ebook img

Piezoelectric Actuators and Generators for Energy Harvesting PDF

189 Pages·2018·9.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Piezoelectric Actuators and Generators for Energy Harvesting

Innovation and Discovery in Russian Science and Engineering Sergey N. Shevtsov · Arkady N. Soloviev Ivan A. Parinov · Alexander V. Cherpakov Valery A. Chebanenko Piezoelectric Actuators and Generators for Energy Harvesting Research and Development Innovation and Discovery in Russian Science and Engineering Serieseditors CarlosBrebbia WessexInstituteofTechnology,Southampton,UnitedKingdom JeromeJ.Connor Department of Civil & Environmental Engineering, Massachusetts Institute of Technology,Cambridge,Massachusetts,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/15790 (cid:129) Sergey N. Shevtsov Arkady N. Soloviev (cid:129) Ivan A. Parinov Alexander V. Cherpakov Valery A. Chebanenko Piezoelectric Actuators and Generators for Energy Harvesting Research and Development SergeyN.Shevtsov ArkadyN.Soloviev RussianAcademyofSciences DonStateTechnicalUniversity SouthScientificCenteroftheRussian Rostov-on-Don,Russia AcademyofSciences Rostov-on-Don,Russia AlexanderV.Cherpakov I.I.VorovichMathematics,Mechanics IvanA.Parinov andComputerScienceInstitute I.I.VorovichMathematics,Mechanics SouthernFederalUniversity andComputerScienceInstitute Rostov-on-Don,Russia SouthernFederalUniversity Rostov-on-Don,Russia ValeryA.Chebanenko RussianAcademyofSciences SouthScientificCenteroftheRussian AcademyofSciences Rostov-on-Don,Russia ISSN2520-8047 ISSN2520-8055 (electronic) InnovationandDiscoveryinRussianScienceandEngineering ISBN978-3-319-75628-8 ISBN978-3-319-75629-5 (eBook) https://doi.org/10.1007/978-3-319-75629-5 LibraryofCongressControlNumber:2018935963 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpartof SpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface A great problem for modern science and modern techniques is the receiving, transformation,andstorageofenergyobtainedfromtheenvironmentandgenerated by working mechanisms and moving objects. While there is a fairly extensive scientificliteratureonR&Dandapplicationofenergy-harvestingdevices,significant breakthroughsinthisfieldofscience,technique,andtechnologyhavenotyetbeen achieved.Atpresent,investigationsareplannedintooptimalconstructionsthatallow obtaining maximum output characteristics of piezoelectric devices by using the specificgeometryofthegoodsandhighphysicalandmechanicalcharacteristicsof piezoelectric materials and composites, as well as the development of promising experimental, theoretical, and numerical methodsfor studying thesecomplextech- nicalsystems. This book presents some achievements and results in this field, obtained by the so-called Rostov Scientific School on Ferro-piezoelectricity. Investigations of the three-component systems, based on lead zirconate titanate (PZT), started in the Rostov State University (now Southern Federal University) at the end of the 1960s. Almost immediately, intensive studies of four- and five-component solid solutions were undertaken, and thereafter studies of six-component systems, based onPZTattheendofthe1990s.PiezoelectricCeramicRostovskaya(PCR)isawell- knownbrandthatoriginallypresenteditselfasPZT-typeceramics.Rostovscientists havedevelopedandmanufacturedmorethan100systemsofPCRovertime,based onPZTcompositionasonthebaseofotherferro-piezoelectricsolidsolutions.Many materials, composites, and devices were developed, researched, and manufactured by these scientists in Rostov-on-Don. They have published more 5,000 journal papers and books on these topics and have been granted more 200 Soviet, Russian, and international patents (see, for example, monographs [4–8, 20, 50, 64,120,130,135–139],andthereferencestherein). This book includes some of the latest results obtained by the scientists of the South Scientific Center of the Russian Academy of Sciences, Southern Federal University, and Don State Technical University (Rostov-on-Don). It also presents newapproachestoR&Dinpiezoelectricgeneratorsandactuatorsofdifferenttypes v vi Preface basedonthedevelopedoriginalconstructionsandmodernresearchintotheoretical, experimental,andnumericalmethodsofphysics,mechanics,andmaterialsscience. Improvedtechnical solutionsofthedevicesarepresented, whichdemonstrate high outputvaluesofvoltageandpower,allowingapplicationoftheseproductsinvarious areasofenergyharvesting. Thebookisdividedintosevenchapters. Chapter 1 considers a general overview of the problems of electro-elasticity in applicationtotheinvestigationofenergyharvesting,morespecificallytothestudy ofpiezoelectricgenerators(PEGs).Thischapterdiscussesconstitutiveequationsof electro-elasticityintensorform,andstatescorrespondingboundary-valueproblems. Mathematicalmodellingofcantileverandstacktypesofpiezoelectricgeneratorsare presentedindetail.Inparticular,weconsiderbimorphpiezoelectricstructureswith whole and partial covering of substrate by piezoelements. Numerous numerical results are presented for a broad spectrum of characteristics (in particular, first resonancefrequency,voltage,andoutputpower). Chapter 2 discusses the developed original set-ups for testing the above- mentioned harvesters, samples of piezoelectric generators, and also the corresponding experimental methods and original computer algorithms. Compari- sonsoftheobtainedanalyticalandfinite-elementresultswiththeexperimentaldata obtained by using the developed test set-ups, are presented and discussed with the goal of optimizing construction of piezoelectric generators of both types. Experi- mental,numerical,andcomparativeresultsareobtainedforcasesofdifferentkinds ofloading(harmonical,pulsed,andquasi-statical). Chapter3isdevotedtomathematicalmodelingoftheflexoelectriceffect,arising in unpolarized piezoceramics under mechanical (in particular, bending) loading. There is discussion of the developed original set-up for estimation of this effect and the obtained experimental results for flexo-electrical beam under three-point bending. We formulate a corresponding boundary-value problem and obtain a theoretical solution that allows us to perform numerical experiments. The results allow studying the possibility of obtaining an electrical response, caused by the flexoelectric effect in ferroelectric ceramic plates of a certain composition. The numerical results show the possibility of the appearance of an electric potential in an unpolarized piezoceramic beam and also allows us to make conclusions on qualitativeconstituentsofthetheoreticalmodelwiththeexperiment. Chapter 4 deals with the analytical and numerical modeling of the power of a high-stroke flex-tensional piezoelectric actuator, which consists of a high-power piezoelectric stack and polymeric composite shell, intended for amplification of the stroke. In order to overcome the principal drawback of the piezoelectric trans- ducers,whichisaverysmallstrokeatrelativelyhighoperatingforce,anoptimiza- tion problem is formulated and solved for the actuator’s construction. For simultaneous provision ofsufficient strokeand stiffness,allowingcounteraction of the external loads, the shape of the amplified shell is parameterized by the rational Beziercurves.Theirparameters(coordinatesandweightsofthecontrolpoints)are changediterativelybyageneticalgorithmaccordingtotheobjectivefunctionvalue, which is calculated by the finite element model of the transducer through varied geometryoftheshell. Preface vii Sincedamageanddefectshaveacrucialinfluenceonallpossiblecharacteristics oftheconsideredpiezoelectricharvesters,thesecondpartofthebookisdevotedto experimental-theoretical methods, computer simulation, and devices developed for the study and identification of defects in cantilever elastic rod constructions. Chapter5presentsthecurrentbackgroundforourstudiesinthisarea. Chapter 6 is devoted to the development of methods for identifying the param- eters of defects in an elastic cantilever with a notch, and theoscillation parameters are investigated in the context of dependence on the type of defect. The finite- elementcalculationofthemodalparametersoffull-bodymodelsofacantileverrod withdefectusingthefinite-elementmethodisperformedandtheoscillationformsof the model are presented. The dependencies of natural frequencies on the defect location and size are investigated. The most sensitive modes of oscillations are determinedwithrelation todependenceon thedefectsize atits different locations. Thecalculationofthedependencebetweenthedefect(notch)sizeofthecantilever rod of the full-body finite element model and the flexural rigidity of the elastic element is performed for the analytical model on the base of the dynamic equiva- lenceofmodels. Chapter 7 presents the measuring set-up that allows one to conduct technical diagnostics of rod constructions. It is based on the methods developed in the previous chapter. In addition, the results of the development and implementation of the algorithm of the calculation-experimental approach for the identification of defects in elements of cantilever structures are discussed. For this purpose, the original software and a laboratory information-measuring set-up have been devel- oped,whichprovideanautomatedcollectionofinformationonconstructionvibra- tionsandperformdiagnosticsofthedefects. TheauthorsofthebookespeciallythankV.A.AkopyanandE.V.Rozhkovfor participating in the development of experimental approaches and creating test setups. We also acknowledge the Russian Foundation for Basic Research and Russian Ministry of Education and Science, grants from which helped to perform thisresearch. This self-standing book, covering the necessary theoretical, experimental, and numericalmodelingapproaches,isaimedatawiderangeofstudents,engineers,and specialists interested and participating in R&D of modern energy-harvesting devices,thematerialsforthesedevices,thedevelopmentofphysicalandmathemat- icalmethodsfortheirstudy,andalsoexperimentalequipmentfordefinitionoftheir characteristics. Rostov-on-Don,Russia SergeyN.Shevtsov December,2017 ArkadyN.Soloviev IvanA.Parinov AlexanderV.Cherpakov ValeryA.Chebanenko Contents 1 MathematicalModelingofPiezoelectricGenerators. . . . . . . . . . . . . 1 1.1 GeneralFormulationoftheProblemofElectroelasticity. . . . . . . . 2 1.2 MathematicalModellingofCantilever-typePEGs. . . . . . . . . . . . . 4 1.2.1 StatementoftheProblemforCantilever-typePEGs. . . . . . 4 1.2.2 NumericalExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 MathematicalModellingofStack-typePEGs. . . . . . . . . . . . . . . . 26 1.3.1 StatementoftheProblemforStack-typePEGs. . . . . . . . . 26 1.3.2 NumericalExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ExperimentalModelingofPiezoelectricGenerators. . . . . . . . . . . . . 33 2.1 Cantilever-TypeGenerators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.1 DescriptionofTestSet-upandSamples. . . . . . . . . . . . . . 33 2.1.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.3 TheoryandExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2 Stack-TypeGenerators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.1 HarmonicLoading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.2 PulsedLoading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.3 Quasi-StaticLoading. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 MathematicalModelingofFlexoelectricEffect. . . . . . . . . . . . . . . . . 49 3.1 InvestigationofOutputVoltageinUnpolarizedCeramics. . . . . . . 49 3.1.1 SamplesforStudyandExperimentalProcedure. . . . . . . . . 49 3.1.2 ResultsoftheExperimentandDiscussion. . . . . . . . . . . . . 51 3.2 InvestigationoftheFlexoelectricEffect inUnpolarizedCeramics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 FormulationoftheProblemforFlexoelectricalBeam. . . . . 52 3.2.2 BoundaryConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.4 NumericalExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 ix x Contents 4 AmplifiedHigh-StrokeFlextensionalPZTActuator forRotorcraftApplication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 ModelingandNumericalOptimizationoftheActuatorShell. . . . . 66 4.3 ActuatorDesignandManufacture. . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 ActuatorStaticTests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5 NumericalandExperimentalTestsoftheActuator’s DynamicProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5 DefectsinRodConstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1 DiagnosisofDefectsandMonitoringofRodConstruction. . . . . . 81 5.2 ReconstructionofDefectParametersBasedonBeamModels. . . . 82 5.3 ReconstructionofDefectsBasedonFinite-ElementModeling. . . . 85 5.4 GoalsofFollowingStudy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6 IdentificationofDefectsinCantileverElasticRod. . . . . . . . . . . . . . . 89 6.1 MathematicalFormulationoftheProblemofDefect ReconstructioninCantilever. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 FiniteElementModelingofCantileverwithDefects andAnalysisofVibrationParameters. . . . . . . . . . . . . . . . .. . . . . 90 6.2.1 Full-BodyRodModelwithDefect. . . . . . . . . . . . . . . . . . 90 6.2.2 AnalysisofModalParametersofFull-Body ModelwithDefect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.3 ComparisonofModalParametersofOscillations withStress-StrainStateofFECantileverModel withVariousNotches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 AnalysisoftheVibrationParametersofCantilever withDefectsBasedontheAnalyticalModeling. . . . . . . . . . . . . . 106 6.3.1 IdentificationofCantileverRodDefects WithintheEuler–BernoulliModel. . . . . . . . . . . . . . . . . . 106 6.3.2 AnalysisofSensitivityofNaturalFrequenciestoSize andLocationofDefectinAnalyticalModeling. . . . . . . . . 111 6.4 MethodsofIdentifyingDefectsinCantilever. . . . . . . . . . . . . . . . 116 6.4.1 ComparisonofFinite-ElementandAnalyticalModels ontheBaseofDynamicEquivalence. . . . . . . . . . . . . . . . 119 6.4.2 ReconstructionofDefectParametersinCantilever. . . . . . . 122 6.5 InvestigationoftheFeaturesofResonanceModes ofCantileverwithDefect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5.1 ComparisonofOscillationModesofFE andAnalyticalModels. . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5.2 ChoiceofCharacteristicsforIdentificationofDefects inCantilever,BasedontheAnalysisofEigen-Forms ofBendingOscillations. . . . . . . . . . . . . . . . . . . . . . . . . . 128 Contents xi 6.5.3 IdentificationofCantileverDefectParameters, BasedontheAnalysisofEigen-Forms ofBendingOscillations. . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.4 AlgorithmoftheMethodforIdentifying theParametersofDefectsinCantilever. . . . . . . . . . . . . . . 138 6.5.5 IdentificationofDefectsinRodswithDifferent VariantsofFixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7 Set-upforStudyingOscillationParametersandIdentification ofDefectsinRodConstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.1 TechnicalDiagnosticsofDefectsinRodConstructions. . . . . . . . . 145 7.2 MeasuringSet-upforIdentificationofDefects inRodConstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2.1 TechnicalCapabilitiesoftheSet-up. . . . . . . . . . . . . . . . . 145 7.2.2 DevelopmentofStructuralParametersoftheSet-up. . . . . . 147 7.2.3 AlgorithmforMultiparametricIdentification ofDefectsinRodConstructions. . . . . . . . . . . . . . . . . . . . 148 7.2.4 TechniqueofCarryingOutTestMeasurements ofModalCharacteristicsoftheBeamConstruction. . . . . . 151 7.2.5 SoftwareforAutomationoftheMeasurements oftheOscillationParametersofBeamConstructions. . . . . 152 7.3 Calculation-ExperimentalApproachtoDetermination ofDefectsinCantilever-ShapedBeamConstruction. . . . . . . . . . . 157 7.3.1 DescriptionofStudiedObject. . . . . . . . . . . . . . . . . . . . . . 157 7.3.2 Full-ScaleExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.3.3 ApprobationofCalculation-TestApproach forDeterminationofCantileverBeamDefects. . . . . . . . . . 158 7.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Description:
This book presents new approaches to R&D of piezoelectric actuators and generators of different types based on established, original constructions and contemporary research into framework of theoretical, experimental, and numerical methods of physics, mechanics, and materials science. Improved techn
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.