveyfromtheMullardRadioAstronomy low-amplitudevariationson short timescales (factor > 2 on Observatory,Cambridge,UK,(appearinginalistnotincluded timescales of a year), a flat 0.1-10 keV photon index ΓX in the 4C catalog; Crowther&Clarke 1966; Williamsetal. between 1.4 and 1.9, and an intrinsic X-ray luminosity of 1967), and was re-observed and characterized as an extra- L2−10keV = 1.2 1046 ergs−1, anda 2-10keV flux inthe galacticsourcebyboththeAustralianNationalRadioAstron- range4.9 6.54× 10−13 ergcm−2 s−1(Georgeetal.1994; − × omyObservatoryofParkes,NSW,Australia,(Dayetal.1966, Akiyamaetal. 2003; Watanabeetal. 2004). PKS 1502+106 id.: PKS 1502+106), and the Ohio State University (“Big was speculated to be a possible γ-ray source before the Ear”) Radio Observatory, Delaware, OH, USA, (Fitchetal. LAT discovery because of the superluminal motions of jet 1969, id.: OR 103). The source exhibitedsubstantial radio components(upto 187 15µas/yearLister&Homan2005; ± fluxvariations(factor> 2),ahighdegreeoflinearpolariza- Anetal. 2004),andthemultiwavebandspectralindexesαrx tion, a core-dominated, one-sided and curved radio jet with and αox (consistent with other FSRQs detected by EGRET, a variable, a complex morphologyat VLBI scales (Anetal. Georgeetal. 1994). Only modestintrinsic X-ray absorption 2004; Listeretal. 2009a), and a compact large scale struc- wassuggestedbythiswork,andtheopticalandnear-IRred- ture. 11VLBAobservationsat15.4GHzperformedbetween dening claimed in Watanabeetal. (2004) is probably due to Aug. 1997 and Aug. 2007 showed a FWHM major beam thesynchrotronjetdominanceattheselowfrequenciesrather axis in the range 1.02-1.57 mas, a minor axis beam axis of thanbyabsorptionfrominnernuclearlight. 0.5 mas, and a total flux density in the range 0.88-1.93 Jy A relation involving the misalignment between the pc- (Listeretal.2009a), andapparentjetspeedof(14.8 1.2)c and kpc-scale radio structure (position angle) and the γ- (Listeretal.2009b). The22 and37GHz fluxhistory±shows ray emission was postulated as well (Cooperetal. 2007). severallong-termflares(>1Jyvariations,i.e. 60%ofthe However, only a cumulative 2σ upper limit by EGRET totalfluxrangespan,ontypicaltimescalesofay∼ear,andpeak of 7 10−8 ph cm−2 s−1 was reported (Phase/Cycle I, × fluxeswell above2 Jy), with at least five flares and an aver- combined Viewing Periods: 24.0 to 25.0, i.e. April 02-23, agetrendthatwasslightlyincreasingfrom1988tomid-2004 1992; Fichteletal.1994),andthesourcewaslikewiseunde- (Tera¨srantaetal.2005). WMAPfluxesatsimilarfrequencies tected in the following EGRET cycles (Hartmanetal. 1999; (K, Ka, Q bands) are in agreement with these flux ranges Casandjian&Grenier2008). (Lo´pez-Caniegoetal. 2007). The Doppler factor estimated In the following we use a ΛCDM (concordance) cos- fromtheobserved37GHzvariabilityandbrightnesstemper- mology with values given within 1σ of the WMAP results ature (Hovattaetal. 2009) agrees with the jet speed (14.6c) (Komatsuetal. 2009), namely h = 0.71, Ωm = 0.27 and θcited=ab4o.v7e◦,.a DopplerfactorDvar = 12and viewingangle ΩMΛpc=−10..73,andaHubbleconstantvalueH0 =100hkms−1 var InSection2,firstresultsontheγ-rayidentification,theob- served MeV-GeV outburst and the subsequent four months 62Metsa¨hoviRadioObservatory,HelsinkiUniversityofTechnologyTKK, of monitoring by the Fermi-LAT are described. In Sec- FIN-02540Kylmala,Finland 63Hiroshima Astrophysical Science Center, Hiroshima University, tion3,multifrequencyresultsobtainedthroughsimultaneous Higashi-Hiroshima,Hiroshima739-8526,Japan optical-UV-X-ray observations by Swift (thanks to a 16-day 64AstroSpaceCenteroftheLebedevPhysicalInstitute,117810Moscow, longmonitoringfollowingatriggeredTargetofOpportunity, Russia ToO), and by radio-opticalobservatories(the 40m dish tele- 65DepartmentofPhysics,PurdueUniversity, WestLafayette, IN47907, scopeoftheOwensValleyRadioObservatory,theEffelsberg USA 66CrimeanAstrophysicalObservatory,98409Nauchny,Crimea,Ukraine 100mdishradiotelescope,theringradiotelescopeRATAN- 67PulkovoObservatory,196140St.Petersburg,Russia 600,theVLBAwithintheMOJAVEprogram,andtheKanata *Correspondence:[email protected] 4 Abdoetal. therein),andanisotropiccomponentincludingtheextragalac- ticdiffuseemissionandtheresidualbackgroundfromcosmic rays. TheFermi-LATdataofPKS1502+106presentedherewere obtainedduringthefirstfourmonthsoftheLATsurvey(Aug.- Dec. 2008). In this period PKS 1502+106 was one of the most persistently bright, variable sources in the high-energy skyandalmostcertainlythesourcewiththehighestluminos- ity. The background contribution within a few degrees was onlyasmallfractionofthesourcecountrate,withnonearby sourceconfusion. The time intervalwas sufficientfora fine determinationofthe averagespectrum,fora first lookatthe FIG.1.— Leftpanel: LATcountmapcumulatedonanine-month(Aug. mid-timescalevariabilityanddetectionofposteriorflares,for 2008 - Apr. 2009) baseline, weighted and smoothed by the point spread a refined localization, and a first cross comparison with the function (PSF) such that higher energy photons are mapped to higher in- tensities. Themapisinarbitraryunitsintheenergyrange0.1-100GeVand othermultifrequencymonitoringdata. Thefirst γ-raydetec- ina2.5◦×2.5◦regioncenteredonPKS1502+106. Thequalitativecircle tion of PKS 1502+106 by the LAT occurred in July 2008, sizesofthePSFat200MeV, 2GeVand20GeV areoutlined forreference. when it was confirmed by the high-levelAutomatic Science Rightpanel: LATsourcelocalization with95%and68%uncertainty radii Processing pipeline monitoring (ASP; Chiangetal. 2006, (redcircles)superimposedonanarcmin-scale(R-band)opticalimageshow- ingalsotheX-raycounterparterrorboxbytheSwift-XRTobservationsand 2007), based on a wavelet-based (pgwave) quick-look de- theradioposition andintensity contours byVLAofPKS1502+106. The tectiontool(e.g. Damianietal. 1997; Marcuccietal. 2004; bestLATsourceposition, calculated onthesamenine-month period, with Ciprinietal.2007a)andamaximumlikelihoodanalysis,and thepointliketoolisRA:226.10179◦,Dec: +10.4927◦,∆=0.0027◦, with68%and95%LATerrorcirclesof0.0077◦and0.0124◦respectively. bytheLATSourceCatalogalgorithm(mr filter)basedon waveletanalysisinthePoissonregime(Starck&Pierre1998) telescopeoftheHigashi-HiroshimaObservatory)aresumma- and the peak-finding tool sExtractor (Bertin&Arnouts rized. In addition, past and unpublishedobservationsby the 1996). The rapid and markedly time-asymmetric γ-ray out- XMM-NewtonandSpitzerspacetelescopesareanalyzedand burst announcedin ATel #1650and triggeringan unplanned presentedin Section 4 for a more complete picture. Finally, Target of Opportunity (ToO) multifrequency campaign was inSection5and6,discussionandconcludingremarksarere- seenfromAug.05(about23UTC)untilaboutAug.11,2008 ported. ( 5 days duration), with a fast rise, slower decay, and an ∼ approximatelytwo-daysustainedpeakflux. 2. GAMMA-RAYOBSERVATIONSANDRESULTSBYFERMI-LAT Some caveats related to the preflight instrument response 2.1. LATobservations functions(P6 V1),whichoverestimatedtheacceptanceatlow The LAT instrument is a pair tracker-converter telescope energies,arebrieflydescribedinAbdoetal.(2009b). comprising a modular array of 16 towers—each with a tracker based on silicon micro-strip detector technology— 2.2. Gamma-raysourcelocalization,associationand anda calorimeterbasedona hodoscopicarrayof96CsI(Tl) identification crystals, surrounded by an Anti-Coincidence Detector capa- ble of measuring the directions and energies of cosmic γ- The LAT PSF and sensitivity provides an unprecedented ray photonswith energiesfrom 20 MeV to > 300 GeV (for angular resolution in gamma-rays (68% containment ra- details, see, e.g. Bellazzinietal. 2002; Michelson 2007; dius better than 1◦ at 1 GeV, Atwoodetal. 2007; ∼ Atwoodetal.2007,2009;Abdoetal.2009h). Cecchietal.2007;Atwoodetal.2009;Abdoetal.2009c,h), ThereductionandanalysisofLATdatawasperformedus- making the association and identification processes less dif- ingtheScienceToolsv.9.8,basedinparticularonaunbinned ficult than in previous experiments. In the case of this very maximum-likelihoodestimator of the spectral modelparam- bright γ-ray source, we obtained—beyond the good spatial eters(gtliketool). Eventswere selected using the Instru- “association”—a firm “identification” with PKS 1502+106. mentResponse Functions(IRFs) P6 V1 DIFFUSE. Thisse- The3-monthbrightsourcelistresults(Abdoetal.2009c,id: lectionprovidesthecleanestsetofevents(intermsofdirec- 0FGL J1504.4+1030), provided a good initial localization: tion, energy reconstruction and backgroundrejection) at the RA:226.12◦,Dec: +10.51◦;r = 0.05◦ and√TS = 88.2, 95 costof reducedeffectiveareaatlow energies,andtakesinto (r beingthe radiusof95%confidenceregion,TSthelike- 95 account the differences between front- and back-converting lihood test statistic from the 200 MeV to 100 GeV analy- events. To minimize contamination by Earth albedo γ-ray sis). Application of the pointlike tool (Burnett 2007; eventsthathavereconstructeddirectionswithangleswithre- Abdoetal.2009c)onamuchlonger(nine-month,Aug.2008 specttothelocalzenith>105◦ havebeenexcluded. Forthis - Apr. 2009)LAT dataset with very high statistics, provided objectwithhighGalacticlatitude,eventsareextractedwithin anexcellentlocalization(outlinedinFig.1):RA:226.10179◦, a 10◦ acceptance cone centered at the PKS 1502+106radio Dec:+10.4927◦,∆=0.0027◦,with68%and95%LATerror position.Thiscone,substantiallylargerthanthe68%contain- circlesof0.0077◦and0.0124◦ respectively(statisticalonly). mentangleofthePSF atthelowestenergies,providessuffi- Studiesofbrightsourcelocalizationsindicateasystematicun- cienteventstoaccuratelyconstrainthediffuseemissioncom- certaintyinthelocalizationof< 30”,thatcanbetakenasan ponents. The gtlike model includes the PKS 1502+106 estimateofthesystematicswiththistool(moredetailsonthe pointsource component, two other pointsources from the 3 productionofpointlikedensitymapsandlocalizationare month catalog (both faint and low-confidence sources with describedin Camiloetal. 2009). Therelevantimprovement TS 0.9% of the TS value of PKS 1502+106for the same inthelocalizationcarriedoutonanine-monthbaselineisdue ≃ period),acomponentfortheGalacticdiffuseemission(GAL- to the high variability that occurred with this source. These PROPcode,see,e.g. Moskalenkoetal.2003, andreferences localizationvaluesareinagreementwiththeVLBIradioand PKS1502+106:anewanddistantgamma-rayblazarinoutburstdiscoveredbytheFermiLAT 5 FIG.2.—Mainpanel:Likelihoodflux(E>100MeV)lightcurveobtainedindailybinsfromAug.02toDec.15,2008.Theoutburststateandthesubsequent post-flare(alowerandintermediatelevelbrightness,farfromthefainteststateobserved)periodwithsimultaneousmonitoringbySwiftarerepresentedbythe twohorizontallines.Leftinsetplot:Azoomonthecorrespondingfluxlightcurvearoundtheoutburstperiodobtainedusingfiner,12-hourbins(lowerstatistics). Rightinsetplot:Thegamma-ray(E>100MeV)photonindexvaluesforthesameperiodusingdailybinsasinthemainpanellightcurve. optical positions of PKS 1502+106, the VLA contours and theSwiftXRTerrorbox(Fig. 1). PKS1502+106istheonly brightVLAradiosource(calibratorsourcelist)locatedwithin theLAT95%confidencecircle. TheSeyfertgalaxyMkn841 (observedwith a hardX-raycutoff,see Sect.4) ispositioned welloutsideofthese localizationcircles, asareotherHB89- catalogquasarsinthisregion. Beyond the excellent spatial association, the most secure and distinctive signature for firm identification of this new gamma-ray source found by Fermi is the observed correla- tionbetweentheγ-ray,X-rayandoptical-UVvariability(see sections 3 and 4). This object was also a member of the pre-launchCGRaBS(Healeyetal.2008,objectid: CGRaBS J1504+1029)andRoma-BZCAT(Massaroetal.2009,object id: BZQJ1504+1029)catalogslistingcandidategamma-ray blazars. Finally, a method based on a “figure of merit” (de- scribedin Sowards-Emmerdetal. 2003, 2005) forthis LAT FIG.3.— TimeseriesanalysisoftheLATlightcurvepresentedinFig.2: theperiodogram,firstorderstructurefunction(upperinset)andpowerspec- sourcepositionprovidesaveryhighlikelihoodofidentifica- trum(lowerinset).Thesefunctionsshowavariabilitywithapowerspectrum tionwithPKS1502+106. consistentwith1/f1.3fluctuations.Thisindicatesavariabilitymodeplaced betweenflickeringandshotnoise. Thehorizontaldashedlinerepresentsthe 0.01falsealarmprobabilitythreshold(99%significancethatthesignalde- 2.3. Gamma-raytemporalbehavior tectionisnotwrong). The typically bright γ-ray flux and the enduring activity shown by PKS 1502+106 in γ-rays, allowed a firm detec- ahighflux(F > 2 10−6 phcm−2 s−1)plateau, E>100MeV × tion of the source by the LAT on a daily basis. Fig. 2 or a secondary superposedflare, that extendedfor about2.5 shows the light curve (daily bins, E > 100MeV) extracted days. Duringthis outbursta “harderwhenbrighter”spectral with the gtlike tool over the first four and half months trendis suggested, despite the photonindexerror dispersion of LAT all-sky survey. A fast-rising, markedly asymmet- (seethedailyphotonindicesreportedontherightinsetpanel ric and bright outburst was found, with a factor > 3 of in- ofFig. 2). Thegtlikeperformancesandthe currentIRFs crease in flux in less than 12 hours. The integrated flux at useddidnotallowtogobelowadailybinningintheextrap- E > 100MeVaveragedinthe12hbinofthepeakemission olation of the photon index values, and this was possible in (between Aug. 05 and Aug. 06, 2008, i.e. DOY 218-219) anacceptablewaywithrespecttoamplitudeofthestatistical wasF =(3.7 0.7) 10−6phcm−2s−1(statis- error only for the high-flux and high photon count statistics E>100MeV ± × ticalonly),asmeasuredwhentheLATinstrumentwasstillin availablearoundtheoutburstepoch. commissioning and checkoutphase (all-sky nominalmode). Aconsistentlevelofvariability,withacoupleofminorbut TheemissionfromPKS1502+106thenfadedmoreslowlyin relevant rapid flares, occurred after the major outburst with the following days, and the entire outburst interval spanned fluctuationsontimescalesofweeks. Renewedactivityandin- Aug. 05 around 23 UTC until to Aug. 11 around 00 UTC, creased average brightness from the end of Nov. 2008 were 2008 (i.e. DOY, 218.95-224.0, 5 days duration Fig. 2). observed. Tworapidflaresapproachedamaximumpeakflux Thepeakfluxappearedelevatedf∼orlessthantwodays,rival- of F 2 10−6 ph cm−2 s−1(daily bin estima- E>100MeV ∼ × ingthebrighestapparentfluxofotherextragalacticsourcesat tions),onSept. 06(DOY250),whereasimultaneouscross- thattime(Section2.1).Thefiner,12-hourbinlightcurve( 8 correlatedopticalflarewasobservedaswell, andonOct.30 ∼ Fermiorbits,ensuringstillsimilarexposures)reportedinthe (DOY 304). Visual inspection of the light curve reportedin right inset panel of Fig. 2, shows the elevated flux held for Fig.2 suggests a period of higher activity beginning in mid atleast one1.5days, while the slower fadingdecayexhibits Nov.2008(afteraboutDOY320),and,ingeneral,aseriesof 6 Abdoetal. modulationsoccurringonaboutaone-monthtimescale,with TheLPdescriptionintroducestheadvantageofonlyoneex- faster fluctuations and rapid flare episodes superposed. The tra parameter (while BPL model adds two parameters) with powerspectraldensity(PSD)showsapower-lawdependence, respect to the simple power-law model, it allows modeling P(f) 1/f1.3. Similar time scale dependenceis exhibited of mild spectral curvatures with no abrupt cutoffs, and pro- ∝ by the first order structure function (Fig. 3) and by the au- videsa better phenomenologicalphysicalinterpretation. On tocorrelationfunction. More detailedvariabilityanalysisfor theotherhandtherecanbestillcaveatswhenusinggtlike thisandotherblazarsusingalongerdatasetwillbepresented witha brokenpower-lawmodel,inparticularindetermining inAbdoetal.(2009d). thebreakenergywhenstatistics donotallow a highnumber of energy bins. It is also plausible that an energy spectrum 2.4. Gamma-rayspectra averagedoveralongperiodoftime,andcontainingdifferent activitystageswithtimevaryinghardness,mayexhibitanap- We have analyzed the time-averaged spectra of PKS parentcurvature. FinallythisdoesnotexcludeBPLmodelif 1502+106 for three intervals: the high-state of the outburst thespectrumisextractedindifferenttimeintervals. (DOY, 218.95-224.0, i.e. Aug. 05 - Aug. 11, 2008, about Theaveragespectrumduringtheoutburststateisconsistent 5 days); the post-flare period characterizedby an intermedi- atebrightnesslevelandduringwhichsimultaneousSwiftob- withasimplepower-lawmodel,dN/dE EΓ. Theoutburst ∝ servationswereperformed(DOY224.0-235.42,i.e.Aug.11- state shows a rather hard spectrum, suggesting a maximum Aug. 22, 2008, about 11.4 days); the longer and heteroge- peak in the MeV energy bands (in the νFν representation), neous period that includes the outburst and the following 4 in agreement with the LP peaks found for the spectra cited months of Fermi-LAT monitoring(Aug.02 to Dec.07, 2008, above.Theextrapolatedandaveragedfluxesintegratedabove 126 days, where the source displayed different stages of 100MeV,andthespectralfitparametersforallthreeperiods ∼activity and significant variability). Events below 200 MeV areshowninTable1. wereexcludedfromtheseanalysesbecauseofcalibrationun- 3. SIMULTANEOUSMULTIFREQUENCYOBSERVATIONS certaintiesatthoseenergies. Anisotropicbackgroundmodel Becauseofthereasonablyuniformexposureandhighsen- wasusedasPKS1502+106wasverybrightrelativetoother sitivity of the LAT, and the broad-band radio-to-gamma-ray point sources during the period stated above, because is lo- emission of this kind of AGN, simultaneous multifrequency catedathighGalacticlatitude,andbecausecheckswithmore data are very important to the investigation of the physical complexmodelsprovidednosignificantdifference. Further- properties of supermassive black holes and relativistic jets, more,noappreciabledifferenceswereobservedusingdiffer- beyond the benefit of a firm source identification (Section entacceptanceconeradiifortheeventextraction. 2.2). Withthisinmind,severalcampaignsonafewselected The spectra for the post-flare and cumulative 4-month objects, or ToO list of candidates for flaring sources, were datasets can be consistent with a log-parabola (LP) model, preparedpre-launch by the Fermi collaboration (Tosti 2007; dN/dE E−(α+βlog(E)) (see, e.g. Landauetal. 1986; ∝ Thompson2007). PKS1502+106wasapreviouslyunknown Inoue&Takahara 1996; Fossatietal. 2000; Massaroetal. γ-raysource,withnopre-plannedmultifrequencycampaign. 2004; Perlmanetal. 2005). The likelihood ratio test But following the LAT outburst (reported in ATel #1650), a (Mattoxetal. 1996) rejects the hypothesisthat the spectrum ToO campaign was initiated on Aug. 07, 2008. This was isapowerlaw(nullhypothesis)againsttheonethatthespec- the first Fermi multifrequency campaign that had not been trum is curved as a log-parabola model. This model is pre- plannedpre-launch,andsawtriggersforToOpointingsbyIN- ferredoverasimplepower-lawmodelatthe11.4sigma sig- TEGRALandSwift,long-termradiofluxandstructuremoni- nificancelevel. Brokenpower-law(BPL) fitsshow asimilar toring,aswellasopticalobservationsbygroundbasedfacili- improvementover single power-law models, but we find no ties. evidencetopreferBPL overthelog-parabolarepresentation. The fast response ToO pointing by INTEGRAL provided Forthefulltimeintervalcharacterizedbyveryhighstatistics, 200ksofobservationsduringtheperiodAug.09,01:53UT- the logarithm of the likelihood increases significantly when Aug. 11, 15:12 UT, 2008 (revolution 711). However, PKS allowingβ tovary,andan increaseofthe valueforthe BPL 1502+106 was not detected (preliminarily) by the imager withrespecttosimplepower-lawmodelofthesameorderof IBISonboardINTEGRAL.ExtrapolatingtheX-rayfluxob- the increase for the LP vs. power-law test is not observed. servedbySwift,thehard-X-rayfluxhadlikelyalreadyfaded to slightly below the IBIS detection threshold in this epoch TABLE1 (moredetailswillappearinPianetal.2009). SUMMARYOFTHEUNBINNEDLIKELIHOODSPECTRALFIT ABOVE100MEV 3.1. SimultaneousX-rayandUV-opticalobservationsand resultsbySwift Interval[MJD(DOY)] Best-fitModelandParameters The Swift satellite (Gehrelsetal. 2004) performed a ToO Allobservations Log-parabola monitoringcampaignofPKS1502+106withdailysnapshots 54682.680(217.680) α=1.94±0.05 54775.580(310.580) β=0.10±0.02 from Aug. 07 to Aug. 22, 2008. This quite long-term ob- FE>100MeV=6.90±0.34×10−7[phcm−2s−1]servingcampaignbySwift allowedextendeddailysnapshots Outburst/highstate PowerLaw for about 16 days, using the three instruments onboard: the 54683.955(218.955) Γ=−2.06±0.017 X-ray telescope (XRT) for the 0.2-10 keV energy band, the 54688.985(223.985) FE>100MeV=29.1±1.4×10−7[phcm−2s−1] Ultraviolet/OpticalTelescope(UVOT)formultibandphotom- Post-flare/lowerstate Log-parabola etry,andtheBurstAlertTelescope(BAT)forthe15-150keV 54689.063(224.063) α=1.87±0.20 hardX-rayband. BATdatawerenotusedbecauseofsource 54775.580(310.580) β=0.18±0.08 confusionproblemswithMkn841whichisaboutafactorof FE>100MeV=5.32±1.03×10−7[phcm−2s−1]10brighterthanPKS1502+106inthehardX-rayband. The 16 days of observationsby Swift allow for cross-correlation PKS1502+106:anewanddistantgamma-rayblazarinoutburstdiscoveredbytheFermiLAT 7 2 0 0. 01 Outburst Counts s keV−1−1 0.×105×10−3−3 2 0−3 Post−flare 1 0−4 1 5×1.5 o Rati 1 0.5 1 2 5 Energy [keV] FIG.5.—Swift-XRTcombined0.3-10KeVspectraofPKS1502+106ex- tractedforthehighstate(MJD:54685-54689)andthesubsequentlowstate (MJD54690-54701),mappingtheX-raybehaviorsimultaneoustotheLAT flareandtothepost-flare,relaxingactivityandbrightness. TABLE2 ANALYSISSUMMARYOFTHESIMULTANEOUSDATAOBTAINEDBYTHE XRTINSTRUMENTONBOARDSwift. Obs.id.(date) Best-fitModelandParameters Allobservations PowerLaw (MJD54685-54701) ΓX =1.53+−00..0067 texp:52910s χ2r=1.05/80 F0.3−10keV =1.79+−00..0181×10−12ergcm−2s−1 Outburst/highstate PowerLaw (MJD54685-54689) ΓX =1.54±0.08 texp:27680s χ2r=1.11/52 F0.3−10keV =2.18+−00..1152×10−12ergcm−2s−1 Post-flare/lowerstate PowerLaw (MJD54690-54701) ΓX =1.45+−00..1121 texp:25230s χ2=0.76/32 F0.3−10keV =1.39+−00..1142×10−12ergcm−2s−1 FIG.4.— Simultaneous gamma-ray and multifrequency light curves ob- tainedduringthemultiwavelengthcampaignofAugust2008triggeredbythe high energy outburst discovered by Fermi-LAT.Thefluxabove 100MeV, The X-ray spectrum of each observation segment was fit- the X-ray flux (0.3-10keV) by Swift-XRT, the six-band fluxes monitored ted with an absorbed power law. Because of the low num- bySwift-UVOT, the Kanata-TRISPEC differential relative magnitude light ber of events from the source, event were not grouped and curves(optical∆V andnear-IR∆J bands)andcorrespondingmeasuresof C-statistics was used, fixing the column density N to the thelinearpolarizationdegree,andthe15GHzradiolightcurvefromOVRO H 40-marereported. Galactic value NHI = 2.19 1020 cm−2 in that direction × (inagreementwithvaluesused,forexample,in Georgeetal. studiesbetweentheγ-ray,X-rayandUV-opticalbandsduring 1994;Akiyamaetal.2003), andusingz = 1.839. Theerror boththeactiveflaringstageandthefadingpost-flarestageof onthephotonindexandthe flux(0.3-10keV)is largedueto PKS1502+106. the low statistics. The backgroundphotonswere selected in The XRT was set in photon counting mode, and the data a circular region close to the source. No significant photon were processed by the xrtpipeline with the use of standard index variation was observed between the high and the low software(HEADASsoftware,v6.4)andstandardfilteringand state,whilethecountrateandfluxdidvary. screeningcriteria. TheXRTeventsinthe0.3–10keVenergy The Swift Ultraviolet/Optical Telescope (UVOT) photom- bandwere extractedusing the XRTGRBLC FTOOLfrom cir- etry was done using the publicly available UVOT FTOOLS cular regions centered on the source position with variable datareductionsuite,andisintheUVOTphotometricsystem radiidependingon the source intensityand applyingcorrec- describedinPooleetal.(2008). Thephotometricdatapoints tionforvignetting,Point-SpreadFunctioncorrectionsandhot werecorrectedforGalacticextinctionusingthedustmapsof pixelsandcolumnswiththeuseofexposuremaps. TheXRT Schlegeletal.(1998)andtheMilkyWayextinctioncurveof X-ray flux light curve is shown in the second panel of Fig. Pei (1992). These simultaneous multi-band optical and UV 4. The0.3-10keVcountrateofPKS1502+106measuredby datashowanincreaseofabout2magnitudesinallfilterswhen XRTwasatalevel0.05counts/sec(fromourdata),upfroma comparedwiththepast-yearsarchivalvalues(i.e.,fromabout levelof0.02counts/sec(archivalpastobservations).The0.3- 19 to 17 in B band). The flux light curvesin the six UVOT 10keVXRT16-daylonglightcurveobtainedinAugust2008 bandsareshowninthethirdandfourthpanelofFig.4. These (Fig.4) shows an initial count rate of 0.05 counts/sec, and a fluxesappearstobewellcorrelated. Aslightriseinfluxof3 gradualdecaydowntothelevelofabout0.02counts/sec. daysisobservedinalltheUVOTbands,followedbyafading 8 Abdoetal. similartothefluxdecreaseseeninγ-raysandX-raybands.If The measured flux densities in the MJD 54673–54711 thetimeoftheobservedUVandopticalmaximumisrelated (DoY208-246)timeperiodfita1.69Jyconstant-fluxmodel to the flare activity at higher energies, this would imply an with χ2/(N 1) = 0.70 (N = 15 data points). This in- − interestingtimelagofabout4days. dicates no statistically significant variability in this time pe- riod. The beginningofa brightradioflare isapparentinthe 3.2. Simultaneousnear-infraredandopticalmonitoring MJD 54762–54809 (DoY 297-344) time period with an in- creaseofatleast30%overtheearliermeanfluxdensity. PKS 1502+106 was also monitored in the optical V and Alessintensivemonitoringat37GHzwascarriedoutwith near-infraredJbandswithsomephotometricandpolarimetric the 13.7m radio telescope at Metsa¨hovi Radio Observatory, snapshots by the TRISPEC istrument attached to the 1.5-m Helsinki University of Technology, Finland. The flux den- “KANATA”telescopeattheHigashi-HiroshimaObservatory, sityscaleissetbyobservationsofDR21,andsources3C84 Japan (Watanabeetal. 2005; Uemuraetal. 2008), within a and3C274areusedassecondarycalibrators. Adetailedde- twofoldprogramofopticalfollowupforLATflaringsources scription on the data reduction and analysis can be foundin andregularmonitoringofabout20blazars. Imagingrelative Tera¨srantaetal.(1998). photometry was performed using some comparison stars in The PKS 1502+106flare was also followed-upby the Ef- thesamefield,butduetotheabsenceofanaccuratecalibra- felsberg100-mradiotelescopewithfourmulti-frequencyra- tionforthisfieldweprefertoreportonlytherelativemagni- diospectraobtainedonAugust23,September16,October18, tudedifference∆magwithrespecttotheminimumlevel(fifth and December 6, 2008 (within the F-GAMMA project, see panel Fig. 4). The optical and near-infrared band imaging Fuhrmannetal. 2007). Each radio spectrum consists of si- photometryisperformedsimultaneouslyinTRISPECwitha multaneousmeasurementsatvariousfrequenciesbetween2.6 unitofpolarimetricsequence(consistingofsuccessiveexpo- and 42GHz. The observationswere performedusing cross- sures at fourposition anglesof the half-wave plate, where a scans in azimuth/elevation with the number of sub-scans setoflinearpolarizationparameters,Q/I,U/I,arederived). matchingthesource’sbrightnessatthegivenfrequencies.The These flux observations, performed for a longer interval datareductionwasdoneusingstandardproceduresdescribed withrespecttotheFermi-Swiftcampaign(i.e. untilSept. 22, inFuhrmannetal.(2008);Angelakisetal.(2008). 2008), show a high correlation between the V- and J-band Otherradioobservationsareavailableatsixfrequenciesbe- lightcurvesand show an optical decay phase comparableto tween1and21.7GHzthankstothe600-mringtransitradio that observed in the UVOT photometric observations (fifth telescope of the Russian Academy of Sciences RATAN-600 panel of Fig.4). Remarkably, a strong correlation with the (Korolkov&Parijskij 1979), which observed the source on LATgamma-raylightcurveisfound,includingthefirst(Sept. September10,26,andOctober2,2008. Aweightedaverage 04-07, 2008)of the possible minor flaresoccurringafter the of these three observations, is presented in Fig 7. Previous initial large outburst. The observation of a flare in the opti- RATAN-600 data which cover the period between 1997 and cal(V)andnear-IR(J)bands,simultaneouswithasecondγ- March 2008 are also shown for comparison. The observing rayflarehavethetwofoldadvantageofprovidingavalidation methods,thedataprocessing,andtheamplitudecalibrationis ofsucha minorLATflareasa realfeaturedisplayedbythis describedinKovalevetal.(1999). blazar,and,evenmorecrucially,inconfirmingthefirmidenti- Allsingle-dishspectraobtainedwiththeEffelsberg100-m ficationofthenewgamma-raysourceseenbyFermiwiththe and RATAN-600 radio telescopes are presented in Figure 7. blazarPKS1502+106. Here, no indicationof a flare or strong difference/variability Comparing the Kanata-TRISPEC V-band and J-band col- between Augustand Septembercan be noted. However, the ors, the V J color index varies between 2.05 and 1.69 − December2008spectrumshowsthebeginningofabrightra- (during the Sept.04-07 minor, rapid flare cited above). On dioflare with a clear spectralsteepeningtowardshigherfre- theotherhand,thedegreeP oflinearoptical(inV,J bands) quencies(ν > 10GHz). Thisisingoodagreementwiththe polarization observed (sixth panel of Fig.4) , remains rather strong flux density increase seen in the 15 GHz light curve scattered by errordispersionirrespectivethe flux level, even duringNovember/December(Fig.7). during the minor flare mentioned (the maximum degrees Detailed radio images at sub-milliarcsecond scale of the recordedduringthe monitoringwere P(V) = 15 3% max ± andP(J) =13 4%). max ± 3.3. Simultaneousradioflux-structuredatabysingle-dish andVLBIobservations As part of an ongoing blazar monitoring program, the Owens Valley Radio Observatory (OVRO) 40-m radio tele- scopehasobservedPKS1502+106at15GHzapproximately every two days since mid-2007. Flux densities for the peri- odsfromJuly26toSeptember3,2008(MJD54673–54711) and October 23 to December 9, 2008 (MJD 54762–54809) areshowninFigure6.Fluxdensitiesweremeasuredusingaz- imuthdoubleswitchingasdescribedinReadheadetal.(1989) FIG.6.—Longtermradiofluxlightcurveat15GHzobtainedbytheOwens after peaking up on-source. The relative flux density uncer- ValleyRadioObservatory(OVRO)40mdishradiotelescope(filledcircles), tainty for this source is dominated by a conservative 1.6% showingtherisingpartofaradiooutburst started inlate November2008, systematic error with a typical thermal error contribution of i.e. almost4monthsafterthegamma-rayoutburstdetectedbyFermi. The filldiamondsrepresentthefluxmeasurementsperformedbytheMetsa¨hovi 5mJy. Absolutefluxdensityiscalibratedtoabout5%using 14-mradiotelescopeat37GHz(righty-axisscale),confirmingthestartofa the Baarsal. (1977) modelfor3C286. Thisabsoluteuncer- radiooutburstatahigherfrequency.ThescaledLATdailylightcurveonthe taintyisnotincludedintheplottederrors. sameperiodisreportedforcomparison(smalllightgreybars). PKS1502+106:anewanddistantgamma-rayblazarinoutburstdiscoveredbytheFermiLAT 9 FIG.7.—Variablebroad-bandradiospectraobservedwiththeEffelsberg 100-mandRATAN-600radiotelescopessimultaneoustotheLATdata.His- toricalRATAN-600data(greyopentriangles)andarchivaldatafromthelit- eratureuntilMarch2008(greyopencircles)areshowninthebackgroundfor comparison. PKS 1502+106 superluminal jet were obtained during three epochsin2008withFermialreadyinorbit: onJune25,Au- gust06(duringthemaximumpeakoftheγ-rayoutburst),and November19. Theseobservationswereperformedaspartof the MOJAVE monitoring program conducted with the Very LongBaselineArray(VLBA)atλ = 2cm(Lister&Homan 2005;Listeretal.2009a)andprovidedusefulhighresolution total intensity and linear polarization images. These VLBA imagesclosetotheγ-rayflarearereportedandcomparedto the map obtained one year earlier in Figure 8. The highest integratedflux densityvaluesince the beginningofthe 2cm VLBAmonitoringin1997(Kellermannetal.2004)wasmea- suredonNovember19,2008(DOY324)asF =2.0Jy, 15GHz withapeakintensityof1.6Jybeam−1. Thesevaluesaresig- nificantly higher than the typical level of 1.3 Jy reported in the program (Kovalevetal. 2005; Listeretal. 2009a,b) and indicate a radio flare happening in the source VLBI core. The core flux density and brightness temperature raised to higher values as well which means that the flare happensin FIG.8.—Totalintensity andlinear polarization images observed bythe theVLBIcore,asexpected. Thesefindingareingoodagree- VLBAat15GHzaspartofthelargeFermi-supportingMOJAVEprogram. ment with the single-dish results presented above (Figure 6 Naturally-weightedtotalintensityimagesareshownbyblackcontours. The and Figure 7). The second relevant feature is the direction contours are in successive powers of two times the base contour level of 1.0mJybeam−1.Electricpolarizationvectordirectionsareindicatedonthe of the electric vector position angle (EVPA) in the core re- lefthandsidebybluesticks,withtheirlengthbeingproportionaltothepolar- gion, which rotated between the 2007 and 2008 epochs by izedintensity. Linearfractionalpolarizationisshownontherighthandside 90 degreesmost probablyindicatingan opacitychange— a overlaidaccordingtothecolorwedge. precursorofanoutburstintheVLBIcore. In summary, our single-dish and VLBI radio monitoring of PKS 1502+106 simultaneous to the Fermi LAT observa- OVROdatabeforeandaftertheoutageaswellasSeptember tions has revealed (i) no significant radio 15GHz variabil- and October Effelsberg 100-m data are consistent with very ity during the strong LAT γ-ray flare seen in August 2008, little change in the 15 GHz flux over this time period. The and(ii) a strongradioflare whichbecomesclearly visibleat threefluxmeasuresat37GHz obtainedattheMetsa¨hovira- ν > 10GHzduringOctober/November2008(Figure6)with dioobservatoryduringtheOVROoutage,confirmsthistrend arisephaselastingforatleast20days. Ifthisflaringbehav- with very little variability during this period. However, the ior is associated with the bright γ-ray flare of August 2008, observed radio flare could also be associated with, e.g., the a delay of more than three months ( 98 days if the lag morerecent,prominentvariabilityseenintheLATγ-raydata between the starting days of the γ-ray∼outburst, DoY 218.2, duringNovember/December(Figure2, DoY 320–333). A ∼ andthe15GHzoutburst,DoY316.7,isconsidered)couldbe more detailed analysis of such possible correlations and the explainedby opacityeffectsin the core regionof the source source’s overall radio/γ-ray behavior seen with LAT and si- (e.g.,Alleretal.1999). Althoughwecannotexcludethepos- multaneous radio observations over a longer period of time sibilityofradioactivityat15GHzduringtheOVRO40-mob- willbethesubjectofasubsequentwork. servationsoutage(September3-Otober232008)thatmight alsobeassociatedwiththegamma-rayflareofAugust2008, 4. ARCHIVALMULTIWAVEBANDDATA 10 Abdoetal. A full multiwavelength analysis dedicated on PKS 1502+106isavailableonlyfromGeorgeetal.(1994),where old archival and broadband radio to X-ray data obtained in 1993-94werepresented.DataandanalysisonPKS1502+106 reportedinotherpapersaremostlylimitedtotheradioregime. Inordertocompareourmultifrequencyfindingswiththepast, and to form a more complete characterizationof this blazar, we briefly present here, for the first time, results from un- publishedpastobservationsbyINTEGRAL,XMM-Newton, Swift,andSpitzerspacetelescopesperformedin2001,2005 and2006. 4.1. INTEGRALobservationsin2006 TheskyregioncontainingPKS1502+106wasobservedin 2006byIBIS(83ksec,MJDs53760.4to53762.4,Jan.25-27, 2006),anda new softγ-raysource(IGRJ15039+1022)was detected with a flux density of 1.6 mCrab in the 18-60 keV FIG.9.— The unique observed mid-IR spectrum in the range 5-14 µm obtained bythe Spitzer Infrared Spectrograph (IRS)low resolution (R = energy range (correspondingto 1.2 10−11 erg cm−2 s−1, 60−130)module,inAugust13,2005. ThepositionofredshiftedBrackett × see ATel #1652). ThisIBIS source was identifiedwith Mkn emissionlinesandPAHlineareindicated, eveniftheyarenotdetected in 841, a Seyfertgalaxyknownto display a well detectedhigh theIRSspectrumthatisconsistentwithasimplepowerlawmodel. Inaddi- tiontheopticalspectrumbytheSDSSonApril23,2006,andhighprecision energycut-offaround100keV(Petruccietal.2002),making JHKSphotometricfluxmeasurementsoftheKittPeakNationalObservatory itunlikelytoemitintheγ-raydomain. Theangulardistance (KPNO)2.1mtelescopeofMarch29,2002arealsoreported. of PKS 1502+106fromIGR J15039+1022, 11′, pointsto ∼ the standard Spitzer IRS pipeline (ver. S17.2). Background a clear non-detectionduringthisJan. 2006INTEGRALob- was subtracted using the two nod positions along the slit. servation, while a 2σ upper limit for PKS 1502+106 of 0.7 The spectra were extracted and flux-calibrated with SPICE mCrabintherange18-60keV(0.52 10−11ergcm−2 s−1) × ver. 2.1.2, in a standard, expanding point-source aperture. isinferred. The two spectral orders match well at 7 µm, indicating a well-pointed observation. The mid-IR continuum of PKS 4.2. XMM-NewtonandSwift 1502+106rises to the near infraredand appearsto be rather Four serendipitous, unpublishedXMM-Newton X-ray ob- featureless, consistent with pure synchrotron emission (a servations of PKS 1502+106 by the EPIC (MOS detector power law F ν−0.9 in the 5-14 µm range, Fig.9). The ν only)cameraareavailable asthe sourcewas in the frameof wave-like devia∝tion of the data can be simply explained as the target Seyfert galaxy Mkn 841. PKS 1502+106 was al- wavelength-dependent spectrograph slit losses, while the waysontheborderoftheMOSchipsandoutofthePNframe, red-shifted Brackett emission line series (like the 3.3 µm andthereforesubjecttolowX-raystatistics, regardlessofits PAH feature) falling in this wavelength range are indicated, intrinsicbrightness. ThefourX-rayEPIC-MOSobservations but they are not well detected in the spectrum. This IRS (threein2001andoneperformedinJul.17,2005,seeTable3 spectrumissimilartootherblazarswhichhavebeenobserved forananalysissummary)donotshowvariationsinthe0.2-10 by Spitzer, including BL Lac and 3C 454.3 (Leipskietal. keV photon index, while the 0.2-10 keV flux intensity var- 2008; Ogleetal. etal. 2009), while the near IR (J,H,K) flux ied bya factorofa few (inthe range3.5 6.8 10−13 erg datafromthe KittPeak NationalObservatory(KPNO)2.1m cm−2s−1in2001,comparabletothelower−states×observedby telescope Watanabeetal. (2004) reported in the same figure ASCA,andamildlyactivestatewith1.1 10−12 ergcm−2 indicatealowerfluxstate andsteeperH-K (1.65-2.15µm), s−1inJuly2005,Table3). × S PKS 1502+106 was also observed twice in the past with TABLE3 theSwift-XRTasafill-intarget(TargetID:36388),showinga ANALYSISSUMMARYOFTHEEPIC-MOSINSTRUMENTOBSERVATIONS fainterX-rayflux(0.02counts/sec)thanthefluxrecordedin (JAN.2001ANDJUL.2005)ONBOARDOFXMM-NEWTON. theAugust2008campaignobservations(0.05counts/sec). Obs.id.(date) Best-fitModelandParameters ObsID0070740101 PowerLaw 4.3. Spitzerobservationsandthemultifrequencybehavioron (Jan13,2001,09:20UTC) ΓX=1.6±0.2 Jul-Aug.2005 χ2=1.69/11 r In the past, only upper limits in the far-/near-infrared F0.2−10keV =3.5×10−13ergcm−2s−1 ObsID0070740301 PowerLaw bands by IRAS were available for PKS 1502+106 (Neugebaueretal. 1986, and Figures 9 and 11). PKS (Jan14,2001,00:30UTC) χΓX2==1.12.77/1±70.2 1502+106 was observed serendipitously in the mid-infrared F0r.2−10keV =6.8×10−13ergcm−2s−1 bandforthefirstandonlytimebySpitzeronAugust13,2005, ObsID0112910201 PowerLaw 09:10-09:18UT(PID117,AORRequestKey5011456).The (Jan13,2001,04:58UTC) ΓX=1.6±0.2 Infrared Spectrograph (IRS, Houcketal. 2004), low resolu- χ2=1.05/8 r tion(R=60-130)module,recordedthemid-IRspectrumfrom F0.2−10keV =3.6×10−13ergcm−2s−1 5-14 µm (shown in Fig.9 with the optical SDSS spectrum ObsID0205340401 PowerLaw and near-IR photometric data point). High resolution IRS (Jul17,2005,06:32UTC) ΓX=1.69±0.08 modulespectra were also taken, butcould notbe used since χ2r=0.99/58 there were no accompanyingbackgroundobservations. The F0.2−10keV =11.0×10−13ergcm−2s−1 Short-Low (SL) coadded 2D spectra were reduced using

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.