PixelDetectors Particle Acceleration and Detection springer.com TheseriesParticleAccelerationandDetectionisdevotedtomonographtextsdealing withallaspectsofparticleaccelerationanddetectionresearchandadvancedteach- ing.Thescopealsoincludestopicssuchasbeamphysicsandinstrumentationaswell asapplications.Presentationsshouldstronglyemphasisetheunderlyingphysicaland engineeringsciences.Ofparticularinterestare • contributions which relate fundamental research to new applications beyond theimmediaterealmoftheoriginalfieldofresearch • contributionswhichconnectfundamentalresearchintheaforementionedfields tofundamentalresearchinrelatedphysicalorengineeringsciences • conciseaccountsofnewlyemergingimportanttopicsthatareembeddedina broaderframeworkinordertoprovidequickbutreadableaccessofverynew materialtoalargeraudience The books forming this collection will be of importance for graduate students and activeresearchersalike. SeriesEditors: ProfessorAlexanderChao ProfessorTakahikoKondo SLAC KEK 2575SandHillRoad BuildingNo.3,Room319 MenloPark,CA94025 1-1Oho,1-21-2Tsukuba USA 1-31-3Ibaraki305 Japan ProfessorChristianW.Fabjan CERN ProfessorFrancesoRuggiero PPEDivision CERN 1211Genève23 SLDivision Switzerland 1211Genève23 Switzerland ProfessorRolf-DieterHeuer DESY Gebäude1d/25 22603Hamburg Germany Leonardo Rossi Peter Fischer Tilman Rohe Norbert Wermes Pixel Detectors From Fundamentals to Applications With177Figures ABC Dr.LeonardoRossi Dr.TilmanRohe InstitutoNazionalediFisicaNucleare PaulScherrerInstitut DipartimentodiFisica 5232Villigen ViaDodecaneso33 Switzerland 16146Genova Italy E-mail:[email protected] Dr.PeterFischer Dr.NorbertWermes InstitutfürTechnischeInformatik PhysikalischesInstitut UniversitätMannheim UniversitätBonn B6,26,68131Mannheim Nussallee12,53115Bonn Germany Germany LibraryofCongressControlNumber:2005930884 ISSN1611-1052 ISBN-10 3-540-28332-3SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-28332-4SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:2)c Springer-VerlagBerlinHeidelberg2006 PrintedinTheNetherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorsandTechBooksusingaSpringerLATEXmacropackage Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:10843298 54/TechBooks 543210 Preface Progressinsciencerequiresthecontinuousrefinementofexperimentalmeth- ods. Particle physics is just a particular example where sophisticated ex- perimental techniques are of utmost importance. Collisions at high-energy acceleratorsproducemanyparticleswhosedirection,energy,andidentityare measured with large and complex detectors. One of the most demanding re- quirements is the simultaneous detection of hundreds of particle tracks with micrometer spatial and nanosecond timing precision in the harsh radiation environment close to the point of their production. Addressingandmasteringsuchrequirementshasbecomepossiblebywhat onemightwanttocallthe“siliconage”ofthehumandevelopment.Sincethe discovery of the transistor effect, for which Shockley, Bardeen, and Brattain wereawardedtheNobelPrizein1956,thenumberofapplicationsusingselec- tively doped silicon has not ceased to increase. Miniaturization of electronics deviceshassteadilyprogressedoverthepastdecades.Alreadyin1965Moore had predicted the doubling of the number of transistors per integrated cir- cuitevery≈2years.Surprisinglyenough,thisexponentialincreasestillholds after 40 years and it is today difficult to find a large-scale industrial product or research project where microelectronics does not play a significant role. Thedevelopmentofhighlysegmenteddetectorswithmanymillionpixels, each operating as an independent intelligent sensing element, also has only become possible from the advancements in microelectronics. Hand in hand withthecontinuousreductionofthestructuresizes,themanufacturingcosts were reduced and access to the design tools was made possible. This allowed the particle physics community to adapt the microelectronics technology to the needs of the experiments. Silicon microstrip and pixel detectors and also the associated integrated readout electronics rapidly became standard build- ingblocksfordetectorsystemsandbrokethewaytotheprecisemeasurement ofshort-livedparticledecayvertices.Pixeldetectorsarethemostrecentstep in this evolution, finding important applications in particle physics experi- ments, most notably in the detectors which are currently being built for the LargeHadron Collider. Themastering of thepixeltechnology hasalsoled to first applications in other fields and more are certain to follow soon. It is therefore time to share the know-how that has been accumulated over the last years in this field. This book may help pixel detector designers VI Preface for other and future applications of the pixel technology, and it shall also contribute to informing the scientific community about the present status and possible further developments of these powerful and versatile detection devices. We must point out that the field is in a fast evolution at the time of writing this book. Some very recent results could not be included and some statements may already be outdated at the time of printing. The many ref- erences given should help the reader to find the most recent results in the various fields. The text is organized as follows: after Chap. 1, which introduces pixel detectorsingeneraltermsandgivessomehistoricalperspectivetothisdevel- opment,thesensorisdiscussedindetailinChap.2,theelectronicsinChap.3, andthewaytoconnecttheminChap.4.Chapter5presentsapplicationsboth inparticlephysicsandinotherfields.Chapter6,finally,attemptsalookinto the future and indicates some promising developments. This book would not have been possible without the help and encourage- ment of many people. Chris Fabjan suggested to address the issue of pixel detectors and has continuously stimulated the authors. Murdock Gilchriese andPeterWeilhammerdidcontributetotheearlystageofthebook.Ladislav Andricek, Michael Moll, Rainer Richter, and Renate Wunstorf helped with manyusefuldiscussionsonpixelsensors,IvanPericdidcommentontheelec- tronics part, Oswin Ehrmann on the bump-bonding processes, and Michael Overdickonimagingapplicationsofpixeldetectors.WethankFedericoAnti- nori, Roland Horisberger, and Simon Kwan for carefully reading the descrip- tion of, respectively, the ALICE, CMS, and BTeV pixel detector description. We also thank Rinaldo Cenni and Laura Opisso for their help with Latex when putting the pieces together and Rosanna Puppo and Bert Wiegers for making many drawings. Finally, we thank our families for their patience and understanding during the writing of this book. Geneva, Leonardo Rossi May 2005 Peter Fischer Tilman Rohe Norbert Wermes Contents 1 Introduction.............................................. 1 1.1 Generalities on Pixel Detectors........................... 1 1.1.1 Motivations for Pixel Detectors in Particle Physics.... 2 1.1.2 Working Principle and Operating Characteristics of Segmented Silicon Detectors .................... 5 1.1.3 Hybrid Pixel Detectors............................ 9 1.1.4 Monolithic Pixel Detectors ........................ 12 1.2 Evolution of Pixel Detectors in Particle Physics ............ 13 1.2.1 TheFirstPixelDetectorsandTheirUseinExperiments 16 1.2.2 Other Applications ............................... 23 2 The Sensor ............................................... 25 2.1 Introduction ........................................... 25 2.2 Device Physics and Fundamental Sensor Properties ......... 26 2.2.1 Carrier Concentration............................. 26 2.2.2 Charge Generation and Recombination in Silicon ..... 29 2.2.3 Transport of Charge Carriers ...................... 37 2.2.4 The pn-Junction ................................. 40 2.2.5 Surface Barrier................................... 44 2.2.6 Metal Oxide Semiconductor Structure............... 46 2.2.7 Punch Through ................................. 48 2.3 Pixel Sensors and Their Properties ....................... 50 2.3.1 Different Types of Silicon Sensors .................. 50 2.3.2 Leakage Current and Maximum Operation Voltage ... 51 2.3.3 Full Depletion Voltage and Substrate Doping ........ 53 2.3.4 Pixel Capacitance ................................ 57 2.3.5 Charge Motion and Signal Formation ............... 59 2.3.6 Spatial Resolution................................ 61 2.3.7 Radiation Hardness............................... 67 2.4 Radiation-Induced Effects on Silicon ...................... 68 2.4.1 Bulk Damage .................................... 68 2.4.2 Surface Effects ................................... 80 2.5 Sensor Concepts........................................ 81 2.5.1 Overview of Sensor Types ......................... 82 VIII Contents 2.5.2 p+ in n: Low-Cost Solution for Applications in a Low- or Medium-Radiation Environment ........ 85 2.5.3 n+ in n: Solution for Applications in a High-Radiation Environment................... 97 2.6 Processing of Silicon Wafers ............................. 110 2.6.1 Production and Cleaning of Silicon ................. 111 2.6.2 Thermal Oxidation ............................... 113 2.6.3 Layer Deposition ................................. 113 2.6.4 Photolithographic Steps........................... 114 2.6.5 Etching ......................................... 115 2.6.6 Doping.......................................... 116 2.6.7 Metallization .................................... 118 2.6.8 Example of a Process Sequence .................... 118 2.7 Detector Materials Other Than Silicon .................... 121 2.7.1 Gallium Arsenide................................. 122 2.7.2 CdTe and CdZnTe................................ 124 2.7.3 Diamond ........................................ 125 3 The Front-End Electronics................................ 129 3.1 Introduction ........................................... 129 3.1.1 Generic Pixel Chip ............................... 130 3.1.2 Simple Sensor Model.............................. 133 3.1.3 Generic PUC .................................... 135 3.1.4 Module Controller Chips .......................... 143 3.2 Design Aspects......................................... 144 3.2.1 Typical Specifications............................. 145 3.2.2 Radiation-Tolerant Design......................... 154 3.2.3 Cross Talk....................................... 157 3.2.4 Testability and Ease of Operation .................. 160 3.3 Analog Signal Processing ................................ 161 3.3.1 Charge Amplification ............................. 162 3.3.2 Feedback and Leakage Compensation ............... 163 3.3.3 Hit Discrimination................................ 168 3.3.4 Threshold Trim .................................. 170 3.3.5 Noise in a Simple FET Amplifier ................... 171 3.3.6 Noise in Charge Amplifier/Shaper Combination ...... 178 3.3.7 FET Preamplifier ................................ 183 3.3.8 Bipolar Amplifier................................. 184 3.3.9 Summary........................................ 186 3.4 Readout Architectures .................................. 187 3.4.1 Chips Without Data Buffering ..................... 188 3.4.2 Chips with Zero Suppression and Data Buffering ..... 188 3.4.3 Counting Chips .................................. 197 Contents IX 4 Integration and System Aspects .......................... 201 4.1 Introduction ........................................... 201 4.2 Modules............................................... 202 4.3 Bump Bonding......................................... 203 4.3.1 Solder Bumping and Bonding Process............... 204 4.3.2 Indium Bump-Bonding Process .................... 206 4.3.3 Gold-Stud Bump-Bonding Process.................. 210 4.3.4 Quality Control of Bump-Bonded Assemblies ........ 212 4.3.5 Rework of Bump-Bonded Assemblies................ 213 4.3.6 Thinning of Electronics Wafers..................... 214 4.4 “Dressing” the Modules ................................. 214 4.4.1 Flex Hybrid ..................................... 215 4.4.2 Multichip Module Deposited....................... 216 4.5 Support Mechanics and Cooling .......................... 218 4.5.1 Mechanical Supports.............................. 219 4.5.2 Cooling ......................................... 220 4.6 Power and Signal Interconnect in High-Luminosity Colliders............................. 222 4.7 Operation in High-Radiation Environment................. 223 5 Pixel Detector Applications .............................. 225 5.1 Pixel Detectors for High-Luminosity Collider Experiments ................................... 225 5.2 Large Systems in Construction ........................... 231 5.2.1 ATLAS ......................................... 232 5.2.2 CMS............................................ 237 5.2.3 ALICE.......................................... 241 5.2.4 BTeV........................................... 243 5.3 Pixel Detectors for Imaging Applications .................. 246 5.4 Pixel Imaging Systems in Operation ...................... 250 5.4.1 Counting Pixels for Radiography ................... 251 5.4.2 Pixel Detectors for Protein Crystallography with Synchrotron Radiation ....................... 254 5.4.3 Autoradiography with Pixel Detectors .............. 256 6 Trends and New Developments for Pixel Detectors ....... 261 6.1 Introduction ........................................... 261 6.2 Limitations and Prospects of the Hybrid Pixel Technology........................... 262 6.2.1 MCM-D Integration .............................. 263 6.2.2 Interleaved Hybrid Pixels.......................... 265 6.2.3 Active Edge Three-Dimensional Silicon Pixel Detectors 267 6.3 Monolithic and Semimonolithic Pixel Detectors............. 269 6.3.1 Monolithic Pixels on Bulk Silicon................... 271 6.3.2 Monolithic CMOS Pixels .......................... 272 X Contents 6.3.3 Monolithic SOI Pixels............................. 276 6.3.4 Amorphous Silicon above CMOS Pixel Electronics.... 277 6.3.5 DEPFET Pixels.................................. 278 Glossary...................................................... 283 References.................................................... 289 Index......................................................... 301