ebook img

Piezoelectric Energy Harvesting PDF

402 Pages·2011·27.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Piezoelectric Energy Harvesting

P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome PIEZOELECTRIC ENERGY HARVESTING Piezoelectric Energy Harvesting, First Edition. Alper Erturk and Daniel J. Inman. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-68254-8 P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome PIEZOELECTRIC ENERGY HARVESTING AlperErturk GeorgiaTech,USA DanielJ.Inman VirginiaTech,USA A John Wiley and Sons, Ltd., Publication P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome Thiseditionfirstpublished2011 (cid:1)c 2011JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto reusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthorstobeidentifiedastheauthorsofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright, DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespective owners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook.Thispublicationisdesignedto provideaccurateandauthoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstandingthat thepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired, theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Erturk,Alper. Piezoelectricenergyharvesting/AlperErturk,DanielJ.Inman. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-68254-8(hardback) 1.Piezoelectrictransducers. 2.Electricgenerators. 3.Piezoelectricity. I.Inman,D.J. II.Title. TK7872.P54E782011 621.31(cid:1)3–dc22 2010046394 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. PrintISBN:978-0-470-68254-8 E-PDFISBN:978-1-119-99116-8 O-BookISBN:978-1-119-99115-1 E-PubISBN:978-1-119-99135-9 Setin10/12ptTimesbyAptaraInc.,NewDelhi,India P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome Theseoscillationsarisefreely,andIhavedeterminedvarious conditions, andhaveperformedagreatmanybeautiful experimentsontheposition oftheknotpointsandthepitchof thetone,whichagreebeautifully withthetheory. —DanielBernoulli (from alettertoLeonhardEuler)1 Wehavefoundanewmethodforthedevelopmentofpolar electricityinthesesamecrystals,consistinginsubjectingthem tovariationsinpressurealongtheirhemihedralaxes. —PierreandPaul-JacquesCurie (from thepaperannouncing theirdiscovery)2 1InTimoshenko,S.P.,1953,HistoryofStrengthofMaterials(withabriefaccountofthehistoryoftheoryof elasticityandtheoryofstructures),McGraw-Hill,NewYork. 2In Cady, W.G., 1946, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical PhenomenainCrystals,McGraw-Hill,NewYork. P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome Contents AbouttheAuthors xvii Preface xix 1 IntroductiontoPiezoelectricEnergyHarvesting 1 1.1 Vibration-BasedEnergyHarvestingUsingPiezoelectricTransduction 1 1.2 AnExampleofaPiezoelectricEnergyHarvestingSystem 4 1.3 MathematicalModelingofPiezoelectricEnergyHarvesters 6 1.4 SummaryoftheTheoryofLinearPiezoelectricity 9 1.5 OutlineoftheBook 12 References 14 2 BaseExcitationProblemforCantileveredStructuresandCorrectionof theLumped-ParameterElectromechanicalModel 19 2.1 BaseExcitationProblemfortheTransverseVibrations ofaCantileveredThinBeam 20 2.1.1 ResponsetoGeneralBaseExcitation 20 2.1.2 Steady-StateResponsetoHarmonicBaseExcitation 25 2.1.3 Lumped-ParameterModeloftheHarmonicBase ExcitationProblem 26 2.1.4 ComparisonoftheDistributed-Parameterandthe Lumped-ParameterModelPredictions 29 2.2 CorrectionoftheLumped-ParameterBaseExcitationModel forTransverseVibrations 31 2.2.1 CorrectionFactorfortheLumped-ParameterModel 31 2.2.2 EffectofaTipMassontheCorrectionFactor 32 2.3 ExperimentalCaseStudiesforValidationoftheCorrectionFactor 35 2.3.1 CantileveredBeamwithoutaTipMassunderBaseExcitation 35 2.3.2 CantileveredBeamwithaTipMassunderBaseExcitation 39 2.4 BaseExcitationProblemforLongitudinalVibrationsandCorrectionof itsLumped-ParameterModel 39 2.4.1 AnalyticalModalAnalysisandSteady-StateResponseto HarmonicBaseExcitation 40 2.4.2 CorrectionFactorforLongitudinalVibrations 42 P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome viii Contents 2.5 CorrectionFactorintheElectromechanicallyCoupled Lumped-ParameterEquationsandaTheoreticalCaseStudy 43 2.5.1 AnElectromechanicallyCoupledLumped-ParameterModel forPiezoelectricEnergyHarvesting 43 2.5.2 CorrectionFactorintheElectromechanicallyCoupled Lumped-ParameterModelandaTheoreticalCaseStudy 45 2.6 Summary 46 2.7 ChapterNotes 46 References 47 3 AnalyticalDistributed-ParameterElectromechanicalModelingof CantileveredPiezoelectricEnergyHarvesters 49 3.1 FundamentalsoftheElectromechanicallyCoupled Distributed-ParameterModel 49 3.1.1 ModelingAssumptionsandBimorphConfigurations 49 3.1.2 CoupledMechanicalEquationandModalAnalysis ofBimorphCantilevers 51 3.1.3 CoupledElectricalCircuitEquationofaThinPiezoceramic LayerunderDynamicBending 57 3.2 SeriesConnectionofthePiezoceramicLayers 59 3.2.1 CoupledBeamEquationinModalCoordinates 60 3.2.2 CoupledElectricalCircuitEquation 60 3.2.3 Closed-FormVoltageResponseandVibrationResponse atSteadyState 61 3.3 ParallelConnectionofthePiezoceramicLayers 63 3.3.1 CoupledBeamEquationinModalCoordinates 63 3.3.2 CoupledElectricalCircuitEquation 64 3.3.3 Closed-FormVoltageResponseandVibrationResponse atSteadyState 64 3.4 EquivalentRepresentationoftheSeriesandtheParallel ConnectionCases 65 3.4.1 ModalElectromechanicalCouplingTerms 66 3.4.2 EquivalentCapacitanceforSeriesandParallelConnections 66 3.4.3 EquivalentRepresentationoftheElectromechanicalEquations 67 3.5 Single-ModeElectromechanicalEquationsforModalExcitations 68 3.6 Multi-modeandSingle-ModeElectromechanicalFRFs 69 3.6.1 Multi-modeElectromechanicalFRFs 70 3.6.2 Single-ModeElectromechanicalFRFs 71 3.7 TheoreticalCaseStudy 71 3.7.1 PropertiesoftheBimorphCantilever 72 3.7.2 FrequencyResponseoftheVoltageOutput 73 3.7.3 FrequencyResponseoftheCurrentOutput 76 3.7.4 FrequencyResponseofthePowerOutput 78 3.7.5 FrequencyResponseoftheRelativeTipDisplacement 81 3.7.6 ParallelConnectionofthePiezoceramicLayers 83 3.7.7 Single-ModeFRFs 87 P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome Contents ix 3.8 Summary 90 3.9 ChapterNotes 90 References 94 4 ExperimentalValidationoftheAnalyticalSolutionfor BimorphConfigurations 97 4.1 PZT-5HBimorphCantileverwithoutaTipMass 97 4.1.1 ExperimentalSetupandGuidelinesforTestinganEnergyHarvester 97 4.1.2 ValidationoftheElectromechanicalFRFsforaSetofResistors 103 4.1.3 ElectricalPerformanceDiagramsattheFundamental Short-CircuitandOpen-CircuitResonanceFrequencies 107 4.1.4 VibrationResponseDiagramsattheFundamental Short-CircuitandOpen-CircuitResonanceFrequencies 110 4.2 PZT-5HBimorphCantileverwithaTipMass 111 4.2.1 ExperimentalSetup 111 4.2.2 ValidationoftheElectromechanicalFRFsforaSetofResistors 113 4.2.3 ElectricalPerformanceDiagramsattheFundamental Short-CircuitandOpen-CircuitResonanceFrequencies 114 4.2.4 VibrationResponseDiagramsattheFundamental Short-CircuitandOpen-CircuitResonanceFrequencies 119 4.2.5 ModelPredictionswiththePointMassAssumption 119 4.2.6 PerformanceComparisonofthePZT-5HBimorphwithand withouttheTipMass 121 4.3 PZT-5ABimorphCantilever 122 4.3.1 ExperimentalSetup 122 4.3.2 ValidationoftheElectromechanicalFRFsforaSetofResistors 124 4.3.3 ComparisonoftheSingle-ModeandMulti-mode ElectromechanicalFRFs 125 4.4 Summary 128 4.5 ChapterNotes 128 References 130 5 DimensionlessEquations,AsymptoticAnalyses,andClosed-Form RelationsforParameterIdentificationandOptimization 131 5.1 DimensionlessRepresentationoftheSingle-Mode ElectromechanicalFRFs 132 5.1.1 ComplexForms 132 5.1.2 Magnitude–PhaseForms 132 5.1.3 DimensionlessForms 133 5.2 AsymptoticAnalysesandResonanceFrequencies 134 5.2.1 Short-CircuitandOpen-CircuitAsymptotesoftheVoltageFRF 134 5.2.2 Short-CircuitandOpen-CircuitAsymptotesoftheTip DisplacementFRF 135 5.2.3 Short-CircuitandOpen-CircuitResonanceFrequenciesof theVoltageFRF 136 P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome x Contents 5.2.4 Short-CircuitandOpen-CircuitResonanceFrequenciesof theTipDisplacementFRF 136 5.2.5 ComparisonoftheShort-CircuitandOpen-Circuit ResonanceFrequencies 137 5.3 IdentificationofMechanicalDamping 138 5.3.1 IdentificationoftheModalMechanicalDampingRatiofrom theVoltageFRF 138 5.3.2 IdentificationoftheModalMechanicalDampingRatiofrom theTipDisplacementFRF 139 5.4 IdentificationoftheOptimumElectricalLoadforResonanceExcitation 139 5.4.1 ElectricalPowerFRF 139 5.4.2 OptimumValuesofLoadResistanceattheShort-Circuitand Open-CircuitResonanceFrequenciesoftheVoltageFRF 140 5.5 IntersectionoftheVoltageAsymptotesandaSimpleTechniqueforthe ExperimentalIdentificationoftheOptimumLoadResistance 141 5.5.1 OntheIntersectionoftheVoltageAsymptotesfor ResonanceExcitation 141 5.5.2 ASimpleTechniquefortheExperimentalIdentificationofthe OptimumLoadResistance 142 5.6 VibrationAttenuation/AmplificationfromtheShort-Circuitto Open-CircuitConditions 143 5.7 ExperimentalValidationforaPZT-5HBimorphCantilever 144 5.7.1 IdentificationofMechanicalDamping 144 5.7.2 FundamentalShort-CircuitandOpen-Circuit ResonanceFrequencies 145 5.7.3 MagnitudeandPhaseoftheVoltageFRF 145 5.7.4 VoltageAsymptotesforResonanceExcitation 146 5.7.5 Powervs.LoadResistanceDiagramsandtheOptimumLoads 147 5.7.6 CommentontheOptimumLoadResistanceObtainedfrom theSimplifiedCircuitRepresentationsofaPiezoceramicLayer 147 5.8 Summary 148 5.9 ChapterNotes 149 References 150 6 ApproximateAnalyticalDistributed-ParameterElectromechanical ModelingofCantileveredPiezoelectricEnergyHarvesters 151 6.1 UnimorphPiezoelectricEnergyHarvesterConfiguration 152 6.2 ElectromechanicalEuler–BernoulliModelwithAxialDeformations 153 6.2.1 Distributed-ParameterElectromechanicalEnergyFormulation 153 6.2.2 SpatialDiscretizationoftheEnergyEquations 157 6.2.3 ElectromechanicalLagrangeEquations 159 6.2.4 SolutionoftheElectromechanicalLagrangeEquations 163 6.3 ElectromechanicalRayleighModelwithAxialDeformations 166 6.3.1 Distributed-ParameterElectromechanicalEnergyFormulation 166 6.3.2 SpatialDiscretizationoftheEnergyEquations 167 P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome Contents xi 6.3.3 ElectromechanicalLagrangeEquations 167 6.3.4 SolutionoftheElectromechanicalLagrangeEquations 168 6.4 ElectromechanicalTimoshenkoModelwithAxialDeformations 168 6.4.1 Distributed-ParameterElectromechanicalEnergyFormulation 168 6.4.2 SpatialDiscretizationoftheEnergyEquations 171 6.4.3 ElectromechanicalLagrangeEquations 174 6.4.4 SolutionoftheElectromechanicalLagrangeEquations 178 6.5 ModelingofSymmetricConfigurations 181 6.5.1 Euler–BernoulliandRayleighModels 181 6.5.2 TimoshenkoModel 182 6.6 PresenceofaTipMassintheEuler–Bernoulli,Rayleigh,and TimoshenkoModels 183 6.7 CommentsontheKinematicallyAdmissibleTrialFunctions 185 6.7.1 Euler–BernoulliandRayleighModels 185 6.7.2 TimoshenkoModel 186 6.8 ExperimentalValidationoftheAssumed-ModesSolutionfor aBimorphCantilever 187 6.8.1 PZT-5HBimorphCantileverwithoutaTipMass 187 6.8.2 PZT-5HBimorphCantileverwithaTipMass 189 6.9 ExperimentalValidationforaTwo-SegmentCantilever 191 6.10 Summary 194 6.11 ChapterNotes 195 References 196 7 ModelingofPiezoelectricEnergyHarvestingforVariousFormsof DynamicLoading 199 7.1 GoverningElectromechanicalEquations 199 7.2 PeriodicExcitation 202 7.2.1 FourierSeriesRepresentationofPeriodicBaseAcceleration 202 7.2.2 PeriodicElectromechanicalResponse 203 7.3 WhiteNoiseExcitation 204 7.3.1 RepresentationoftheBaseAcceleration 205 7.3.2 SpectralDensityandAutocorrelationFunctionofthe VoltageResponse 206 7.3.3 ExpectedValueofthePowerOutput 206 7.4 ExcitationDuetoMovingLoads 208 7.4.1 CantileveredPiezoelectricEnergyHarvesterLocatedonaBridge 208 7.4.2 ThinPiezoelectricLayerCoveringaRegionontheBridge 212 7.5 LocalStrainFluctuationsonLargeStructures 214 7.5.1 PowerOutputtoGeneralStrainFluctuations 215 7.5.2 Steady-StatePowerOutputtoHarmonicStrainFluctuations 216 7.5.3 StrainGageMeasurementsandStrainTransformations 217 7.6 NumericalSolutionforGeneralTransientExcitation 218 7.6.1 InitialConditionsinModalCoordinates 219 7.6.2 State-SpaceRepresentationoftheElectromechanicalEquations 219 P1:OTE/OTE/SPH P2:OTE fm JWST047-Erturk February8,2011 11:5 PrinterName:YettoCome xii Contents 7.7 CaseStudies 221 7.7.1 PeriodicExcitationofaBimorphEnergyHarvesterona MechanismLink 222 7.7.2 AnalysisofaPiezoceramicPatchforSurfaceStrain FluctuationsofaBridge 226 7.8 Summary 230 7.9 ChapterNotes 231 References 232 8 ModelingandExploitingMechanicalNonlinearitiesinPiezoelectric EnergyHarvesting 233 8.1 PerturbationSolutionofthePiezoelectricEnergyHarvestingProblem: theMethodofMultipleScales 234 8.1.1 LinearSingle-ModeEquationsofaPiezoelectricEnergyHarvester 234 8.1.2 ExactSolution 234 8.1.3 ResonanceApproximationoftheExactSolution 235 8.1.4 PerturbationSolution 236 8.2 MonostableDuffingOscillatorwithPiezoelectricCoupling 239 8.2.1 AnalyticalExpressionsBasedonthePerturbationSolution 239 8.2.2 State-SpaceRepresentationoftheGoverningEquationsfor NumericalSolution 241 8.2.3 TheoreticalCaseStudy 242 8.3 BistableDuffingOscillatorwithPiezoelectricCoupling:the PiezomagnetoelasticEnergyHarvester 247 8.3.1 Lumped-ParameterElectromechanicalEquations 247 8.3.2 Time-DomainSimulationsoftheElectromechanicalResponse 249 8.3.3 PerformanceComparisonofthePiezomagnetoelasticandthe PiezoelasticConfigurationsinthePhaseSpace 250 8.3.4 ComparisonoftheChaoticResponseandtheLarge-Amplitude PeriodicResponse 252 8.4 ExperimentalPerformanceResultsoftheBistablePiezomagnetoelastic EnergyHarvester 253 8.4.1 ExperimentalSetup 253 8.4.2 PerformanceResultsofthePiezomagnetoelasticConfiguration 254 8.4.3 ComparisonofthePiezomagnetoelasticandthePiezoelastic ConfigurationsforVoltageGeneration 256 8.4.4 OntheChaoticandtheLarge-AmplitudePeriodicRegionsof theResponse 256 8.4.5 BroadbandPerformanceComparison 258 8.4.6 VerticalExcitationofthePiezomagnetoelasticEnergyHarvester 260 8.5 ABistablePlateforPiezoelectricEnergyHarvesting 262 8.5.1 NonlinearPhenomenaintheBistablePlate 262 8.5.2 BroadbandPowerGenerationPerformance 265 8.6 Summary 267 8.7 ChapterNotes 268 References 270

Description:
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and c
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.