Pinning effect andQPT-likebehaviorfortwo particles confined by a core-shell potential P.P. Marchisio,1,∗ J.P. Coe,1,2,† and I. D’Amico1,‡ 1 Department of Physics, University of York, York YO10 5DD, United Kingdom. 2DepartmentofChemistry,SchoolofEngineeringandPhysicalSciences,Heriot-WattUniversity,Edinburgh,EH144AS,UK (Dated:today) Westudythegroundstateentanglement, energyandfidelitiesofatwo-electronsystemboundedbyacore- shell potential, where the core widthis varied continuously until it eventually vanishes. This simple system displaysarichandcomplexbehavior: asthecorewidthisvaried,thissystemischaracterizedbytwopeculiar transitionswhere,fordifferentreasons,itdisplayscharacteristicssimilartoafew-particlequantumphasetran- 2 sition.Thefirstoccurrencecorrespondstosomethingakintoasecondorderquantumphasetransition,whilethe 1 secondtransitionismarkedbyadiscontinuity,withrespecttothedrivingparameter,inthefirstderivativesof 0 quantitieslikeenergyandentanglement. Thestudyofthissystemallowstoshedlightonthesuddenvariation 2 ofentanglementandenergyobservedinRef.1. Wealsocomparethecore-shellsystemwithasystemwherea n corewellisabsent: thisshowsthat,evenwhenextremelynarrow,thecorewellhasarelevant‘pinning’effect. a Interestingly,dependingonthepotentialsymmetry,thepinningofthewavefunctionmayeitherhalveordouble J thesystementanglement (withrespect totheno-core-wellsystem) whentheground stateisalreadybounded 7 totheouter(shell)well. Intheprocesswediscussthesystemfidelityandshowtheusefulnessofconsidering 1 theparticledensityfidelityasopposedtothemorecommonlyused–butmuchmoredifficulttoaccess–wave- functionfidelity.Inparticularwedemonstratethat–forground-stateswithnodelessspatialwavefunctions–the ] particledensityfidelityiszeroifandonlyifthewavefunctionfidelityiszero. r e h t I. INTRODUCTION was regarded as something potentially akin to a QPT but in o thefew-particlecase. . t a In order to understand this phenomenon, in this paper we The realization of the importance of entanglement trig- m will study systems related to Ref. 1 and characterized by gered a rethink in the way one can understand and quantify - some quantumprocesses. Indeed, quantuminformationthe- rectangular-like confining potential. We will focus on how d ground-stateentanglement,energy,andfidelitiesareaffected n ory(QIT)hasstemmedfromtheapplicationofentanglement byvaryingthepotentialcorewidthandshowthatthesesimple o andthesuperpositionprincipletotheprocessingandtransmis- systemsencompassindeedarichandcomplexbehavior. The c sionofdata,[2]anditisnowacknowledgedthatentanglement [ system we will mainly concentrate on is given by two elec- canplayacentralroleinthedescriptionandunderstandingof 1 quantumphase transitions(QPTs).[3–5] In QIT and QPTs it tronstrappedwithinacore-shellpotential,whosecorereduces inwidthuntiliteventuallydisappears(seeFig.1). Thismay v isimportanttodeterminehowaquantumstatechangesunder 1 quantumoperationsorbyvaryingexternalparameters.Thefi- representa(core-shell)quantumdotwithanexternally-driven 4 delity[2,6]–extensivelyusedinQITtoassessthe‘closeness’ confiningpotential:quantumdotsareoneofthemostpromis- 5 inghardwareforthephysicalrealizationofQITdevices,[15– ofdifferentquantumstates–maynaturallyencompasstheef- 3 23] hence, our findings may be of interest for QIT applica- fect of a driving parameter on a system, and, as such, it has 1. beenproposedasakeytoolinunderstandingQPTs.[7–9]En- tions. The system groundstate is initially boundto the core 0 well, but will become bound to the outer well (or shell) as tanglementandfidelitycanthenprovideacommonlanguage 2 the core width is reduced to zero and the outer well width forQITandQPTs.[10–12]ThedefinitionofaQPThasbeen 1 increases. We willshow thatthe correspondingsharp entan- widenedbysome authorsto includechangesinthe quantum : v stateoffew-particlesystemssuchassinglet-triplettransitions glementvariationischaracterizedbytwoverydifferenttransi- i tions. Thefirstpresentselementsakintoasecond-orderQPT X in a single quantum dot.[13] Few-particle systems have also andisassociatedwiththetransitionofthegroundstate from beenusedtocharacterizethepredictivepowerofQPTindica- r thecoretotheouterwell;thesecondismarkedbyadisconti- a tors for a system undergoinga QPT in the thermodynamical nuityintheenergyandentanglementderivativeswithrespect limit.[14] tothedrivingparameter,andwedemonstratethatitisdueto Inpreviouswork,[1]itwasshownthatthetransitionfrom the peculiarities of the confining potential. We will also ex- acore-shelltoadoublewellpotentialinducesasuddenvaria- plicitlydiscusstheimplicationsofthesefindingsforthesys- tionofboththeentanglementandtheenergyoftwoelectrons temdescribedinRef.1. initiallyconfinedwithinthecorewell.Thisvariationbecomes Ouranalysisisimportantinthecontextoflocalsensitivity sharper as the confiningpotentialbecomesharder, i.e. more analysis.Inparticular,duetothepivotalrolethattheentangle- similar to a rectangular-like potentials. This steep variation mentplaysinseveral[24]quantumprotocols(suchasquantum algorithms[25],quantumteleportation[26]andsomequantum cryptography protocols[27]) here we report on the sensitiv- ityoftheentanglementwithrespecttosmallvariationsofthe ∗Electronicaddress:[email protected] †Electronicaddress:[email protected] externalparameter,[28,29]characterizetheregionofthepa- ‡Electronicaddress:[email protected] rameterspaceoverwhichtheentanglementshowsthesteepest 2 variation and, consequently, ascertain the possibility of em- ployingthe potentialvariationsasentanglement‘switch’. In fact ourcalculationsshow that the presenceof an innercore 2V for Wiw >|x| 0 2 hasastrongpinningeffectontheentanglementevenwhenthe VDIW(x;R<w)=V for (cid:12)Wow(cid:12) >|x|≥ Wiw gogsyrnleosmttuhenmeednssty)s(tswastytehemmeinmsgceeaotolmrrmiecpaeadstyrryeysd,tbeiottmoum)nthadoeyrtcoidonortfurhaebecslpteooeuiintttsedhrievnrwaglheusaleyll.vs(teaeDsmtyhempewemeintnhdettoairnnuigc-t and 00 othe(cid:12)(cid:12)(cid:12)(cid:12)rw2ise(cid:12)(cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 2 (cid:12)(cid:12)(cid:12)(4) corewell. Thismightpotentiallybeexploitedtoinducesharp V for Wow >|x| variations (switch) of the entanglement by modifying small V (x;R≥w)= 0 2 (5) DIW 0 otherwise. regionsoftheconfiningpotential. (cid:26) (cid:12) (cid:12) (cid:12) (cid:12) Finally, in the spirit of density-functional theory,[30] we V hasacompactrepresentationthroughtheHeaviside DIW will study whether the particle density can be used to track stepfunction, the system’s ground state behavior via a particle-density fi- delity. We note that, from an experimental point of view, thedensityisamoreaccessiblequantitythanthefullsystem V (x;R)=Viw(x;R)+Vow(x;R), (6) DIW wavefunction;ourresultsshowthat,atleastforthesystemat hand,theparticle-densityfidelitydeliversinformationsimilar where tothewavefunctionfidelity. Importantlywewilldemonstrate that, for ground-states with nodeless spatial wavefunctions, Viw(x;R)≡V [θ(x+(w−R)/2)θ(−x+(w−R)/2)] 0 theparticle-densityfidelityiszeroifandonlyifthewavefunc- (7) tionfidelityiszero. and Vow(x;R) = Viw(x;−R) describe the inner and the outerwell, respectively. Eq.(6) isequivalentto Eqs.(4)and (5)ifweassignθ(0)=0. Thisisconsistentwithconsidering theHeavisidestepfunctionθ(x)as,forexample,thelimit(in adistributionsense[31])forp→∞of II. SYMMETRICPOTENTIAL,MODELSYSTEMS 1−e−(px)2 Wewillfirstconcentrateonsystemswithasymmetriccon- θp(x)= 1+e−mpx , (8) finingpotential(seeFig.1). We considerthree one-dimensionalsystems, each consist- where p and m are positive integers. With p ∼ 10 and ingoftwointeractingelectronsboundbyaconfiningpotential m ∼ 20, we get a smooth, ‘softer’ version of VDIW. As andwhoseHamiltonianineffectiveatomicunitsis p → ∞ arguments similar to the ones developed in Ref. 1 seem to suggest a discontinuity in the entanglemententropy 2 1 ∂2 andenergyderivatives(andhencesomethingreminiscentofa H = −2∂x2 +Vi(xj,R) +U(x1,x2). (1) QPTinthefew-particleregime). Thechosenparametrization j=1" j # forthepotentialwillhelpustobetterunderstandthislimit. X Here we set U(x ,x ) = δ(x − x ) to represent a con- 1 2 1 2 tact Coulomb repulsion between the electrons. V (x ,R) i j are the confiningpotentialscharacterizingthe three systems, B. Benchmarksystem i=DIW,OWOandDW,seebelow. Theconfiningpotentialofthe‘outerwellonly’(OWO)sys- temisgivenbyV ≡Vow,seeinsetofFig.1. Weusethis OWO systemasabenchmark. A. Systemwitha‘disappearing’innerwell The potential of the ‘disappearing’inner well (DIW) sys- C. Core-shelltodoublewellsystem tem, V (x;R), ischaracterizedbyaninner(core)andan DIW outershellwell,seeFig.1. AstheparameterRincreases,the innerwellwidth,Wiw,becomesnarrowerandtheouterwell This is the rectangular-likelimit of the system considered width,Wow,increasesas inRef.1. Asthedrivingparameterchanges,thispotentialis modifiedfromacore-shelltoadouble-wellpotential.Theex- w−R forR<w plicitexpressionofthispotentialintherectangular-likelimit Wiw(R)= (2) 0, forR≥w canbewrittenas (cid:26) Wow(R)=w+R. (3) V (x;R)=V θ(−x+(w−R)/2)θ(x+(3w−R)/2) DW 0 TakingV0 asthedepthoftheouterwell,wecanwrite +θ(cid:2)(−x+(3w−R)/2)θ(x+(w−R)/2) .(9) (cid:3) 3 HerethetransformationsR =2w−Randd=w/2give we will refer to the parameter region around R as the ‘mi- DW c the control parameter and the inter-well distance as used in grationregion’: forthesevaluesofthedrivingparameterthe Ref.1,respectively. system wavefunction is the most sensitive to driving param- Forthesubsequentcalculations,unlessotherwisestated,we eter changes. Here the electronwavefunction‘expands’into use w = 5 a , where a is the Bohr radius, and V = −10 theouterwelland,asaconsequenceofthis,thesystemshows 0 0 0 Hartree. themostinterestingbehavior. Thisregionofhighsensitivity isrelativelynarrowandinfactforR > 5a thegroundstate 0 0 energybecomesaveryslowly-varying,decreasingfunctionof Wow R. e) −5 |V0 | Thefirstderivativeofthegroundstateenergywithrespect Hartre−10 Wiw taot Rthe=dr5ivain0,gbpuatraitmisetsemr,odoEth0/edlsRew, hdeisrpela(syeseaFidgi.sc2oBn)t.inTuhitiys V (DIW 0 discontinuity is found in the first derivatives with respect to −15 −10 |V0 | R of all the quantities we consider. dE0/dR has a maxi- mum at R = 4.7a . From Fig. 2B (inset and main panel) −20 0 −20 −8 −4 0 4 8 we see that at first the shrinking of the inner well increases −8 −6 −4 −2 0 2 4 6 8 thegroundstateenergywithanincreasing“speed”.However, x(a) inthemigrationregionthechangeintheground-stateenergy 0 rapidlyslowsdown:inthisregionthewavefunctionisstarting FIG.1:PotentialVDIW versusxforR=4a0.Inset:sameasmain to spread into the largerouterwell, hence movingtowardsa panelbutforR=5a0,forwhichDIWandOWOsystemscoincide. regimewhereE isalmostconstantwithR. 0 The second derivative of E with respect to R displays a 0 markedminimumatR=4.90a andaninfinitediscontinuity 0 atR=5a ,seeFig.2C. 0 III. RESULTSFORENTANGLEMENTANDENERGY The behaviorsof the Coulomb energyhUi, and of the ki- (DIWANDOWOSYSTEMS) netic energy hTi are plotted in the upper panel of Fig. 3, whereh...iindicatestheground-stateexpectationvalue. For the DIW potential, both display a maximumlocated at R = Tocalculatetheground-stateproperties,wedirectlydiago- 4.47a (corresponding to an inner to outer well ratio of nalize the HamiltonianEq. (1), by writingits eigenfunctions 0 0.058). The ratio between the Coulomb and the kinetic in- Ψ as a linear combinationof single-particlebasis functions k teractions,Fig.3B,providesanunambiguoussignatureofthe andtruncatingthecorrespondingexpansionas migration point R , whereas no particular structure emerges c from the visual inspection of both Coulomb and kinetic en- M M ergyseparately,Fig.3A. Ψ (x ,x )= a η (x ;ω)η (x ;ω), (10) k 1 2 j1,j2;k j1 1 j2 2 jX1=1jX2=1 B. Entanglement whereη (x;ω)aretheeigenfunctionsoftheone-dimensional j harmonic oscillator with angular frequency ω. A single- We calculate the spatial entanglement[32] using the von particlebasissizeofM = 50withω = 2ensuresgoodcon- NeumannentropyS andthelinearentropyL, vergenceoftheresultsatanyR. We calculatethe particle-particlespatialentanglement[32] S =−Trρ log ρ , (11) and the ground-state energy of the system for 4a ≤ R ≤ red 2 red 0 8a0. For the DIW system R = 4a0 correspondsto a core- L=Tr(ρred−ρ2red)=1−Trρ2red, (12) shell structure with the two electrons confined in the inner well,whileforR≥5a0wehaveVDIW =VOWO. whereρred =TrA|ΨihΨ|isthereduceddensitymatrixfound by tracing out the spatial degrees of freedom of one of the twoparticles(subsystem‘A’)andΨistheground-state. We consideralsothepositionspace-informationentropyS , A. Energy n S =− n(x)lnn(x)dx, (13) First we consider the ground state energy E of the DIW n 0 system (solidlinein Fig.2A)againstthe benchmark(OWO, Z dashedline). wheren(x)isthesystemparticledensity. As R becomes larger, the inner well narrows and the en- ForapurebipartitestatethevonNeumannentropySisthe ergyofthetwo-electronstateincreases,untiltheelectronsare unique function that satisfies all the entanglement measure- eventually‘forced’into the outerwell. The groundstate en- ment conditions,[33, 34] while the linear entropy L is com- ergy leaves the inner well at R ≡ R = 4.96a . This cor- putationallyconvenientandquantifiestheentanglementinthe c 0 respondstoaninnertoouterwellratioof0.0039. Hereafter, sense thatit givesan indicationof the numberandspreadof 4 4 A) A) DIW <T> OWO <T> −20 DIW <U> OWO <U> E (Hartree)0−−2284 E (Hartree)0−−−222210 ODWIWO >; <T> (Hartree) 23 U>; <T> (Hartree) 00000.....12345 −32 <U 1 < 0 4.9 4.95 5 5.05 4.8 4.9 5 5.1 R(a0) R (a0) −36 0 4 4.5 5 5.5 6 6.5 7 7.5 8 4 4.5 5 5.5 6 6.5 7 7.5 8 R(a0) R (a) 25 0 B) DIW 0.5 Hartree/ ) a0 112050 (Hartree/ ) a0 12120000 OWO T> 0 0.4.45 B) 000 0...344.5826 (R dR >/< 0.34 dE /d0 5 dE /0 00 44..88 44..99R(a0) 55 55..11 <U 0.35 0.3 4.8 4.9 5 5.1 0 0.3 R (a0) DIW OWO −5 4 4.5 5 5.5 6 6.5 7 7.5 8 0.25 R (a) 4 4.5 5 5.5 6 6.5 7 7.5 8 0 40 R (a) C) DIW 0 OWO 0.6 C) DIW 2 2 2ad E /dR (Hartree/ )00−−84 000 2 2 2ad E /dR (Hartree/ )00−−−−−−11848422 00000000 44..88 44..99R (a) 55 5.1 L , S, Sn,rr 00 ..024 VonS NpeaucLemi−naIennanfro EE Ennnttrrtoroopppyyy 0 −120 −0.2 4 4.5 5 5.5 6 6.5 7 7.5 8 R (a0) 4 4.5 5 5.5 6 6.5 7 7.5 8 R (a) 0 FIG.2: GroundstateenergyE0(panelA),firstandsecondderiva- tive of E0 with respect to R (panel B and C, respectively) for the FIG.3: PanelA:Coulombenergy,hUi,andkineticenergy,hTi,for theDIWandOWOpotentialsasafunctionofthedrivingparameter DIW(solidline)andOWO(dashedline)potentialsasfunctionsof thedrivingparameterR.Inallthethreepanelstheinsetzoomsonthe R. Inset: asmain panel, but intheneighborhood of the migration ‘migrationregion’withRc = 4.96a0indicatedbyaverticaldotted pointRc,markedbyaverticaldottedline. PanelB:Ratiobetween line. the Coulomb interaction energy and the kinetic energy, hUi/hTi, versusRforboththeDIWandOWOpotential. Inset: detailsofthe ‘migrationregion’ withthevertical dottedlineindicatingthepoint termsintheSchmidtdecompositionofthestate.Theposition- R = Rc. PanelC:ThevonNeumann(S,dottedline),andrescaled linear(Lr,solidline)andspace-information(Sn,r,dashedline)en- spaceinformationentropyS canbeconsideredasanapprox- n tropies as functions of R for the DIW system. The rescaling was imationto S whenoffdiagonaltermsareneglected[32]and choseninsuchawaythatLr andSn,r areequaltoS atR = 8a0. iswrittenintermsoftheparticledensity,soitcouldbemore ThisresultsinLr =3.04LandSn,r =0.15Sn. easilyanddirectlyaccessedbyexperiments. In Fig. 3B, the linear, von Neumann, and position-space information entropy are plotted as a function of R for the ticledensityuniquelydeterminesalltheground-stateproper- DIWsystem. LandSn havebeenrescaledsothattheyhave ties of the system, so in principle the ground-stateentangle- the same value of S at R = 8a . All quantities show the ment for this system could be written as a functional of the 0 samequalitativebehavior,LandS rescalingalmostperfectly density;theoverallsimilaritybetweenS –explicitlywritten n onto each other. In particular, all quantities show a non- asafunctionalofthedensity–andthetwoentanglementmea- differentiable point at R = 5a0 and present a minimum lo- sures S and L reinforces the idea that pertinent information cated in the same R region. However, the minimum of Sn can be extracted from the electron density. As for the DIW (R = 4.45a0) is nearer to the maximum of hUi than the systemLcanberescaledverywellontoS,wewillcontinue minima of the other two entropies (R = 4.51a0 for L and usingthecomputationallyconvenientlinearentropyL. R=4.52a0forS),andismorepronounced. ThelinearentropyoftheDIW,LDIW,andoftheOWOsys- BytheHohenberg-Kohntheorem,[30]thegroundstatepar- tem are comparedin Fig. 4A. L displays three regions. DIW 5 A) ofhUicorrespondsheretoaminimumoftheentanglementas 0.16 DIW theseextremaoccurwhentheelectronsaremostconfinedand OWO hence in an almost factorized state.[1] The decrease of hUi 0.12 0.12 isasignatureofthewavefunctionspillingintotheouterwell and,consequently,ofanincreasinginfluenceofCoulombcor- L 0.08 0.08 L relations in shaping the wavefunction with a corresponding 0.04 increase of the entanglement. In the migration region (with 0.04 0 hUi(R )beingapproximately7%ofitsmaximumvalue),the c 4.8 4.9R (a) 5 5.1 wavefunctiondensity is substantiallyspreadwithin the outer 0 0 well, andsmall variationsof R producelargechangesin the 4 4.5 5 5.5 6 6.5 7 7.5 8 entanglement. R (a) 0 WenotethatinRef.35,asystemsimilartoDIW,withanin- 2.5 B) DIW OWO nerwellshrinkinginwidthbutneverdisappearing,wasstud- 2 ied. In this a case no discontinuity in any derivative of the 22 relevantquantitieswerefound. dR 1.5 L/dR 11 dL/ 1 d 00 C. ComparisonbetweentheDIWandtheOWOpotentials 0.5 44..88 44..99 55 5.1 R (a) 0 0 InFigs.2Aand4AE0andLareplottedforboththeOWO andDIWpotential. AtR = R themany-bodyground-state 4 4.5 5 5.5 6 6.5 7 7.5 8 c R (a0) isboundedtotheouterwell,andinparticularE0DIW(Rc) ≈ 50 0.99EOWO(R ). In contrast, L (R ), which is marked C) DIW 0 c DIW c OWO byadotinFig.4,isapproximatelyhalfofthecorresponding 40 5500 entanglementvalueintheOWOcase. Weunderlinethathere 30 2R 3300 theinnerwellhasafinitedepthbuttheinnertoouterwellratio 2dR L/d isonly0.0039,so, froma geometricpointofview,the inner 2d L/ 20 2d 1100 wellshouldbenegligible.HoweverintheregionRc ≤R<5 10 −10 thebehaviorofhUi,withhUi >hUi ,suggeststhat 44..88 44..99R (a) 55 55..11 theelectronsremainstronglyDpiInWnedtothOeWinOnerwellregion 0 0 eventhoughthewidthofthelatterisbasicallynegligible. As −10 aconsequenceaverynarrowinnerwellisabletomodifythe 4 4.5 5 5.5 6 6.5 7 7.5 8 R (a) distributionoftheelectronsinsuchawaythattheirentangle- 0 mentishighlyandnon-linearlyreduced. This‘pinningprop- FIG.4: PanelA:Linearentropy(L)asafunctionofRfortheDIW erty’ of the entanglementmightopen possibilities of rapidly andOWOpotentials. ThedotsindicatesthevalueofLDIW atR= andefficientlymodifyingtheentanglementinananostructure Rc.PanelsBandC:firstandsecondderivativeswithrespecttoRof system. thethelinearentropyasafunctionofR.Inallthreepanels,theinset representstherespectivefunctionaroundthemigrationpointRc,the latterbeinghighlightedbytheverticaldottedline. IV. GROUND-STATEWAVEFUNCTIONAND PARTICLE-DENSITYBEHAVIOR Thefirst is characterizedbya slow variationin entropywith InFig.5thehighsensitivityofthesystemwavefunctionto a shallow minimum at R = 4.51a0. In the second region small changes of the driving parameter in the migration re- (4.9a0 .R<5a)theentropyincreasesveryrapidly,andfi- gionisexplicitlydemonstrated. Thefigurein factshowsthe nallyforR >5a0 theentropyincreaseslinearlywithR. The wavefunctioncontourplots for R = 4.5a0 (∼ maximumof first derivative of LDIW (Fig. 4B) presents a shoulder-like hUiDIW,panelA),R = Rc (‘migration’point,panelB)and structure connecting the first and second regions; then, after R = 5a (value at which the inner well disappears, panel 0 theboostintherateofchangeoftheentropy,thederivativehas C).Thewavefunctionbecomesmoreandmoreconfineduntil a finite discontinuityat R = 5a0. The second derivativeof R ≈ 4.5a0, for which it displays a single maximum (panel LDIW presentstwomaximaatR=4.89a0andR=4.99a0, A). A further reduction of the inner well width induces the andaminimumatR=4.92a0.Ithasaninfinitediscontinuity wavefunction to leak into the outer well (compare scales on atR=5a0 axis of panels A and B). Around R ≈ Rc the wavefunction The rate of change of the entropy shown in Fig. 4 is the starts to separate into two lobes, butremainslargestclose to result of the competing effects of the confinement strength theinnerwell(pinningeffect).AsRincreasesbeyondR ,the c and of the Coulomb repulsion. However, since it is the ra- shape of the wavefunction displays two well-defined lobes, tio betweenthese two factorswhich governsthe responseof reflecting the effect of the electron-electron repulsion com- thesystemtoavariationofthedrivingparameter,amaximum bined with the diminished confinement strength (panel C). 6 The wavefunction width and height though remain roughly differencewiththewavefunction,thechangeinthenumberof constant, compare panels B and C. We note that the wave- peaksoftheparticledensityassociatedtothedisappearanceof functionshape appearsto change“smoothly”as R increases thecentralmaximumcanthenbeassociatedwiththediscon- and, in particular, no detectable change in the geometry of tinuity in the derivativesof energyand entanglementcaused thewavefunctionseemstotakeplaceatR = 5a ,wherethe bythedisappearanceoftheinnerwell. 0 non-differentiablepointsoftheentropyandenergiesareboth located. 1.4 R=4.9 1.2 0.3 R=4.95 A) DIW: R = 4.5 (a) 0.26 R=4.998 1−.15 0 11..48 −1ay ( ) 0 0 .18 00..2128 −2 0 2 R=5 a()0−0 .05 001..260 Densit 00..64 x2 0.2 0.5 0.2 1 0 −6 −4 −2 0 2 4 6 1.5 −1.5 −1 −0.5 0 0.5 1 1.5 x ( a ) x (a) 0 1 0 B) DIW: R=4.96 (a) −8 0 FIG. 6: Density n(x;R) for the DIW potential plotted against the −6 0.25 positionxforfourdifferentvaluesofR(aslabeled). Inset:zoomof −4 00..125 mainpanelforR≈5. −2 ) 0.1 a(0 0 0.05 x2 2 0 4 V. FIDELITYOFTHEGROUND-STATEWAVEFUNCTION 6 8 −8 −6 −4 −2 0 2 4 6 8 The fidelity between two states quantifies their similarity x (a) C) DIW: R = 5 (a) 1 0 andassuchhasbeenextensivelyusedinquantuminformation −8 0 theory.[2]Morerecentlythefidelityhasbeenintroducedasa −6 0.25 methodforthecharacterizationofQPTs:[7,8,36]asignature −4 0.2 0.15 ofQPTisanabruptchangeinthewavefunction,[37]andthis −2 a()0 0 00..015 suggests the evaluation of the fidelity between states across x2 2 0 the critical point as a good choice for the identification of a 4 QPT. Here we will use this method to better understand the 6 systembehaviorinthemigrationregion. 8 Foroursystemtheground-statefidelityisgivenby −8 −6 −4 −2 0 2 4 6 8 x (a) 1 0 F(R ,R )=|hψ(x ,x ;R )|ψ(x ,x ;R )i|; (14) 1 2 1 2 1 1 2 2 FIG.5: (coloronline)Contourplotofthewavefunctionagainstthe particles’positionsx1 andx2 fortheDIWpotentialatR = 4.5a0 following Eq. (10) we then calculate it as F(R1,R2) = (4∼.96maa0xi(mpaunmeloBf)h,UaniDdIRW=an5dam0i(npiominutmatowfLhi,cphaWneDliwAIW),R==0,Rpacn=el (cid:12)terpMjr1e,tje2d=1inajt1w,jo2,nco(Rm1p)laemj1e,jn2t,nar(yRw2)a(cid:12)y.s,F[3(8R]1a,nRd2a)cccaonrdbineginto- C). (cid:12)P (cid:12) (cid:12)this we will considertwo different(cid:12)sets of valuesfor R1 and R . 2 Asalreadymentioned,theparticledensityn(x;R) should Inquantuminformationtheory,thefidelitycanbeseenasa uniquelycapturethesystemground-statebehavior,sowewill generalizationofameasureofsimilaritybetweentwoclassi- now check if the density shape is more susceptible than the calprobabilitydistributions.[2]Letustake R = R , where 1 0 wavefunctiontotheshrinkinganddisappearanceoftheinner ψ(R ) is the reference state, then the fidelity is the overlap 0 well. In Fig. 6 the density is plotted for various values of between this initial state and the wavefunction ψ(R) calcu- R. Weseethat,asRincreases,theheightofthecentral(and lated as R = R varies in the parameterspace. The fidelity 2 only)peakdiminishes. ForR ≈ R thedensitydevelopstwo F(R ,R)clearlydependsonthechoiceofthereferencestate. c 0 shouldersandatR = 5a thecentralpeakdisappearsandis Thefactthattheminimumoftheentanglementcorrespondsto 0 replaced by two peaks which are symmetric around the ori- aquasi-productstate(seeFig.4, panelA),whichevolvesto- gin. This can more clearly be seen in the inset. At least for wards a highly entangled state as R increases, suggests as a thesystemathand,thepinningfromtheinnerwellhasamore naturalchoiceR = 4.52a ,correspondingtotheminimum 0 0 clear-cuteffectontheshapeofthedensitythanontheshape ofthelinearentropy. of the wavefunction, as in particular it determines the pres- Alternatively,thefidelitycanbeseen asa geometricalob- enceorabsenceofacentralpeakfortheparticledensity. At ject connected to the Fubini-Study distance between quan- 7 tum states,[8] where the square distance between infinitesi- functionsandN particlescanbeapproximatedas mallyclosestatescanbeapproximatedasds2 ≈2(1−F). FS In this case the fidelity is calculatedbetween two wavefunc- δR2 ∂ψ(x ...x ;R) 2 1 N F(R,R+δR)≈1− dx ...dx , tionsdependingoninfinitesimallydifferentparameters,ψ(R) 2 ∂R 1 N and ψ(R + δR). At the critical point, where there is an Z(cid:18) (cid:19) (15) abrupt change in ψ, this function has a minimum and pos- shows a discontinuity at R = 5a , in accordance with the 0 sibly a discontinuity. In Fig. 7, the fidelities F(R ,R) and discontinuityfoundinthederivativesofallthequantitiesdis- 0 cussedsofar. 1 VI. FIDELITYOFTHEPARTICLEDENSITY A) 0.8 R 0 F(R ,R)0 00..46 dF(R ,R)/d0−−42 cthaasFteo,trhtehaep1a-fiprdtaiercltliietcyldemesnyasysitteybmeiswwnir(tihtxte;cnRon)intr=otlerp|mψar(saxmo;fRett)eh|re2Rdsoew,nseinithytahvaiess 0.2 ODWIWO 4.8 4.9R (a0 )5 5.1 F(WRe1,mRa2y)g=eneralinz(ext;hRis1t)on(ax‘;dRen2)sditxy.fidelity’byusingthe R p 0 densityarisingfromN-particlesystems, 4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6 R (a) 0 n(x,R)=N |ψ(x,x ...,x ;R)|2dx ...dx . (16) 2 n 2 n Z 1 B) 1 anddefiningthe‘densityfidelity’as 0.99996 R) 0.99996 0.99992 1 R+ δ 0.99988 Fn(R1,R2)= N n(x;R1)n(x;R2)dx. (17) R, 0.99992 4.8 4.9 5 5.1 Z p F( DIW R (a0) Fn(R1,R2) has the properties expected from a fidelity, that 0.99988 OWO is0 ≤ Fn(R1,R2) ≤ 1anditmeasurestheoverlapbetween particledensitiesasthedrivingparameterRisvaried.Wewill 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 alsodemonstratethatF (R ,R )vanishesif andonlyif the R (a) n 1 2 0 correspondingwavefunctionfidelityF(R ,R )vanishes. 1 2 We note that a density fidelity has been proposed for lat- FIG.7: PanelA:fidelityF(R0,R)vsRforR0 = 4.52a0. Inset: firstderivativeofF(R0,R)vsR. PanelB:fidelityF(R,R+δR) tice systems and linked with QPTs in Ref. 39. We initially vsRwithδR=0.002.Inset:asforthemainpanel,butzoomingon calculate the density fidelity with respect to R0. Fn(R0,R) theregionofthefidelityminimum. TheplotsrefertotheDIWand shows a non-differentiablepoint at R = 5a corresponding 0 OWO potential (aslabeled); theverticaldotted linecorresponds to to the disappearance of the inner well (Fig. 8A); its deriva- Rc. tivein respectto Ris plottedinthe inset. We notethesimi- laritybetweenthebehaviorofF (R ,R)andF(R ,R)and n 0 0 between their derivatives, the main difference being that the F(R,R+ δR) are plotted as a function of R (panel A and residualfidelityforR> 5a islargerforthedensitythanfor 0 B,respectively). F(R ,R)displaysthreedistinctregimes,in thewavefunction. 0 accordancewiththebehaviorofalltheotherquantitiesstud- We show F (R,R+ δR), where δR = 0.002, in Fig. 8 n ied so far. In particular, we see that for 4.8a . R < 5a (panel B). As for the corresponding wavefunction fidelity, 0 0 we have a dramatic decrease of the fidelity: the wavefunc- here the discontinuity at R = 5a appears directly in the 0 tion is rapidly changing from a quasi-product state towards ‘densityfidelity’. AgainthebehaviorofF (R,R+δR)and n a triplet-like entangled state[1] (compare Fig. 5, panels A F(R,R+δR)areverysimilar(compareFig.8Bwiththein- and C). The derivative dF(R ,R)/dR presents a minimum set of Fig. 7B), with the density preservinga slightly higher 0 at R ≈ 4.92a0, near the migrationpointRc. For R > 5a0 fidelityatitsminimum,whichoccursatR=4.92a0 the fidelity is almost constant and drastically reduced, with In the DIW system, viewing the density seems to more F(R0,R = 5) ≈ 0.19: in this region the wavefunction clearlyandreadilydisplaythefastchangesinthegroundstate is nearly orthogonal to the reference state. We note that propertiescorrespondingtothediscontinuityinthederivatives F(R0,R)isnotdifferentiableatR=5a0. ofE0andLthanviewingthewavefunction(seecommentsto Figs. 5 and 6). This may be due to the lesser formal com- The behavior of F(R,R + δR) (Fig. 7B) shows that the plexity of the density, which is always a function of a sin- mostsignificantchangesin the wavefunctionare confinedto gle position vector – x in the present case – as opposed to themigrationregion,aroundamarkedminimumatR=4.93, thecomplexmany-bodywavefunction,afunctionofN posi- againveryclosetoR . F(R,R+δR),whichforrealwave- tion vectors whose parameter space is clearly more difficult c 8 1 positive, so for any two such N-particle ground-state wave- A) DIW functionsψ andψ wemaydefinetherealpositivefunction 1 2 x;R)) 0.8 0 x;R ),n(0 −−12 d F n ( n (x;R 0 ),n(x;R))/dR f1,2(x)≡Z ψ1ψ2dx2...dxN. (18) F (n(n 0.6 −3 Foranyfixedxthisdefinesaninnerproduct,aspositivedef- initenessissatisfiedbyf (x) = n(x)/N > 0forfiniteex- 1,1 4.8 4.9 5 5.1 ternalpotentials.TheCauchy-Schwarzinequalitycanthenbe 0.4 4.5 4.6 4.7 4.8 4.9 5 writtenas B) DIW 1 ψ ψ dx ...dx 1 2 2 N δ+ R)) 0.99998 ≤ |ψ1|2dxR2...dxN |ψ2|2dx2...dxN 12 . (19) R R),n(x; integratin(cid:16)gRbothsideswithrespRecttoxleadsto (cid:17) x; 0.99996 n( F (n F ≤Fn (20) 0.99994 4.8 4.85 4.9 4 .95 5 5.05 5.1 andsoifFn tendstozero,somustF. R(a0) For a general wavefunction, a fidelity of zero does not imply a density fidelity of zero as for example two excited FIG.8: PanelA: DensityfidelityFn(R0,R), R0 = 4.52a0, for state wavefunctionsmay both be non-zeroin some finite re- theDIWsystem,plottedagainsttheparameterR. Inset: Derivative gion of space but still be orthogonal. In addition, if we ofFn(R0,R)withrespecttoRplottedagainstR(R0 = 4.52a0). comparewavefunctionsarisingfromdifferentformsofinter- PanelB:Fn(R,R+δR)withδR =0.002,plottedagainstthepa- rameterRfortheDIWsystem. particleinteractions,sayattractiveandrepulsive,then,again, the density cannot always discriminate between orthogonal wavefunctions. This can be explicitly seen by considering to analyse and visualize. In addition the particle density fi- the limiting case of infinite inter-particle attraction or repul- delity is able to predict all the other notable features of the sion. Let us consider two particles in one dimension: in wavefunctionfidelity,suchastheminimumoccurringaround the case of infinite attraction their wavefunction will sat- R ≈ Rc. Asnoted,minimainthefidelityF(R,R+δR)are isfy ψA(x1,x2) = 0 if x1 6= x2, while for infinite repul- associatedtoabruptchangesinthewavefunctionandmaysig- sion we have ψR(x1,x2) = 0 if x1 = x2, otherwise both naltheoccurrenceofa QPT,so, in accordancewithRef. 39, ψ > 0. Clearly we obtain ψAψRdx1dx2 = 0. Let us our results suggests that the density fidelity may be used as now consider the single particle densities. In general it will analternativetothewavefunctionfidelitytounderstandbrisk be nR(x) = |ψR(x,x1)|2dRx1 > 0. To ensure normal- changes in the ground state and hence to study QPTs. This ization, ψA(x1,x2)2 = φ1(x1)2δ(x1 −x2), with φ1(x1) it- R isinlinewiththeHohenberg-Kohntheoremwhichinitssim- selfnormalized,givingacorrespondingsingleparticledensity plest form shows that for non-degenerate ground-states, the nA(x) = |φ1(x)|2 > 0. Itfollowsthattherelateddensityfi- densityuniquelydeterminesthemany-bodywavefunctionand delity n (x)n (x)dxisdifferentfromzero. R A so all the propertiesof the system.[30] We pointoutthatthe However, if we assume the requirements needed for stan- R p particledensityisamucheasierquantitytocalculate(andto dardDFT,i.e. groundstateandsameinterparticleinteraction, experimentallyaccess)thanthefullmany-bodywavefunction. thenwecanarguethatthedensityfidelitycandetectorthogo- Assuchtheuseofthefidelitydensitymightbecomeofgreat nal, nodelessground-statewavefunctions. Thelackofnodes helpinunderstandingphenomenasuchasQPTs. Similarlyits inthegroundstatesmeansthatwecanchooseaphasesothat characteristicsashighlightedabovesuggestthatitcouldbea bothourwavefunctionsarenevernegative. Hereafidelityof usefultoolforlocalsensitivityanalysis. zerocorrespondstothehypotheticalsituationwhenthewave- functionsdonotoverlapatall. Whentheinterparticleinter- action is fixed this lack of overlap arises because the wave- A. One-to-onecorrespondencebetweenvanishingofground functions are spatially distinct, and so the densities will not stateparticledensityfidelityandwavefunctionfidelity overlap. Henceforground-stateswithnodelessspatialwave- functions,thedensityfidelityiszeroifandonlyifthespatial We will now demonstrate the important property that, for wavefunctionfidelityiszero. systemswithfiniteexternalpotentialsandground-stateswith nodelessspatial wavefunctions, the density fidelity is zero if and only if the ground-state spatial wavefunction fidelity is VII. QPT-LIKETRANSITION(SYMMETRICSYSTEMS) zero. The nodelessspatial ground-statewavefunctionof a time- As pointed out previously, a minimum in F(R,R+ δR) independentHamiltonianmayalwaysbetakentoberealand mayhighlightaQPTandcertainlywitnessesarapidchangein 9 thewavefunction.Inourcasethe,minimuminF(R,R+δR) VIII. ORIGINOFTHEDISCONTINUITIESOBSERVED observedinFig. 7correspondsto the transitionbetweentwo ATR=w separatesetsofgroundstates;thefirstsetboundedbythein- ner and the second set bounded by the outer well. Fig. 7A It was demonstrated in Ref. 40, 41 that a discontinuity in showsthatthistransitionisbetweenstatesthatarealmostor- the first (second) derivative of the ground-state energy with thogonal. As the width of the inner well is reduced, the en- respect to the driving parameter – a signal of a QPT – may ergy gap between these set of states reduces: this transition correspondtoadiscontinuityinthe(derivativeofthe)ground- hassomeofthecharacteristicsofasecond-orderQPT. stateentanglement. This is apparent when looking at the ground state energy derivatives: d2E0/dR2 presentsinthisregionamarkedmin- WhatweobserveinthepresentcaseatR = wisinsteada imum,whichinturncorrespondstoaninflectionpointinthe discontinuityinthesameorderderivativesoftheground-state energy first derivative. If this were a full-fledged QPT, this energyand entanglement. Moreover, all the other quantities inflectionpointwouldhave a verticaltangent, and hencethe understudy, such as hUi or S , are non-differentiableat the n minimumind2E0/dR2wouldbecomeadivergency. same point. A similar situation was speculated for the limit AsdiscussedinRefs40and41,asecond-orderQPTshould p → ∞inRef.1. Herewewouldliketoclarifytheoriginof besignaledbyacorrespondingstructureinthefirstderivative thediscontinuitiesweobserve. oftheentanglement. Thefirstderivativeoftheentanglement Firstofallwecanextractfromthefidelitiesimportantinfor- entropypresentsindeedastructure(ashoulder)whosewidth mationonthegroundstatewavefunctionbehavioratR = w: can be defined by the first maximum-minimum structure in thecontinuityofF(R ,R)showsthattheground-statewave- d2L/dR2,i.e4.89a ≤R≤4.92a (seeFig.4,panelsBand 0 0 0 functionis continuous,on average, at R = w (see Fig. 7A). C): this shoulder indeed frames the region of the minimum Howeverthe discontinuity of ∂F(R ,R)/∂R| indicates of d2E /dR2. The bulk of the wavefunctionchange should 0 R=w 0 a discontinuousderivativefor the wave function at the same occur in the region of the minimum of F(R,R + δR): in point(insetofFig.7A).Thediscontinuityof∂ψ(x;R)/∂Rat Fig.9wethenpresentthewavefunctionatR=4.91a (panel 0 R=wisconfirmedbythediscontinuityofF(R,R+δR)at A) and R = R = 4.96a (panel B). The plots confirm a c 0 thesamepoint,seeEq.(15). quite substantial change in the wavefunction, which smears over the upper well as R increases, changing from a single, To understandthe abovepicturewe considertheHamilto- pointedpeaktowardsatwo-lobegeometry. nianforageneralpotential Asforthecaseofafinite-sizesystemwhichwouldundergo a QPTin thethermodynamiclimit,[42]the transitionwe ob- serveinthewavefunctionoccursovera(small)parameterre- H(R)=H + V(x ,R), (21) 0 j gion and slightly away from the expected ‘critical’ value of j thedrivingparameter,i.e.,forR.R . X c whereH = T +U isindependentfromthedrivingparam- 0 0.5 A) DIW: R=4.91 a eterR,T isthekineticenergy,andU istheelectron-electron 0 0.4 interaction.FromtheHellmann-Feynmantheoremwehave 0.3 0.2 0.1 dE(R) ∂V(x ;R) 0 = ψ(x;R) j , ψ(x;R) , (22) dR ∂R j (cid:28) (cid:12) (cid:12) (cid:29) −8 X (cid:12) (cid:12) −6 (cid:12) (cid:12) −x42 − (2 a 0 )0 2 4 6 8 −8 −6 −4 −2x1 0( a 0 ) 2 4 6 8 wpwahirtehtircerleexssp.e=cCt(otxon1st,eh.qe.up.exanrNtalym),erietfepr∂(cid:12)reRVse,(nxthtjse;ntRhte)h/ics∂o(cid:12)RdoirsdicsionndatitisencsuoointfytitnchuoeouNulds propagatetodE/dR. B) DIW: R = 4.96 a 0.2 0 We notethatin thecase ofa firstorderQPT,the disconti- 0.1 nuityindE/dRshouldarisefromthewavefunction,andnot 0 fromthepotential. Inthepresentcase,whilethefidelityindi- catesa continuouswavefunctions,notonlydE/dR, butalso alltheotherquantitiesusedasindicatorsforaQPT,presenta −8 −6−4 pointofnon-analyticityatR = w = 5a0. Itishenceneces- x2−(2 a 0 )0 2 4 6 8 −8 −6 −4 −2 x1 0( a 0 ) 2 4 6 8 asaffreycttothuendoetrhsetranqduahnotwitiaesdoisfcoinntteirneusitt,yainndthineppoatretinctuialalrwiof,ulidn contrast with the situation in Refs. 41, 40, it would produce discontinuitiesinthefirstderivativeofbothenergyandentan- FIG. 9: Ground-state wavefunction plotted against the particles’ positionsx1andx2fortheDIWpotentialatR=4.91a0,panelA, glemententropies. andR=Rc =4.96a0,panelB. Byconsideringthetime-independentSchrödingerequation associatedtoEq.(21)wecanwrite 10 The behavior of the entanglement and its derivatives in this limitisshowninFig.10. Tψ(x;R) Uψ(x;R) 2 − ψ(x;R) − ψ(x;R) +E(R)= V(xj;R). (23) 0.6 A) DW j=1 0.6 X 0.5 L(R ) DW 0.4 Eq. (23) is well-definedfora nodelessgroundstate wave- 0.4 0.2 functionandcanbeseen asafamilyofequationslabeledby thecontinuousparameterR. Eq.(23)showsthatifthepoten- L 0.3 02 2.5 3 tial is discontinuous only at a set of points of measure zero 0.2 RD W(a0) then, at most, it may only directly cause ψ and/or Tψ to be 0.1 discontinuous on that same set of points. Hence, for finite discontinuities,thesediscontinuitieswillnotpropagatetoany 0 4 4.5 5 5.5 6 integratedquantitiessuchasexpectationvalues.Wethencon- R (a) tinuebyassumingthatψandTψare,atworst,discontinuous 0 overasetofpointsofmeasurezero.WedifferentiateEq.(23) 6 B) DW 66 5 withrespecttoR,anduseEq.(22)toobtain 44 dL/dR 4 22 R 1 ∂ψ(x;R) [Tψ(x;R)]∂ψ(x;R) L/d 3 00 44..99 55 5.1 − ψ(x;R)T ∂R + ψ2(x;R) ∂R d 2 R (a0) ∂V(x ;R) ∂V(x ;R) 1 = j − ψ(x;R) j ψ(x;R) . ∂R ∂R 0 Xj (cid:20) (cid:28) (cid:12)(cid:12) (cid:12)(cid:12) (cid:29)(cid:21) 4 4.5 5 5.5 6 (cid:12) (cid:12) (24) R (a) (cid:12) (cid:12) 0 200 Finitediscontinuitiesinthepotentialmaymeanthatitsderiva- 200 DW tive with respect to R will comprise delta functions, and 150 100 d2 L/dR2 hence that, unless accidental cancellations occur, these dis- 100 0 scououmnsteainttuhRiatite=tshewR˜yi.lalTrpehresounpc,ahgoantthetahtteoh∂rhiVg∂hV(tx-(hjxa;jnR;dR)/s)∂i/dR∂eRioifis.EdqLis.ec(to2un4st)inwause-- 22d L/dR 5 00 −10 04.9 R ( a 05) 5.1 havetwodiscontinuousfunctionswithrespecttoR,butasthe −50 secondtermdoesnotdependonx,theright-handsideisac- tually discontinuousat (x;R˜) for all or almost all values of −100 C) x since no accidental cancellations can hold for all x. This 4 4.5 5 5.5 6 R (a) 0 meansthatthelefthandsideofEq.(24)willpresentthesame discontinuities. As ψ(x;R) and Tψ are at least continuous FIG.10:Upperpanel:EntanglemententropyLplottedagainstRfor almost everywhere with respect to x at (x;R˜), this implies the potential of Eq. (9) and w = 5a0. Inset: same as main panel that ∂ψ(x;R)/∂R has indeed to be discontinuousat (x;R˜) butplottedinrespecttoRDW foraneasiercomparisonwithRef.1. foralloralmostallxandhencethefirstderivativeinrespect Middlepanelandlowerpanel: dL/dRandd2L/dR2,respectively, toRofanyfunctionalofψwillbeingeneraldiscontinuousat vsRforthepotentialofEq.(9)andforw=5a0.Theinsetspresent thetransitionregionandtheverticaldottedlinethemigrationpoint R=R˜. Thisisexactlywhatweobserve. Rc =4.98a0forthepotentialEq.(9). In Appendix A1 we illustrate these points by explicitly analyzing the effect of the finite discontinuity at the point For the DW potential Eq. (9), the plot of F(R ,R) 0 (x=0;R=w)inV . DIW (Fig. 11B, with R = 4.76a the minimum of L for this 0 0 In the next section we will instead consider a counter- system) confirms that the reference state, almost factorized example for which, due to an accidental cancellation, and bounded to the inner well, is practically orthogonal to h∂V(x ;R)/∂Ri – and hence all first derivatives in respect j thetriplet-likegroundstatereachedafterthetransitiontothe toR–remainscontinuouseveninthepresenceofdiscontinu- double well potential.[1] However a QPT-like transition oc- itiesinV(x ;R)similartotheonesoftheDIWpotential. j curs only when the ground state bounded to the inner well migratestotheouterwell,seetheshoulderindL/dRandthe minimum of d2E /dR2 in Figs. 10B and 11A, respectively. 0 IX. CORE-SHELLTODOUBLEWELLPOTENTIAL The subsequent transition to a double-well potential merely furtherisolates the two lobes of the wavefunctionfromeach InRef.1itwasspeculatedthat,intherectangular-likepo- other. Thesharpincreaseinentanglementwhichcorresponds tential limit, the observed sharp transitions in energies and to thisfurtherchange, doesnotthensignalanyfurtherQPT- entanglementwoulddisplaynon-analyticitiesasthepotential likepoint,asconfirmedbytheabsenceofadditionalstructures changesfromacore-shellstructuretoadoublewellpotential. ind2E /dR2andF(R,R+δR)(seeFig.11AandFig.11C). 0