ETH Library PILATUS 2M a detector for small angle X-ray scattering Doctoral Thesis Author(s): Kraft, Philipp Publication date: 2010 Permanent link: https://doi.org/10.3929/ethz-a-006023165 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Diss. ETH N◦ 18466 PILATUS 2M A Detector for Small Angle X-ray Scattering A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by PHILIPP KRAFT Dipl. phys. ETH born Januray 31st, 1978 citizen of G¨achlingen (SH) accepted on the recommendation of Prof. Dr. R. Eichler, examiner Prof. Dr. F. Pfeiffer, co-examiner Dr. Ch. Br¨onnimann, co-examiner 2010 ii Abstract For the (coherent) small-angle X-ray scattering (SAXS) beamline X12SA of the Swiss Light Source at the Paul Scherrer Institut, a novel X-ray detector is built, the PILA- TUS 2M. Contributions in module fabrication, detector assembly, characterization and calibration are covered within the framework of this thesis. Furthermore, data analysis of a particular SAXS experiment demonstrating the performance of the beamline and the detector are accomplished. PILATUS is a silicon hybrid pixel detector system for synchrotron applications. Its core unit is a module consisting of 16 readout chips which are flip-chip bump bonded to a 320 µm thick silicon sensor. The readout electronics of a single pixel of 172×172 µm2 size comprise an amplifier, comparator and a digital counter featuring single-photon counting. A module contains 487×195 pixels which can be read out in within 2.85 ms. In the frame of detector calibration and characterization the intrinsic threshold disper- sion of a PILATUS module is reduced to a minimum value of 36 eV root mean square (RMS). The minimum selectable threshold is 2 keV with all pixels of the module reliably counting photons above the electronic noise. Furthermore, a minimum overall energy resolution of 863 eV full width at half maximum (FWHM) and a minimum dead time of 101 ns are measured. The PILATUS 2M is a large area detector consisting of an array of 8 × 3 PILATUS modules. Atotalof1475×1679 = 2,476,525pixelscoveranactiveareaof254×289mm2. The maximum frame rate of the full detector is 31.4 Hz. The PILATUS 2M is custom built for SAXS experiments. One-dimensional tomographic reconstruction of SAXS images is demonstrated on the example of alumina dip-coated polyamide 6 monofilaments. The sample is scanned with a focussed synchrotron beam with a spot size at sample level of 5×20 µm2 (FWHM). The reconstructed sequence of SAXS images reflects the local nanostructure variation along the sample radius. iii Zusammenfassung Fu¨rdie(koh¨arente)Klein-Winkel-R¨ontgen-Streu-Strahllinie(KWRS-Strahllinie)X12SA derSynchrotronLichtquelleSchweizamPaulScherrerInstitutwirdeinneuartigerR¨ont- gendetektor gebaut, der PILATUS 2M. Beitr¨age in der Modulfabrikation, dem Detek- torzusammenbau, der Charakterisierung und Kalibration werden im Rahmen dieser Arbeit geleistet. Des weiteren wird die Datenanalyse von einem speziellen KWRS- Experiment durchgefu¨hrt, die die Leistungsfhigkeit der Strahlinie and des Detektors demonstriert. PILATUS ist ein Silizium-Hybrid-Pixel-Detektorsystem fu¨r Synchrotronanwendungen. SeineGrundeinheitisteinModul,dasaus16Auslesechipsbesteht,dieu¨berkugelf¨ormige Kontakte mit einem 320 µm dicken Silizium Sensor verbunden sind. Die Ausleseelek- tronik von einem einzigen Pixel der Gr¨osse 172×172 µm2 beinhaltet einen Verst¨arker, einen Komparator und einen digitalen Z¨ahler, der das Z¨ahlen von einzelnen Photonen erm¨oglicht. Ein Modul enth¨alt 487×195 Pixel, die innerhalb von 2.85 ms ausgelesen werden k¨onnen. ImRahmenderDetektorkalibrationund-charakterisierungwirddieintrinsischeSchwellen- dispersion eines PILATUS Moduls auf einen minimalen Wert von 36 eV Quadratmittel (RMS) reduziert. Die minimal w¨ahlbare Schwelle ist 2 keV wobei alle Pixel des Moduls zuverl¨assig u¨ber dem elektronischen Rauschen Photonen z¨ahlen. Des weiteren wurden eine pauschale Energieaufl¨osung von 863 eV Halbwertsbreite (FWHM) und eine mini- male Totzeit von 101 ns gemessen. DerPILATUS2Misteingrossfl¨achigerDetektorbestehendaus8×3PILATUSModulen. Imganzen1475×1679 = 2,476,525PixelbedeckeneineaktiveFl¨achevon254×289mm2. Die maximale Anzahl ausgelesener Bilder pro Sekunde ist 31.4 Hz. Der PILATUS 2M wurde speziell fu¨r KWRS-Experimente angefertigt. Eindimensionale tomographische Rekonstruktion von KWRS-Bildern wird am Beispiel vonAluminiumoxid-tauchbeschichtetenPolyamid6Filamentendemonstriert. DieProbe wirdmittelseinemfokussiertenSynchrotronstrahlvon5×20µm2(FWHM)aufProbenh¨ohe abgetastet. DierekonstruierteSequenzderKWRS-BilderwiederspiegeltdielokaleA¨nderung der Nanostruktur entlang dem Radius der Probe. iv Contents 1. Introduction 1 2. X-ray 3 2.1. Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.1. X-ray tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.2. Synchrotron light source . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3. Brilliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3. Interaction with matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1. Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2. Absorption and Fluorescence . . . . . . . . . . . . . . . . . . . . . 10 2.3.3. Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.4. Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4. Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.1. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2. Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3. PILATUS 17 3.1. Semiconductor hybrid pixel detectors . . . . . . . . . . . . . . . . . . . . . 17 3.1.1. Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2. Bump bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3. Readout Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2. The PILATUS 2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1. Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.2. Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.4. Readout modes and frame rates. . . . . . . . . . . . . . . . . . . . 23 3.2.5. Calibration and corrections . . . . . . . . . . . . . . . . . . . . . . 23 3.2.6. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.7. Detector comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4. Scientific Application 29 4.1. Polymer filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1. Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2. Melt spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.3. Filament structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 v Contents 4.2. Small-angle X-ray scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1. Magic square of scattering . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2. Polydisperse two-phase system . . . . . . . . . . . . . . . . . . . . 32 4.2.3. Isotropic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.4. Anisotropic scattering . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.5. Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.6. Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3. SAXS with the PILATUS 2M . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4. One-dimensional tomography of SAXS images . . . . . . . . . . . . . . . . 35 4.5. cSAXS beamline X12SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6. Article I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5. Outlook 47 A. PILATUS publications 49 A.1. Article II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A.2. Article III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 List of Tables 67 List of Figures 69 Bibliography 71 Curriculum vitae and list of publications 75 Acknowledgements 79 vi 1. Introduction Semiconductor detectors for nuclear radiation and particles have experienced a rather rapid development in the last few years. In particular, the development of position- sensitive detectors was initiated by experimental particle physics, which required detec- tors capable of measuring particle tracks with approximately 10 µm precision that at the same time could cope with high rates. The development of detectors with these properties was made possible by the adapta- tion of technologies used in microelectronics for the fabrication of silicon detectors. The introduction of silicon strip detectors marked the start to a revolution of experimental techniques of particle physics including the development of low-noise–low-power analog microelectronics for the readout of semiconductor detectors. It was soon realized that this technology could be transfered to other experimental fields involving detection of ionizing radiation. The here presented PILATUS detector system for synchrotron ap- plications is a spin-off of the silicon hybrid pixel detector development at Paul Scherrer Institut (PSI) for the compact muon solenoid (CMS) experiment at the large hadron collider (LHC) at Cern [1]. PILATUS stands for pixel apparatus for the SLS1. It is a single-photon counting silicon hybrid pixel detector which has been developed by the SLS Detectors Group at PSI since 1998 for protein crystallography. After testing the feasibility of the concept by means of test structures, the PILATUS I chip was designed in a 0.8 µm DMILL process [2]. Despite some design flaws the chip was functional. Several single-module detectors, consisting of 16 readout chips and a sensor, and a 1 megapixel detector (PILATUS 1M) forproteincrystallography,consistingof6×3modules,werebuiltandcalibratedstarting in 2003 [3, 4]. The design of the readout chip was improved and instead of a DMILL, a 0.25 µm UMC process was used for the PILATUS II chip which was available by the end of 2004. The PILATUS II readout chip is superior compared to its predecessor amongst others in stability, pixel size, total number of pixels per chip and counter depth. The readout chip was tested and characterized [5]. Single-module detectors (PILATUS 100K) were built for a wide range of applications. Two large area prototype-detectors were fabricated for beamlines at the SLS. First, the PILATUS 6M with an array of 6×5 modules was accomplished and commissioned for the protein crystallography beamline X06SA where it is successfully operated [6]. The second area detector was the PILATUS 2M, which was custom built for the cSAXS beamline X12SA as further described in this thesis. 1The Swiss light source (SLS) is a third generation synchrotron light source at PSI. 1 1. Introduction Besides the SLS Detectors Group other groups have developed semiconductor hybrid pixel detectors for X-ray applications [7]. The most prominent ones among them are Medipix [8] and XPAD [9]. Nevertheless, PILATUS have been the only semiconductor hybrid pixel detectors comprising large module arrays so far. Small-angle X-ray scattering (SAXS) studies date from the classical works of A. Guinier in 1938. During further development of the theoretical and experimental fundamentals of the method, the potential was shown for applying it for determination of the general structural characteristics of various types of highly dispersed systems. The develop- ment of synchrotron sources, position-sensitive detectors and the use of computers made further refinement and new progress of the method feasible. In particular since the development of highly brilliant synchrotron light sources, a lim- iting factor in SAXS experiments has frequently been the insufficient performance of the employed detector. Small dynamic range, dark and readout noise are essentially compromising the obtainable resolution in reciprocal space. Low detection efficiency inhibits measurements of weakly scattering samples which suffer from radiation damage. Long readout times prolongate scanning experiments considerably and complicate time resolved measurements. Depending on the experimental setup and the wave length of the applied X-rays, SAXS exhibits information about the samples nanostructure between 1 nm and 1 µm. For example liquids, dispersions of alloys, powders and glasses, features of aggregated poly- mer chains or biological macromolecules are subjected to its analysis. SAXS is not a common imaging technique. There is not even a direct way to reconstruct the structure from SAXS data. These data must be interpreted or analyzed with the proper analysis strategy. This thesis covers two major topics in three chapters. Chapter 2 gives a brief introduc- tion into generation of X-rays, their interaction with matter and X-ray detectors. The PILATUS detector system is adressed in chapter 3. The PILATUS 2M detector, which has been produced in the frame of this work, and results regarding detector calibration and characterization are presented. Chapter 4 is dedicated to a scanning microbeam SAXS experiment on polymer filaments and the corresponding data analysis. It also contains a reprint of a submitted article describing the experiment, data processing and analysis, and the obtained results. Reprints of two published articles regarding system description,characterization,calibrationandperformanceofthePILATUSdetectorsare added in appendix A. 2 2. X-ray This chapter is an introduction to the field of structure analysis by the means of X- rays. It is not meant to cover all aspects of the subject in detail but to be a basis for the subsequent chapters. The discovery of X-rays and common X-ray sources are presented in §2.1 and §2.2. The introduction to X-ray interaction with matter in §2.3 is focussed on the basics required for chapter 3 and 4. Detailed treatment of the topic and derivation of the presented formulae are found in e.g. [10, 11, 12, 13, 14, 15, 16]. A short introduction to X-ray detectors is presented in §2.4. Therein the most important detectorcharacteristicsandaselectionofthemostcommonintensitymeasuringdetectors are given. 2.1. Discovery Wilhelm Conrad R¨ontgen was the first scientist to observe and record X-rays, first finding them on November 8, 1895. He had been experi- menting with a set of gas discharge tubes and was surprised to find a flickering image, cast by his instruments and separated from them by some distance. He knew that the image he saw was not created by the fast electrons as they could not penetrate air for any significant dis- tance. After some considerable investigation, he named the new rays ”X” to indicate they were unknown. 2.2. Production Figure 2.1.: W.C.Ro¨ntgen Until the visual observation of synchrotron radiation in 1947, X-rays were generated with X-ray tubes similar to the models used by R¨ontgen. 2.2.1. X-ray tube The most widely used model is the hot cathode tube by William Coolidge in 1913. In a vacuum glass tube (cf. Fig. 2.2) electrons are emitted by the thermionic effect from a tungsten filament which is heated by an electric current (I). The filament is the cathode of the tube. A high voltage potential (U) between cathode and anode accelerates the electrons (e−) towards the anode. The electrons hit the anode which emits X-rays (γ). TheemissionspectrumofanX-raytubeisgivenbybremsstrahlung, characteristic radia- tion and absorption (cf. Fig. 2.3). Bremsstrahlung arises from the decelerated electrons 3
Description: