Piezoelectric and Acoustic Materials for Transducer Applications Ahmad Safari • E. Koray Akdog˘an Editors Piezoelectric and Acoustic Materials for Transducer Applications (cid:65)(cid:66)(cid:67) Editors AhmadSafari E.KorayAkdog˘an DepartmentofMaterialsScience DepartmentofMaterialsScience andEngineering andEngineering TheGlennHowattElectronicCeramics TheGlennHowattElectronicCeramics Laboratory Laboratory RutgersUniversity RutgersUniversity Piscataway,NJ08854 Piscataway,NJ08854 ConsultingEditor D.R.Vij ISBN:978-0-387-76538-9 e-ISBN:978-0-387-76540-2 LibraryofCongressControlNumber:2008927196 (cid:176)c 2008SpringerScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper springer.com Preface Theideaofcreatingabookofthisgenrecamewiththerealizationthattherewereno booksintheopenliteraturethatcombinedthematerialsaspectofpiezoelectricand acousticmaterialstogetherwith the principlesoftransducerdesignandrecentad- vancesinpiezoelectrictransducers,aswellastheirapplication.Bycombiningtopics suchasFundamentalsofPiezoelectricity(PartI),PiezoelectricandAcousticMate- rials for TransducerTechnology(Part II), Transducer Design Principles (Part III), and Piezoelectric Transducer Fabrication Methods (Part IV), our purpose was to provide a comprehensiveand self-consistent volume whereby the aforementioned lackofareferencebookintheopenliteraturecanberemedied. This book is comprised of four complementary sections. In Part I, a concise treatmentofpiezoelectricphenomenainsolidsispresented.Chapter1byAkdog˘an andSafariestablishesthesolid-statethermodynamicfoundationforferroelectricity asallpiezoelectricsusedin today’stransducertechnologyareferroelectric.Italso delineates the origin of very important concepts such as spontaneous polariza- tion, hysteresis loops, and piezostrain coefficients, which are needed to describe the macroscopic behavior of piezoelectrics. The chapter by Kholkin, Pertsev, and Goltsev (Chap.2) deals with the symmetry aspects of the piezoelectric effect in variousmaterials(singlecrystals,ceramics,andthinfilms).Itdefinesthethird-rank tensorofpiezoelectriccoefficientsinreferencetothefundamentalsofcrystallogra- phy,andthendiscussestheorientationdependenceofthelongitudinalpiezoelectric response in ferroelectric single crystals. Also, a concise discussion on the effec- tive piezoelectric constants of polydomain crystals, ceramics, and thin films and their dependence on crystal symmetry is provided. The domain-wall contribu- tion to the piezoelectric properties of ferroelectric ceramics and thin films is also given. Finally, the crystallographic principles of piezomagnetic, magnetoelectric, and multiferroic materials are presented. In Chap.3, Trolier-McKinstry presents a detailed description of the crystallochemical principles of ferroelectricity and piezoelectricityinsolids. Thediscussioncoversperovskites,tolerancefactors,do- mains and domain walls, the lead zirconate titanate (PZT) system, bismuth-layer v vi Preface structure,LiNbO ,tungstenbronzestructure,andSbSI,whichisthepointofdepar- 3 tureinthedevelopmentofpiezoelectriccomposites.Theemphasisisontheatomic arrangementsleadingtopolarizationanditsconsequencesonmaterialproperties. In Part II, three chapters are devoted to the most prominent piezoelectric and acoustic material systems currentlyeither in use or in developmentfor transducer applications. Damjanovic (Chap.4) gives a detailed account on lead-based fer- roelectrics/piezoelectrics, including PbTiO , PZT, relaxor ferroelectrics, and sin- 3 gle crystals. Therein, one could find an in-depth discussion of the morphotrophic phase boundary in the PZT system as well as the anisotropy in piezoelectric re- sponse in PbTiO . Systems with compositional modifications are treated as well, 3 wherehardandsoftferroelectricsareintroduced.Kosecetal.(Chap.5)givesafull overviewofthe(K,Na)NbO system,whichisthemostimportantlead-freeferro- 3 electricsystemwhosecompositionalmodificationshavegreatpromiseforapplica- tionsinthefuture.TheemphasisisontheprocessingofceramicssuchasKNbO , 3 NaNbO ,(K,Na)NbO ,andtherecentlydiscoveredKNN–LT–LSternarysystem, 3 3 therebyeffectivelyestablishingprocessing-propertyrelations.Also,awealthofma- terialpropertiesappertainingtothe(K,Na)NbO andrelatedsystemsareincluded 3 therein.Chap.6 by Takenakais on bismuth-basedferroelectricceramics, which is another lead-free system of utmost importance. The major focus there is on the Bi Ti O and its compositional modifications. Most importantly, Takenaka pro- 4 3 12 vides a very thorough treatment of grain orientation (texturing) of such lead-free ceramics, and discusses its consequenceson piezoelectricproperties. Cheng et al. (Chap.7)presentsaverydetailedoverviewoftheadvancesinelectromechanically activepolymersinthecontextofmechatronicsandartificialmuscle.Afteraconcise reviewoftheappertainingphenomenologyonelectromechanicalbehaviorinsolids, he and his colleagues present systems such as PVDF, P(VDF–TrFE) copolymer, andterpolymers.A verycomprehensivediscussiononphasetransitions,structure, andelectromechanicalresponseisprovidedalongwithsets ofmaterialproperties. InChap.8, Yamashitaetal. introducetherecentadvancesin acoustic lensmateri- alsandprovideasystematicaccountonrecentadvancesinsilicon-basedtechnolo- gies. Therein, the evolution of acoustic properties of silicon lenses are discussed fromtheprocessingvantagepoint,andthemostprominentdopantsforcomposite- makingare identified.PartIIendswith anotherchapteron acousticlensmaterials by Kondo, which summarizesthe use of carbon fiber compositesand how a wide rangeofacousticimpedancescanbefashionedfortransducerapplications. PartIIIisdevotedtotransducerdesignprinciples.First,Lethiecqetal.(Chap.10) discuss the design principles governing medical ultrasound transducers. The per- formance metrics of such transducers are introduced, operation principles of sin- gle element and transducer arrays are elaborated on, and the underlying acoustic principles are discussed. In Chap.11, Tressler discusses the design principles of transducersforsonarapplications.Variousin-airandunder-watercalibrationtech- niques are first presented, followed by various projector designs (ring, bender bar, flexural disks, flextensional, tonpilz) are introduced and appertaining design methodologies are elaborated on. Also included in that chapter are hydrophone design principles, including cylinder and sphere configurations. This section ends Preface vii withChap.12,whereHladky-Hennionprovidesacomprehensiveoverviewoffinite elementmodeling(FEM)principlesasappliedtopiezoelelectrictransducers.First, themathematicalfoundationsareprovidedthroughconstitutiveequations,thevari- ational principle, and appertaining functionals. Then, the application of the FEM method is demonstrated. Analysis methods such as static, harmonic, modal, and transientaregiven.Thechapterconcludeswithexamplesontheanalysisofcymbal transducersandcymbalarrays,and1–3compositetransducers. Part IV is on transducer fabrication methods. Therefore, it is inherently tied into applications as well since fabrication methods tend to be application spe- cific. InChap.13,Schoeneckeraddressesthe statusof piezoelectricfiber compos- itefabrication,andfocusesonthreetopics:thepreparationofsol–gel-derivedPZT fiber/polymer composites, the soft-mold method with high achievement potential forpreparingtailor-madecompositesandunderstandingthe structure–propertyre- lationships, and the preparation of powder suspension-derivedPZT fiber/polymer compositesasthetechnologicallyadvancedandcommercializedprocess.Therein, it is iterated that the use of piezoceramicfibersallows for the fabricationof high- qualityfibercomposites,surpassingperformancemetricsthatcannotbeachievedby theconventionaldiceandfilltechnique.BeigeandSteinhausen(Chap.14)discuss different types of composition gradient systems for bending actuators. The com- binationofhardandsoftpiezoelectricceramicsandelectrostrictiveandelectrocon- ductivematerialsareintroduced.Processingstrategiesaresummarizedandamathe- maticalmodelsformodelingofpolinginsuchcombinedsystemsarepresented.The resultsoftheoreticalanalysisarecomparedwithexperimentaldataforlead-freesys- temsbasedonbariumtitanate.InChap.15,Smayetal.presenttheadvancesmade intheuseofrobocastingsolidfreeformfabrication(SFF)techniquebasedonthedi- rectwritingofhighlyconcentratedcolloidalgels.Theyshowthatrobocastingoffers facileassemblyofcomplexthree-dimensionalgeometriesandabroadpalletofce- ramic,metallic,andpolymericmaterialsfromwhichdevicescanbedeveloped.Ex- amplesofPZTskeletonsfordirectuseortocreateepoxy-filledcompositessuitable forhydrostaticpiezoelectricsensorsaregiven.PZTcompositesof(3–3,3–2,3–1) connectivityaredemonstrated.Itisshownthatthefigureofmerit(d g )increases h h byupto60-foldcomparedwithbulkPZTinsuchcomposites.InChap.16,Jantunen etal.presentacomprehensiveoverviewofthegeneralpropertiesandrequirements of piezoelectric micropositioners. Special attention is paid to stiffness related to otheractuatorproperties,withgeneralrulesandexamples.Alsothecontrolandsen- sortechniquesrequiredtoavoidorminimizethenonlinearitiesofthepiezoelectric devicearediscussedindetail.Anditisshownthatinmicropositioningaprofound overall know–how about material properties, actuator design, and control, sensor and driving techniques are required in addition to an in-depth knowledge of ap- plicationrequirements.Finally,some commercialapplicationsutilizingpiezoelec- tric micropositionersare given as examples. Dog˜an and Uzgur (Chap.17) present a broadreviewof theapplicationofpiezoelectrictransducers.Piezoelectricactua- torsarecomparedwithmagneticallyactiveandthermallyactiveactuators,andthen piezoelectricactuatorsandtheirdesignandfabrication,especiallytraditionalpiezo- electric transducers with newly designed flextensional transducers, are compared. viii Preface Finally, application-related issues are discussed on Chap.18 by Shashank et al. provides strategies for the selection of the piezoelectric transducers based on the frequencyandamplitudeofthemechanicalstressinthecontextofenergyharvest- ing.Thefigureofmeritforthematerialselectionisshowntobedirectlyproportional tothe product(d ×g). Thecriterionformaximizationoftheproductisdiscussed indepth,andresultsarereportedonvariousdevicesutilizingpiezoelectricbimorph transducers.OrandChan(Chap.19)presentrecentadvancesinpiezocompositeul- trasonic transducersfor high-frequencywire bondingof semiconductorpackages. The principles of wire-bondingand appertainingchallenges are summarized. The use of 1–3 piezocomposite rings in such applications is shown, and the electro- mechanicalcharacteristicsarepresented.Thechapteralsoincludesasectiononthe evaluation of wire-bondingperformanceutilizing such transducers. Bassiri-Gharb (Chap.20)presentstheuseofpiezoelectricsinMEMSapplications.Inthatchapter, thepropertiesofAlN, ZnO,PZT,and PMN–PTfilmsare reviewed,andthe effect of substrate clamping is briefly discussed. Then fabrication and integration issues are addressed. Various applications of piezoelectrics, including AFM probe tips, RF switches, micromirrors, micropumps, and microvalvesare given. In Chap.21, Shungetal.discusshigh-frequencyultrasonictransducersandarrays.Afterathor- oughoverviewofthestateoftheart,LiNbO single-crystaltransducers,andPMN– 3 PTsingle-crystalneedletransducersforDopplerflowmeasurementsarepresented. Amultitudeoftransducerdesignsareshown(annulararrays,lineararrays,andtheir derivatives),andunderlyingprocessingissuesareelaboratedon.Thelastchapterof thesectionandthebookisonmicromachiningofpiezoelectrictransducersbyPap- palardoetal.(Chap.22).Thebasicprinciples,thefabricationprocesses,andsome modeling approaches of novel micromachined ultrasonic transducers (MUTs) are described.Itisshownthatthesetransducersutilizetheflextensionalvibrationofan array of micro-membranes called cMUT (capacitive MUT). It is also shown that goodechographicimagesofinternalorgansinthehumanbodyhavebeenobtained, demonstratingthe possibilitiesof this technologyto be utilizedin commercial1D and2Dprobesformedicalapplications. In conclusion,we thank all the contributingauthorsfor their greatzealand in- dustry in composingtheir respective chapters. Were it not for their willingness to participate in this exciting project, none that was accomplished could have been possible.Aprojectofthismagnitudecannotseethelightofdaywithoutaconstant sourceof encouragementand support.To thatend, we expressourgratefulnessto ourfamilies, friends,andcolleagues.Lastbutnotthe least, we thankSpringerfor givingusgreatflexibilityinregardtothesizeofthisvolume. Piscataway,NewJersey A.Safari E.K.Akdog˘an Contents Preface............................................................ v PartI FundamentalsofPiezoelectricity 1 ThermodynamicsofFerroelectricity............................ 3 E.KorayAkdog˘anandAhmadSafari 2 PiezoelectricityandCrystalSymmetry.......................... 17 A.L.Kholkin,N.A.Pertsev,andA.V.Goltsev 3 CrystalChemistryofPiezoelectricMaterials .................... 39 SusanTrolier-McKinstry PartII PiezoelectricandAcousticMaterialsforTransducerTechnology 4 Lead-BasedPiezoelectricMaterials ............................ 59 DraganDamjanovic 5 KNN-BasedPiezoelectricCeramics ............................ 81 MarijaKosec,BarbaraMalicˇ,AndrejaBencˇan,andTadejRojac 6 Bismuth-basedPiezoelectricCeramics.......................... 103 TadashiTakenaka 7 ElectropolymersforMechatronicsandArtificialMuscles .......... 131 ZhongyangCheng,QimingZhang,JiSu,andMarioElTahchi 8 Low-AttenuationAcousticSiliconeLensforMedicalUltrasonic ArrayProbes............................................... 161 Y.Yamashita,Y.Hosono,andK.Itsumi 9 Carbon-FiberCompositeMaterialsforMedicalTransducers....... 179 ToshioKondo ix x Contents PartIII TransducerDesignandPrinciples 10 PiezoelectricTransducerDesignforMedicalDiagnosisandNDE ... 191 MarcLethiecq,FranckLevassort,DominiqueCerton, andLouisPascalTran-Huu-Hue 11 PiezoelectricTransducerDesignsforSonarApplications .......... 217 JamesF.Tressler 12 FiniteElementAnalysisofPiezoelectricTransducers.............. 241 Anne-ChristineHladky-HennionandBertrandDubus PartIV PiezoelectricTransducerFabricationMethods 13 PiezoelectricFiberCompositeFabrication ...................... 261 AndreasScho¨necker 14 CompositionGradientActuators .............................. 289 RalfSteinhausenandHorstBeige 15 RobocastingofThree-DimensionalPiezoelectricStructures ........ 305 JamesE.Smay,BruceTuttle,andJosephCesaranoIII 16 Micropositioning............................................ 319 J.Juuti,M.Leinonen,andH.Jantunen 17 PiezoelectricActuatorDesigns ................................ 341 AydinDog˜anandErmanUzgur 18 PiezoelectricEnergyHarvestingusingBulkTransducers .......... 373 ShashankPriya,RachitTaneja,RobertMyers,andRashedIslam 19 PiezocompositeUltrasonicTransducersforHigh-FrequencyWire BondingofSemiconductorPackages ........................... 389 SiuWingOrandHelenLaiWaChan 20 PiezoelectricMEMS:MaterialsandDevices ..................... 413 NazaninBassiri-Gharb 21 High-FrequencyUltrasonicTransducersandArrays.............. 431 K.KirkShung,JonathanM.Cannata,andQifaZhou 22 MicromachinedUltrasonicTransducers ........................ 453 Massimo Pappalardo, Giosue Caliano, Alessandro S. Savoia, andAlessandroCaronti Index .............................................................479 Contributors E.K.Akdog˘an The Glenn Howatt Electronic Ceramics Laboratory,Departmentof Materials ScienceandEngineering,RutgersUniversity,Piscataway,NJ08854,USA N.Bassiri-Gharb GeorgeW.WoodruffSchoolofMechanicalEngineering, GeorgiaInstituteofTechnology,Atlanta,GA30332-0405,USA H.Beige InstituteofPhysics,Martin-Luther-Universita¨tHalle-Wittenberg, Friedemann-Bach-Platz6,06108Halle,Germany A.Bencˇan JozˇefStefanInstitute,Jamova39,1000Ljubljana,Slovenia G.Caliano Aculab–DepartmentofElectronics,University“RomaTre”,Roma,Italy J.M.Cannata NIHResourceonMedicalUltrasonicTransducerTechnology, DepartmentofBiomedicalEngineering,UniversityofSouthernCalifornia, LosAngeles,CA90089-1111,USA A.Caronti Aculab–DepartmentofElectronics,University“RomaTre”,Roma,Italy J.CeseranoIII SandiaNationalLaboratories,Albuquerque,NM87185,USA H.L.W.Chan Department of Applied Physics, The Hong Kong Polytechnic University, HungHom,Kowloon,HongKong xi
Description: