UCLA UCLA Electronic Theses and Dissertations Title Piezoceramic Sensors/Actuators with Interdigitated Electrode Patterns Permalink https://escholarship.org/uc/item/0140h0bp Author Pisani, David McIntyre Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Piezoceramic Sensors/Actuators with Interdigitated Electrode Patterns A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mechanical and Aerospace Engineering by David McIntyre Pisani 2014 © Copyright by David McIntyre Pisani 2014 Abstract of the Dissertation Piezoceramic Sensors/Actuators with Interdigitated Electrode Patterns by David McIntyre Pisani Doctor of Philosophy in Mechanical and Aerospace Engineering University of California, Los Angeles, 2014 Professor Christopher S. Lynch, Chair Monolithic piezoelectric ceramic devices are well understood and employed in a wide variety of structural actuation and sensing applications. Over the last twenty years piezo- ceramic fiber composites with interdigitated electrodes (IDE) have fallen into favor. These piezocompositedeviceswithIDEhavebeenshowntobemoreconformal,durableandrespon- sive than conventional monolithic devices. One of the more prevalent piezocomposite devices with IDE is the Macro Fiber Composite (MFC) developed at the NASA-Langley Research Center. The MFC shows superior free strain actuation performance, manufacturability and reliability over conventional devices. WhiletheMFCboastssomeimprovedcharacteristicsoverconventionaldevices, theuseof IDE also introduces added complexity. Simple in design, the IDE causes nonuniform electric fields, large electric field gradients and increased hysteresis in the device. Characterization and modeling efforts of the MFC beyond a linear approximation have been limited. The majority of published work relies on experimental quantification and a heavy reliance on linear finite element analysis. The MFC has significant time dependent effects, conduction issues, creep, and other nonlinear effects that have not been explored. Thisstudyservesasanattempttorectifysomeofthepreviouslyoverlookedissuesofnon- linearity in piezocomposite actuators with IDE. As a baseline of comparison, the capability of a MFC to serve as a strain sensing/actuating rosette was compared to single crystal PMN- ii PT. It was found that increased hysteresis and creep caused the MFC to perform poorly by comparison. This spurred the process of seeking improved IDE designs. A twenty actuator study was performed using actuators with different electrode line widths and spacings. It was found that the hysteresis of an actuator with IDE could be reduced, but with the sacrifice of some of the free strain actuation. For accurate strain sensing/actuation, devices with large electrode line widths were found to show less hysteresis. For maximal free strain actuation, devices with small electrode line widths and large electrode spacing were found to have larger free strain actuation. The free strain frequency response was explored for the MFC, and custom devices were designed to mitigate some of the frequency dependence. The IDE devices were characterized using a dielectric finite element model and using a nonlinear ferroelectric finite element model. A phase field model was also developed to explore domain formation along electrode edges. iii The dissertation of David McIntyre Pisani is approved. Ertugrul Taciroglu William S. Klug Gregory P. Carman Christopher S. Lynch, Committee Chair University of California, Los Angeles 2014 iv Table of Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 History of IDE on Piezoceramic Fiber Composites . . . . . . . . . . . 2 1.1.2 Computational Modeling of Piezocomposites . . . . . . . . . . . . . . 7 1.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Piezocomposite Actuator Applications . . . . . . . . . . . . . . . . . . . . . 14 2.1 Piezoelectric Strain Rosettes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Modeling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Results, Comparison, and Discussion . . . . . . . . . . . . . . . . . . 21 2.2 Macro Fiber Composites as Sensors/Actuators . . . . . . . . . . . . . . . . . 25 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Polarization of Piezoceramics with IDE . . . . . . . . . . . . . . . . . . . . 37 3.1 Experimental Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1 Materials and Specimen Preparation . . . . . . . . . . . . . . . . . . 38 3.1.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 40 v 3.3 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1 Dielectric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.2 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.3 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Ferroelectric IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Experimental Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 Materials and Specimen Preparation . . . . . . . . . . . . . . . . . . 61 4.2.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.1 Linear FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.2 Micromechanical Model . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.3 Geometry and Boundary Conditions . . . . . . . . . . . . . . . . . . 77 4.5 Discussion and FEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.2 FEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Piezocomposite Actuator Frequency Dependency . . . . . . . . . . . . . . 91 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 Experimental Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.1 Materials and Specimen Preparation . . . . . . . . . . . . . . . . . . 92 vi 5.2.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4 Experimental Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 IDE Composition Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 Experimental Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.1 Materials and Specimen Preparation . . . . . . . . . . . . . . . . . . 120 6.2.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4 Experimental Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7 Phase Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.1 Phase Field Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 A Rosette Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 vii B Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B.1 Global Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 B.2 Volume Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 viii
Description: