ebook img

PIEZOELECTRIC HYDRAULIC HYBRID ACTUATOR FOR A POTENTIAL SMART ROTOR PDF

317 Pages·2002·4.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PIEZOELECTRIC HYDRAULIC HYBRID ACTUATOR FOR A POTENTIAL SMART ROTOR

ABSTRACT TitleofDissertation: PIEZOELECTRICHYDRAULICHYBRID ACTUATORFORAPOTENTIALSMARTROTOR APPLICATION JayantSirohi,DoctorofPhilosophy,2002 Dissertation directedby: ProfessorInderjitChopra DepartmentofAerospaceEngineering A piezoelectric hydraulic hybrid actuator is proposed as a potential actuator for a trailing edge flap on a smart rotor. Piezoceramics are very attractive for the smart rotor conceptduetotheirhighenergydensityandelectro-mechanicalcoupling. Tooptimally designsystemsbasedonpiezoceramicactuatorsandsensors,accuratepredictionoftheir response and power consumption is necessary. However, at present, experimental data aswell as analytical tools in this regardare limited. Additionally,actuation capabilities ofconventionalpiezoceramicactuatorsareoftenlimitedbytheirsmallstroke. In order to address this issue, detailed experiments were conducted on PZT-5H piezoceramicsheetelementstoidentifytheiractuation,sensingandpowerconsumption characteristics. The response of PZT-5H sheet actuators was measured under a variety of mechanical loadings and electrical conditions. Using this experimental data, a simple empirical model predicting the hysteretic free strain behavior of a PZT-5H sheet was developed. Calibration of piezoelectric strain sensors was performed along with the theoretical derivation and experimental validation of shear lag and transverse sensitivity correction factors. Power consumption of piezoceramic actuators was modeled and experimentally validated. Empirical correction factors to account for the nonlinear variation of material properties with applied electric field were identified. Additionally,thepossibilityofreducingthemagnitudeofcurrentdrawnbytheactuator wasinvestigatedinconjunctionwiththenoveluseofapseudo-inductor. Inordertoobtainhigheroutputstrokelevelsthanthatofconventionalpiezoceramic actuators, a hybrid device combining piezoceramic actuation and hydraulic power transmission was investigated. A prototype was designed to meet the requirements of a trailing edge flap on a section of a full scale MD900 rotor blade. The prototype was fabricated and tested, specifically concentrating on high pumping frequency operation. ThedevicewasactuatedbytwoP-804.10piezostacksinseries,whichhadatotallength of 36 mm and cross-sectional area 10 mm2. The device was tested up to a pumping frequency of 1 kHz, and achieved its maximum flow rate at a frequency of 300 Hz. Under uni-directional actuation, a blocked force of 33 lbs and a no-load velocity of 1.2 in/sec was measured. Under bi-directional actuation, at a frequency of 5 Hz, the amplitude of the output displacement was measured to be 32 mils under no external load, dropping to 15 mils under an external spring load of 180 lbs/in. The no-load outputdisplacementamplitudedropsto12milsatafrequencyof10Hz. It can be concluded that while the present prototype meets the requirements for a trailing edge flap actuator in terms of blocked force and quasi-static stroke, it does not have adequate bandwidth. In order to satisfy the bandwidth requirements, the flow rate athighpumpingfrequenciesneedstobeimproved. PIEZOELECTRICHYDRAULICHYBRIDACTUATORFORAPOTENTIAL SMARTROTORAPPLICATION by JayantSirohi DissertationsubmittedtotheFacultyoftheGraduateSchoolofthe UniversityofMaryland,CollegeParkinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy 2002 AdvisoryCommittee: ProfessorInderjitChopra,Chair/Advisor AssociateProfessorDarryllJ.Pines AssociateProfessorNormanM.Wereley AssistantProfessorChrisCadou ProfessorAmrM.Baz,Dean’sRepresentative (cid:176)c Copyrightby JayantSirohi 2002 DEDICATION ThisworkisdedicatedtoLordGanapathi,andtomyGrandparents,who couldnotwaittoseeitcomplete ii ACKNOWLEDGEMENTS I would like to express my gratitude to my advisor, Professor Inderjit Chopra for his patient and inspiring guidance over the course of my graduate study. While giving me enormous freedom to conduct my research, he also never hesitated to point out the correct way to do things, and to provide important inputs when I did not see my way clearly. It is to this combination of freedom and direction that I attribute the large amountofknowledgeIhavegainedoverthepastfewyears. Iamalsogreatlyindebtedtotheothermembersofmythesiscommittee: Dr. Darryll Pines,Dr. NormanWereley,Dr. AmrBazandDr. ChrisCadoufortheirtimeandeffort, andforprovidingvaluableinsightsintomyresearch. SpecialthanksareduetoDr. Pines andDr. Wereleyfortheencouragementtheyhavegivenmeoverthepastfewyears. I am very thankful for the existence of my ’family away from home’: Anand, Kashyap, Nagarajan, Nitin, Prakash and Lakshmi for their companionship and for everythingelse;someofthemhavebeenwithmeeversinceIstartedgraduateschool. I have also benefitted greatly from the excellent companionship of my colleagues at the Alfred Gessow Rotorcraft Center. Many thanks to the old-timer Paul and not- quite-as-old-timers Ashish and Harsha for all our enlightening technical discussions, as well as the good times spent together both inside and outside the Patterson building. JinhyeongYoo,TaeohLee,AndyBernhardandNikhilKoratkarwereinvaluablesources ofinformation,helpandsupport,andIlearntalotfromthem. Manythanksarealsodue toBernieLaFranceandMr. LeeoftheMachineShopforalltheirhelpandenthusiasm. iii I would also like to add that I can never really acknowledge my parents adequately, especially in such a short space. Suffice to say that they are really the reason for the existence of this work, and also for what I am today. Without them, I would have probablybeeninanentirelydifferentprofession. iv TABLEOFCONTENTS ListofTables 10 ListofFigures 11 Chapter1 Introduction 1 1.1 Backgroundandproblemstatement . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Helicoptervibrationandnoise. . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Passiveisolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Activevibrationcontrolschemes . . . . . . . . . . . . . . . . . . . 5 1.2.3 Activevibrationcontrol: Controlsurfaces . . . . . . . . . . . . . 8 1.2.4 Primaryflightcontrols: Swashplatelessrotor. . . . . . . . . . . . 10 1.3 Smartrotorconcept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Roleofsmartstructuresandactivematerialsinthesmartrotor 13 1.3.2 Activematerialactuatorsandsensors . . . . . . . . . . . . . . . . 13 1.4 Smartactuatorsusedinactiverotors . . . . . . . . . . . . . . . . . . . . . . 17 1.4.1 Modelscaleactiverotors . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.2 Fullscaleactiverotors . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 Motivationofthepresentresearch . . . . . . . . . . . . . . . . . . . . . . . 23 1.6 Objectivesofthepresentresearch . . . . . . . . . . . . . . . . . . . . . . . 28 1.7 Outlineofthedissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 v 1.8 Contributionsofthepresentwork . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter2 PiezoceramicSheetActuators 41 2.1 Basicactuationmechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 Piezoelectricconstitutiverelations . . . . . . . . . . . . . . . . . . . . . . . 44 2.3 Experimentalsamplepreparationandcycling . . . . . . . . . . . . . . . . 47 2.4 Behaviorunderstaticexcitationfields . . . . . . . . . . . . . . . . . . . . . 49 2.4.1 Staticfreestrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4.2 Effectofexternalstresses . . . . . . . . . . . . . . . . . . . . . . . 50 2.4.3 Drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Behaviorunderdynamicexcitationfields . . . . . . . . . . . . . . . . . . . 55 2.5.1 Strainhysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.2 Dynamicstrainresponse . . . . . . . . . . . . . . . . . . . . . . . . 57 2.5.3 EffectofDCbias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.6 Depolingbehavioranddielectricbreakdown . . . . . . . . . . . . . . . . . 60 2.7 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter3 PiezoelectricSensors 77 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2 Basicsensingmechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.1 PZTsensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.2 PVDFsensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3 SensorCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1 Experimentalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.2 Conversionofvoltageoutputtostrain . . . . . . . . . . . . . . . . 83 3.3.3 Signalconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4 Correctionfactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 vi 3.4.1 Poisson’sratioeffect . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4.2 Shearlageffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.6 Generaloperatingconsiderations . . . . . . . . . . . . . . . . . . . . . . . . 93 3.6.1 Effectofsensortransverselength . . . . . . . . . . . . . . . . . . . 93 3.6.2 Effectoftemperatureonsensorcharacteristics. . . . . . . . . . . 94 3.7 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Chapter4 PowerConsumptionofPiezoelectricActuators 105 4.1 Electro-mechanicalimpedanceapproach . . . . . . . . . . . . . . . . . . . 106 4.1.1 Electricalimpedanceofafreeactuator . . . . . . . . . . . . . . . 106 4.1.2 Electro-mechanicalimpedanceoftheactuator . . . . . . . . . . . 108 4.1.3 Mechanicalimpedanceofthestructure . . . . . . . . . . . . . . . 109 4.1.4 Electro-mechanical impedance of the actuator-structure combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2 TheoryofL-Coscillatorcircuits . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3 Developmentofnon-idealcircuitbehavior . . . . . . . . . . . . . . . . . . 115 4.3.1 Case(I): R =R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 l c 4.3.2 Case(II): R =0,R (cid:54)=0 . . . . . . . . . . . . . . . . . . . . . . . . 119 l c 4.3.3 Case(III): R (cid:54)=R (cid:54)=0 . . . . . . . . . . . . . . . . . . . . . . . . . 119 c l 4.4 Implementationofthecurrentreductioncircuit . . . . . . . . . . . . . . . 120 4.5 Implementationofapseudo-inductor . . . . . . . . . . . . . . . . . . . . . 122 4.6 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.7 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Chapter5 PiezoelectricHydraulicHybridActuator: DesignandDevelopment 144 5.1 Piezoelectrichydraulicactuationconcept . . . . . . . . . . . . . . . . . . . 146 vii

Description:
piezoceramic sheet elements to identify their actuation, sensing and power .. 7.2.3 Effect of pumping frequency and piezostack driving method . novel Magnetic Shape Memory Alloy actuator. Note that for a free PZT actuator, though the actuator impedance ZA is finite, the Technical manual.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.