EA39CH15-Pierrehumbert ARI 30March2011 14:58 Climate of the Neoproterozoic R.T. Pierrehumbert,1 D.S. Abbot,1 A. Voigt,2 and D. Koll3 g or 1DepartmentofGeophysicalSciences,UniversityofChicago,Chicago,Illinois60637; ws. email:[email protected] e vi 2Max-Planck-Institutfu¨rMeteorologie,20146Hamburg,Germany e alr 3DepartmentofEarthandPlanetarySciences,HarvardUniversity,Cambridge, u n Massachusetts02138 n a w.y. wnl wo m se ou d frnal eo ds wnloaor per oF 60. D2/13. 41 Annu.Rev.EarthPlanet.Sci.2011.39:417–60 Keywords 7-6/ 10 1.39:411 on oTnhleinAenantueaalrRthe.vainewnuoaflrEeavritehwasn.odrPglanetarySciencesis SnowballEarth,Cryogenian,carboncycle,astrobiology,habitability Planet. Sci. 201by 192.54.215. T1CA0lohl.p1irs1yigar4hri6gtt/ihscatlnree(cid:2)n’cssuedrr2evo0vei1:-d1eabrythA-0n4n0u8a0l9R-e1v5i2e4w4s7. ATwtoohbpreesltdflNruaaenccotdtupatrhtoietoenPrsohazanondiecrgoilsazcoaiiactti,mimoneaarokffteetdrraabnybsiialtliirooennsu-bymeetpawtrieaoebnnseotnfhceeex.taTrnechmieeencactrambrboiconrncoyibsciolae-l h 0084-6597/11/0530-0417$20.00 disruptionsareprobablyaccompaniedbychangesinthestockofoxidants art E and connect to glaciations via changes in theatmospheric greenhouse gas v. e content.TwooftheglaciationsreachlowlatitudesandmayhavebeenSnow- R u. balleventswithnear-globalicecover.Thisreviewdealsprimarilywiththe n An CryogenianportionoftheNeoproterozoic,duringwhichtheseglaciations occurred.TheinitiationanddeglaciationofSnowballstatesarediscussedin lightofasuiteofgeneralcirculationmodelsimulationsdesignedtofacilitate intercomparison between different models. Snow cover and the nature of thefrozensurfaceemergeaskeyfactorsgoverninginitiationanddeglacia- tion.Themostcomprehensivemodeldiscussedconfirmsthepossibilityof initiatingaSnowballeventwithaplausiblereductionofCO .Deglaciation 2 requires a combination of elevated CO and tropical dust accumulation, 2 aidedbysomecloudwarming.ThecauseofNeoproterozoicbiogeochemi- calturbulence,anditspreciseconnectionwithSnowballglaciations,remains obscure. 417 EA39CH15-Pierrehumbert ARI 30March2011 14:58 1.INTRODUCTION TheNeoproterozoicistheeraextendingfrom1,000millionyearsago(1,000Mya)to540million Phanerozoic: the yearsago(540Mya),astretchoftimeessentiallyaslongasthePhanerozoic.Untilneartheendof timefrom542million theNeoproterozoic,however,muchoftheNeoproterozoicshowplayedoutonthemicrobialstage yearsagotothe andwasrecordedonlydimlyinthefossilrecord.TheNeoproterozoicislikeadarktunnel.The present,duringwhich ancientmicrobialworldentersthefarend,enduresthebiogeochemicalandclimaticturbulence abundantanimallife oftheNeoproterozoic,andcomesoutintothelightofthemetazoan-richPhanerozoicworldon appearsinthefossil record theotherside. ThemiddleoftheNeoproterozoicmarksthereturnofglaciationtoEarthafterabillion-year Metazoa: multicellularanimal absence,whichiswhythisspanissometimestermedtheCryogenian.Intwooftheseglaciations, life therewerecontinentalicesheetsinlowlatitudes,andaplausiblecasecanbemadethattheoceans Cryogenian: the werealmostentirelyfrozenover.ThisstateofaffairsisknownasaSnowballEarthandhassparked org portionofthe muchintenseinquiry.MuchdiscussionoftheNeoproterozoichasfocusedontheSnowballEarth ws. Neoproterozoic question.However,biogeochemicalproxiesfortheNeoproterozoicshowthattherewasalotmore vie containingthemajor goingonatthetimethanjustthecharismaticSnowball-typeevents.ThenominalSnowballevents alre glaciations mayindeedbejustoneofthemorevisiblemanifestationsofthegeneralbiogeochemicalturbulence u n Snowballstate: a n oftheNeoproterozoic.ThePhanerozoicseems,bycomparison,tobearatherquiescentplace. w.ay. stateinwhichoceans Is the biogeochemical sturm und drang of the Neoproterozoic safely behind us? Is it that the wnl arecompletelycovered m wse o withice,allthewayto biogeochemicalcyclingassociatedwithcomplexbiotahassomehowstabilizedtheEarthsystem ou theequator (atleastupuntiltechnologicallifecameonthescene)?OrdoesthesettlingdownoftheEarth ed fronal Waterbelt(formerly systemintoacomfortablemiddleagehavemoretodowithEarth’slong-termgeologicalevolution ds wnloaor per SSolufsthSbnaollw)bstaallteo:ra twhoaunldwpituhttuhseinemaeprogseinticoenotofcaopmprpolaecxhlisfuecfhordmeesp?Aqubeesttitoenrsu.nderstandingoftheNeoproterozoic 60. Do2/13. F sictaetmewarigthinlsobwu-tlaatitude withInatshpiescrtesvoiefwth,ewegeaorelopgricinacliapnadllybcioognecoecrhneemdwiciatlhrtehceorcdlimthaattehdayvneamabicesaorifntgheonCrcyliomgaetnei.anFoarnda 41 substantialbandof 17-06/ openwaterinthe morecomprehensivereviewofthegeologicalrecord,thereaderisreferredtoreviewsbyHoffman 9:4on tropics &Li(2009),Fairchild&Kennedy(2007),andHoffman&Schrag(2002).TheNeoproterozoic anet. Sci. 2011.3y 192.54.215.11 gitgnoleafnteceerilaerlatniulocsbenhasscotpkhwgraorthovociudatnneidttbmhieneafdoymrrhamawainvanteiifonbrndeoeimrcnealtsbeiuoevrtanvwniotvefaetlonclocgifmlliavmacatiareaittoeviouasnsrimisfa.obuTrilmlahittseiyo,obnbfisou,mgtiseaaordpicinashrecetumlfisrfsioeec,mdatlhiptnehircSaetteucaartrneieo,danntloho2en.pgGrborwixoviieatenhds Plb thenatureofthedata,theprimetargetsforclimatetheoristsdealingwiththeNeoproterozoichave h art beentheexplanationoftheonsetandterminationsofthemajorglaciationsandthemannerinwhich E v. thesearemanifestinthesedimentaryrecord.Inthisreview,thetermSnowballreferstoasituation e R inwhichtheoceansaregloballyfrozenover,exceptperhapsforlimitedandintermittentopen- nu. wateroases;intheliterature,suchstatesaresometimesdistinguishedbythetermHardSnowball. n A Statesinwhichseaiceandactivelandicesheetsreachthetropicsbutinwhichsubstantialareas ofopentropicaloceanremainaresometimestermedSoftSnowballsorSlushballs.Theseterms areinappropriate,however,becausethereisreallyno“slush”involvedinthesestates.Instead,we refertothemasWaterbeltstates. The basic physical concepts governing transitions into and out of a Snowball or Waterbelt stateareintroducedinSection3.Themainissuesincludethefollowing:theconditionsforentry intoaSnowballorWaterbeltstate(Section4),thenatureoftheclimateduringaSnowballstate (Section5),theconditionsfordeglaciationfromaSnowballstate(Section6),andthenatureofthe climatefollowingdeglaciation(Section7).Weattempttoputthesemattersincontextwithinthe biggerpictureofbiogeochemicalfluctuationswithintheNeoproterozoic,particularlyregarding 418 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 the carbon cycle, the stages of oxygenation of the atmosphere and ocean, and the associated changesinthegreenhousegasinventoryoftheatmosphere. AlthoughthisreviewisconcernedwiththeeventsoftheNeoproterozoicastheyplayedout Luminosity: thenet onEarth,theSnowballglaciationsandassociatedcarboncyclefluctuationsrepresentageneric energyoutputofastar, habitabilitycrisisforplanetswithsubstantialoceans.Thesephenomenagreatlyaffecttheprospects perunittime foroccurrenceofhabitableextrasolarplanetsandalsoprovideanessentialpartoftheframework Solarconstant: the forinterpretationoftherapidlygrowinginventoryofextrasolarplanetobservations. fluxofenergyfromthe Sun,measuredatthe meanorbitofEarth 2.THENEOPROTEROZOICWORLD ppmv: partsper millionbycountof 2.1.PhysicalCharacteristics molecules;equalto molarconcentration org LunartidalstressescauseEarth’srotationratetodecreaseovertime;theNeoproterozoicsolar measuredinpartsper s. dayisestimatedtohavebeenapproximately22hlong(Schmidt&Williams1995).Thisleadsto million w vie amodestincreaseintheCoriolisforceandslightmodificationsinthediurnalcycle,butclimate Dropstones: rocks e alr modelsindicatethattheseeffectsplayaminorroleinNeoproterozoicclimate.Geodynamicmodels transportedintoopen u n indicatethatEarth’sobliquitywasalmostcertainlynearitspresentvalueandthatitfluctuatedin waterbyiceand n w.ay. anarrowrangecomparablewiththatseenoverthemorerecentpast(Levrard&Laskar2003). droppedinto wwonl Similarly,themaximumeccentricityvisitedbyEarth’sorbitoverthepastfourbillionyearsisnot sedimentarylayers m se likelytohavedeviatedmuchfromitsPleistocenerange(Laskar1996). Striations: scratches ou ed fronal Solarluminositywasapproximately94%ofitspresentvalueatthebeginningoftheNeopro- ibnyraogcklascliiekredlyracgaguisnegd wnloador pers tceornosztoanict,oinfc1r,e3a6si7nWgtom9−52%anbdytahpeleanndetoarfythaelbpeedroioodf(G30o%ug,hth1e98ab1s).oOrbnedthseoblaarsirsaodfiaatipornesaevnetrsaogleadr sthmeairll,suhrafradcedsebrisover 60. Do2/13. F colviemraEtearstehn’ssistiuvriftaycoefw0o.5ulKd/h(Wavembe−e2)nyaipepldrsoxaigmloatbeallym14eaWncmoo−l2inlegssofth7aKn—itissoamtepwrehsaetnlta.rAgetrypthicaanl Dsediaimmeicnttiatreys:deposits 41 7-6/ thePleistoceneglacial/interglacialrange.TokeeptheNeoproterozoictemperaturethesameas madeupof Planet. Sci. 2011.39:41by 192.54.215.11 on 0 ilttanaorsnidaStdLahleyevapc,ynatltialdhouanreneptesCl(4atiw..nOo2eotd..2s,uactdylodo.idnMm3cn,e3aeonk6tthet0reaaspnmitlpeiieomcrcnagovtweeu),louwdaunsehlstadiuatlmvhhleoeairvnnsieuggnbtgatoshftltbeiaettseurstitthneehdfecfiercfcecolialoerosnuessdtdeo(mtaoBonfeedatrophnwfpeeartrNhot2eexer0iomr0vep4aaqrp)tou,eotialrreylertr1dhoa2zodCoutiaiiOgmcth.i2veT,iestahtesihesfifeseraepcbdatrsiseserocinennumcdsaesubaeoislnde-f csfignaooliatrmrectleriypapdollrainoenrtergeinsegditzi(snaegps)eaobnnoeedrirnlaoyglfltyoenf h tospeculate thatmicrobial ecosystems existed on land and that they mighthave enhanced sili- Eart cate weathering relative to a completely abiotic land surface. All other things being equal, one ev. wouldthusexpecttheNeoproterozoic,andtheearlyPhanerozoicaswell,tobewarmerthanthe R u. typicalclimatesfollowingthecolonizationoflandbyplantsintheOrdovician(450Mya).The n An typicalnonglacialNeoproterozoicCO2wouldprobablybeinexcessofthe3,360ppmvthatwould maintain the partially glaciated climate of the present. The absence of land plants also affects thealbedo,roughness,andhydrologicalpropertiesoflandsurfacesemployedinNeoproterozoic climatemodels. The Neoproterozoic is punctuated by two great glaciations—the Sturtian at 720 Mya and the Marinoan at 635 Mya—which constitute the most dramatic and charismatic events of the Neoproterozoic,apartfromtheappearanceofmetazoanlifetowardtheendoftheperiod.These arenoordinaryglaciations,suchasthosefromthePleistocene.Paleomagneticdatashowthatthe SturtianandMarinoanglaciationsinvolveactivelandicesheetsdischargingintotheoceannear the equator. Evidence for tropical glaciation includes dropstones, striations, and characteristic sedimentarydepositsknownasdiamictites.Thereisanadditionalwell-documentedglaciation— theGaskiersatapproximately580Mya—butthiseventdoesnothavefeaturesthatdistinguishit www.annualreviews.org • NeoproterozoicClimate 419 EA39CH15-Pierrehumbert ARI 30March2011 14:58 fromthegeneralrunofglaciationsoccurringlaterinEarthhistory.Thereisnoknownglaciation betweentheMakganyeneSnowballglaciationatthebeginningoftheProterozoicandtheSturtian, nearlyabillionyearslater. Makganyene: a Becausetheglacialperiodsrepresentahiatusincarbonatedeposition,gettingapreciseesti- Snowball-type glaciationthat mateofthedurationsoftheglaciationsisdifficult.Bodiselitschetal.(2005)reportlargeiridium occurrednearthe anomaliesinsedimentsofMarinoanage.Becauseiridiumaccumulatesveryslowly,theconcen- beginningofthe tratediridiumanomaliesimplyaccumulationontheicesurfaceofagloballyglaciatedworldovera Paleoproterozoic, greatperiodoftime,followedbyreleaseintothesedimentsduringdeglaciation.Becausetheflow approximately ofseaiceinapartiallyglaciatedstatewouldcarrymostdepositediridiumtothetropicalwater 2.2billionyearsago anddumpittheregradually(seeSection5.3),theiridiumanomalyappearsmostconsistentwith global glaciation of long duration.Onthe basis oflikely accumulation rates,Bodiselitschet al. (2005)estimatetheMarinoanglaciationtohavelastedatleastthreemillionyears,withaprobable g durationof12 millionyears. Beforethis interpretationcan be consideredsecure, however, the or s. iridiumspikeneedstobeconfirmedatothersites. w vie NeoproterozoicpaleogeographyhasbeendiscussedinLietal.(2008)andTrindade&Macouin e alr (2007).DuringtheearliestpartoftheNeoproterozoic,thecontinentsassembledintoatropical u n supercontinentknownasRodinia.Theassemblywasessentiallycompleteby900Mya.By725Mya, n a w.y. Rodiniahadcentereditselfneartheequatorandhadbeguntobreakup.TheSturtianglaciation wwonl occurred during the early stages of the breakup (Figure 1). The geography at the time of the m se Marinoanglaciation(Figure1)representsacontinuationofthebreakupofRodinia,withadrift ou d frnal ofmajorlandmassesintotheSouthernHemisphere.By530Mya,mostofthecontinentalareahad eo wnloador pers rPeoalseseinmtboltehdeintrtooptichse.supercontinentknownasGondwanaland,whichextendedfromtheSouth oF 460. D12/13. 2.2.TheCarbonCycle 7-6/ 10 9:4on Thestableisotopiccompositionofcarbonpreservedinthegeologicalrecordprovidesawindow 1.311 intotheoperationofEarth’scarboncycle.Carbonhastwostableisotopes,12Cand13C;thefirst Planet. Sci. 201by 192.54.215. itibsnhobenwyaihntfieatcsrehrtwihaooelrludolodoufmthEgaiaanvsraestnihtnthgwieniwsttahahmseabeEcaiaolsaromntthcopepsodyiscsibttcieyoomnrm.eoaCpcfoatsδriiob1t3niooCnnw.(i=mtDhoe−ssvit6liliay(cid:2)ctaiiont,enathnrforedocfkmionsrmteaoqsouftofielrCaibmdOryic-u2sa)mtriabstooeornuasatbetgeipaosas,tsriteachdtiweofroncoaromlrd-f h carbonintodistinctreservoirscanleadtocarbonisotopicexcursions.Organiccarbonproduced Eart byphotosyntheticmarinebiotaisshiftedby∼−25(cid:2)relativetothecarbonpoolfromwhichit ev. ismade.Totheextentthatsomeoftheoutgassedcarbonissequesteredaslightorganiccarbon, R u. thecarbonatedepositsareshiftedcorrespondinglytowardpositivevalues.Interpretationofthe n An isotopic record is considerably more complicated when the carbon cycle is substantially out of equilibrium, because one then must consider interchanges of carbon among the many distinct reservoirsinwhichitmayreside.Conventionalthinkingmaintainsthattheorganiccarbonaccu- mulatesinmarinesediments,butRothmanetal.(2003)hypothesizedthatintheProterozoica significantportionmayresideinadissolvedorsuspendedorganiccarbonpool.Suchapoolwould bemuchmoresubjecttooxidationthanburiedsedimentaryorganiccarbon,ifoxidantsbecome availableinsufficientquantities. TheNeoproterozoicisatimeofextremecarbonisotopicexcursions.Figure2showsalong- termrecordofthevariationsofδ13Cincarbonate,withdetailedhigh-resolutiondataforselected sectionsshownintheinsets.OvertheProterozoic,thegeneralpatternconsistsofaperiodofstrong fluctuationsatthedawnoftheProterozoicfollowedbyalongperiodofstasisthatterminateswith resumptionofmassivefluctuationsduringtheNeoproterozoic.AftertheNeoproterozoic,Earth 420 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 720 Mya Sturtian Tarim South Greater China India Siberia North China Australia Seychelles E. Madagascar East Ant. Laurentia Kalahari Arabia Rio de org Nubia la Plata s. Sahara w e Congo- vi Sao Francisco e Amazon alr Baltica u nn West w.ay. Africa wnl Superplume wo m se Land ou d frnal Spreading ridge eo wnloador pers 6M3a0r iMnoyaan oF 60. D2/13. South 41 17-06/ Tarim China anet. Sci. 2011.39:4y 192.54.215.11 on ES. eMyacGIhdneardeglliaeaatssecrar AustraEAlainastt. RiKoa dlaehariLaurentia Siberia North Plb la Plata China h Congo- Eart Arabia Sao Francisco v. Sahara e Nubia nu. R WAferiscta Amazonia n A Baltica Figure1 MarinoanandSturtianpaleogeography.BasedonLietal.(2008). neveragainexhibitssuchlargefluctuationsinδ13C.Therearelongperiodsinwhichcarbonateδ13C ismuchmorepositivethanvaluesprevailinginthePhanerozoic—upto8(cid:2)insomecases.This valuesuggestsahighproportionoforganiccarbonburial,althoughitdoesnotinitselfindicate highbiologicalproductivity.Theseperiodsareinterruptedbymajorexcursionsthatoftentake δ13C to substantially negative values. The Sturtian and Marinoan glaciations are nestled amid www.annualreviews.org • NeoproterozoicClimate 421 EA39CH15-Pierrehumbert ARI 30March2011 14:58 Metazoans (animal life) en O2 g y x o ric ??? e sph SO4 and O2 o m No At oxygen 10 g ‰) 0 ws.or 13C ( Boring Billion e δ vi –10 Approximately dated sample e alr Well-dated sample u Glaciation n n –20 a ownloaded from www.For personal use only. C–514225.4034 ±.,3–0 0 60δ±.601 13Cca0rb (‰A6)g54e2 (.6M1 ±2a 0).3 3,000Pongola MakganyeneGaskier2s,00δ–0183C–ca4rb (‰0 V4PDB8) 12558832..117, 0MM0yy0aa SturtianMarinoanGaskiers 17-460. D06/12/13. 5515.14 ±8. 80 .±7 1 545.1 ± 1 600 Mya diacaranglaciation v. Earth Planet. Sci. 2011.39:4by 192.54.215.11 on Age (Ma) naracaidE Shuram anomaly G(reagskioienrasl g mlaicdi-alatitoitnu de) 700 Mya ESgMaMgTanntrllaaaaueooccirzremmitiionaabianoaatteniiallaooryygnnn 766133155...552 MMMyyyaaa Re Franklin LIP 716.5 Mya u. anIasnlaoymaly 717.4 Mya Ann geni oKaigas Cryg(?l)aciation 635.5 ± 0.5 635.2 ± 0.6 635.5 ± 1.2 Marinoan glaciation (global low-latitude) a My Bitter Springs Oman 0 stage NChaimnaibia 80 811.5 Mya Australia Death Valley Namibia Svalbard Yukon 422 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 two of these negative excursions. The δ13C goes negative before the glaciation and gradually recoverstopositivevaluesafterdeglaciation.TheShuramanomalyofthelateNeoproterozoicis thegreatestδ13CfluctuationinEarthhistory,bottomingoutat−12(cid:2).IncontrasttotheSturtian andMarinoanexcursions,theShuramanomalydoesnothaveaglaciationnestledinitsmidst;in fact,itcomeswellaftertherelativelyminorGaskiersglaciation.Thisposesagreatchallengefor understandingNeoproterozoiccarbonisotopicexcursions.Ifallthreemajorexcursionsarisefrom thesamemechanism,howcanthestrongestofallfailtoproduceaglaciation? The extreme negative values of δ13C in the Shuram anomaly are problematic, because no mechanismscandrivethemmorenegativethanthemantle-outgassingvalueinequilibrium,and comingupwithplausiblemechanismsthatworkoutofequilibriumisnoteasy,either.Arguing onthebasisofthedecorrelationoftheδ13CoforganiccarbonintheShuramdepositfromthatof carbonate,Fikeetal.(2006)proposedthattheanomalyarisesfromtheoxidationoftheisotopically g lightorganiccarbonpoolhypothesizedbyRothmanetal.(2003).Swanson-Hyselletal.(2010) or s. havearguedsimilarlyforthepre-Marinoanexcursion.Analternatepossibility,however,isthat w vie theShuramanomalyresultsfromlocalrock-waterinteractions,asarguedbyDerry(2010),and e alr thatitisnotindicativeofchangesintheglobalcarboncycle.Bristow&Kennedy(2008)pointout u n thattheinterpretationoftheShuramanomalyasaglobal-scaleorganiccarbonoxidationeventis n a w.y. difficulttoreconcilewiththelikelysupplyofoxidants. m wwse onl as oOrgxyangeicniccaprbhoontorsaytnhtehrestihsainntcearrcbeopntsavteo.lcTanhiicsCprOoc2easnsdtuarllnoswCssOom,ewohficthheiscaarbgorneetnohboeusbeurgiaesd, ou 2 d frnal into O2, which is not, and would cause cooling if it happened too rapidly to be buffered by eo wnloador pers athnedslieliacdatteowweaartmheinrign.gEtvheenrmifoasntaot.rCgaonnicvecrasreblyo,nopxiodoaltiwoenreofnoortgtaanpipcecda,rbreodnucwtoiounldinretlheeasreaCteOo2f 60. Do2/13. F woragramniincgc.aTrbhouns,biufrtihaelworogualndiaclcloawrbmonocreycvloelicsainnivcoClvOed2tinoaNcecuompruoltaetreoiznotihcenaetgmatoivseph13eCree,xlecaudrisniogntso, 41 7-6/ accountingfortheextremecoldneededtoproduceSturtianandMarinoanglaciationsbecomes 10 9:4on difficult.However,Swanson-Hyselletal.(2010)notethatthenegativecarbonate13Cexcursion 1.311 comeslongbeforetheMarinoanglaciationandthatδ13Crecoverstozerobythebeginningof Planet. Sci. 201by 192.54.215. sgtthhclaeeacntgiatalhrtaiiecooicnasotstioi,ollalninnb.dgeTgwmshhaitsyyhsetbuheqgeuageseesxssoctticsuoirtanshtieaoodtfnahwfaowiitwlhasr(dtmaornappdwrhdoiafod)sweuthcnieesoatnfeegCmglaOapctoii2varataeinloledynxrcsieuensprtstaohiroceakntSiesnhdagurfoerraofrmmoerlacgttaahesnedei.cgtolcaacsruibabotsinoe.qnTuaehnnidst h Thepreglacialcarbonisotopicexcursionsremainenigmatic,butthehypothesisofaglobally Eart glaciatedSnowballstateprovidesaconsistentexplanationforthenegativepostglacialδ13C.The v. e generalidea,proposedbyHoffmanetal.(1998),isthatphotosynthesislargelyshutsdownwhen R u. theoceanfreezesover,sothattheatmosphere-oceancarbonpoolrevertstotheabioticmantle n An value over the millions of years of the glaciation. Because of the “stickiness” of the Snowball state,CO mustbuilduptoveryhighvaluestotriggerdeglaciation(seeSection3).Resultson 2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Figure2 SummaryoftheNeoproterozoiccarboncycleasrevealedbyδ13Cincarbonates.ThemainframeisbasedonHayes&Waldbauer (2006).Blueverticalbarsonthemainpanelindicateglaciations,withshortbarscorrespondingtononglobalglaciationsandlongbars indicatingSnowballglaciations,whichinvolvelow-latitudeice.AschematichistoryofatmosphericoxygenbasedonCanfield(2005)is sketchedabovethepanel.InsetfortheShuramanomalyisbasedonFikeetal.(2006);insetfortheSturtianandMarinoanaged anomaliesisbasedonMacdonaldetal.(2009).Numbersannotatinghorizontallinesintheinsetsgivetheagesofdatedlayers,inMya. Abbreviations:VPDB,ViennaPeeDeeBelemnite(ageochemicalstandardformeasuringcarbonisotopes);LIP,LargeIgneous Province(ageologicalformationindicativeofmassivevolcanicactivity,forexamplefloodbasalts). www.annualreviews.org • NeoproterozoicClimate 423 EA39CH15-Pierrehumbert ARI 30March2011 14:58 oxygenmass-independentfractionationreportedbyBaoetal.(2009)aremostreadilyinterpreted asaccumulationofveryhighlevelsofCO priortodeglaciationandthereforesupportthispicture. 2 IntheMarinoanevent,forwhichhigh-resolutionpostglacialsectionsareavailable,theδ13Cstarts Mass-independent at−3(cid:2)followingtheglaciationandthendropsto−5(cid:2)beforegraduallyrecoveringtopositive fractionation: aform ofisotopicseparation values.Thecarboncycleinthepostglacialworldisfaroutofequilibrium.Thepatternofδ13Claid thatisonlyweakly downastheisotopicallylightatmosphere-oceaninorganiccarbonpoolisprogressivelytransferred dependenton tocarbonateisaffectedbyRayleighdistillationandbydissolutionoflandcarbonates,aselucidated molecularweight byHiggins&Schrag(2003). Capcarbonates: Methane provides another lever affecting both climate (because it is a greenhouse gas) and carbonatedepositsthat carbon isotopic excursions. Methanogens metabolizing organic carbon produce methane with indicateextreme δ13C ≈ −60(cid:2). When the methane oxidizes to CO in the atmosphere and ocean, it leads carbonate 2 supersaturationinthe to a negative carbon isotopic excursion, but only if the reservoir of heavy carbon left behind g oceanandrapid bymethanogenesisiskeptfromremixingwiththenewinorganiccarbonbeingdeposited.The s.or deposition;themain onlyknownwaytoachievethisistostockmethaneinseafloorsedimentsintheformofhybrid eview iNndeoicpartootretrhoaztotihcelow- methane/watericesknownasclathrates,whichlaterreleasemethanethrougheithercatastrophic alr latitudeglaciationsand destabilizationoramoregradualprocess.Jiangetal.(2003)havefoundevidenceformethaneseeps u nn deglaciationsinvolvea inarguablyMarinoan-agecapcarbonatesfromtheNantuoformationinSouthChina.Kennedy a w.y. switchbetween etal.(2008)alsofoundsupportformethanereleasearoundthetimeoftheMarinoandeglaciation; wwonl extremelydifferent theyestimatethatthereleaseof2,400gigatonnes(Gt)of−60(cid:2)carbonintheformofmethane m se states wouldleadtoa−3(cid:2)excursioninthecarbonates. ou d frnal Sulfurmass- deso independent wnloaor per forfaicstoitoonpaetisoepna:raatfioornm 2.3.Oxygen 60. Do2/13. F pphroodtoucchedembyistryinthe Tofhmeeotxayzgoeannsstaotrtyhiesewnodveonf tthheroNugehoopurotttehreozNoiecowpraosteernoazboleicd.bItyiasnplianucsriebalseetihnatotxhyegeenmteorgneenacre- 7-46/1 upperatmosphereand present levels. Methane connects with the oxygen story because the availability of oxidants in Planet. Sci. 2011.39:41by 192.54.215.11 on 0 poaceotxnrmtenlryscoeeemwsrnpvhethereldeyanrtiliinocownsoesxdyaigrmeenents gboootheerxfegyncsaageuaunerltfasnimucellarcoycaa,sdccrpteucbhhcumoeeimsnruδievulb1ae3leataCliynstoeidfloniqdnuuaoecrecnoteseutftnaiaefinOotreieto2sddanevaawstaneGihcdrloaemrbrnoeeilantnehtietefecOoscrtarxttnothiohdnxeietaodhtrNtaieaobnteoneetosxipEmyairtgnvmoeewtntneehhtdrseioitcaaozhtatrotetymimlhcyte,oehrbstebruphooethauxgnmeigidrenhaeinzs-itsiseohn-dciecgn.eoUbadonnuefnvrpeatsieharmyntlesebdtodePiefgmnrotuotorotrfgerueCaraqsnocOupitzciir2oroo.ceinxcasMai,rettbaosihonoroanndetf h that period, too, exhibits large-amplitude δ13C fluctuations (Canfield 2005). It is reasonable to Eart assumebywayofanalogythattheδ13CfluctuationsoftheNeoproterozoicalsohadsomething ev. to do with adjustment of the carbon cycle to a more oxygenated world, especially in view of R u. the fact that the analogy is strengthened by the occurrence of low-latitude glaciations in both n An theNeoproterozoicandPaleoproterozoic.OxygenneednotaccumulateintheformoffreeO2. Instead,itcanaccumulateintheoceansassulfate(SO2−),producedbyoxidativeweatheringof 4 pyrite (FeS ) on land. Sulfate-reducing bacteria in the ocean can use sulfate to oxidize organic 2 matter and liberate CO and H S. If nutrients limit productivity of sulfate reducers, then an 2 2 oceancanbeanoxicbutrichinbothsulfateandorganiccarbon.Activesulfatereductioninan ocean,whichcanbedetectedthroughsulfurisotopefractionation,indicatestheaccumulationof anamountofoxygenintheatmospheresufficienttopermitoxidativeweatheringofpyrite. Thereappearanceofbandedironformations(BIFs)intheNeoproterozoic,afteralongabsence, alsoindicatesthatsomethinginterestingwasgoingonwithoxygenduringthistime.Formation ofBIFsrequiresthatlargeamountsofsolubleironmustfirstexistintheocean,whichcanhappen only if major portions of the ocean are anoxic. The reservoir also must be low in sulfate; if sulfate is presentin considerable quantities,sulfate-reducing bacteria can use it as an oxidizing 424 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 agent,leading ultimately tothe depositionofpyritebeforethe ironcan bedeposited as oxides inBIFs.TheBIFsaredepositedwhereiron-richanoxicwatercomesintocontactwithoxygen. NeoproterozoicBIFsdonotformintheaftermathofthemajorglaciations,asmightbeexpected BIF: bandediron fromascenarioinwhichtheoceanreoxygenatesupondeglaciation.Rather,theyareinterbedded formation withorbelowdiamictitesandsometimesexhibitglacialfeaturessuchasdropstones.Thewayto Eukaryote: acellwith fitthisintotheSnowballpictureistoassumethatthedeepoceanisanoxic—andalsolowinsulfate acomplex, becauseofthecessationoflandweathering—butthatlimitedcoastaloasesremainoxygenated;it differentiatedinternal isintheseoasesthattheBIFswerepresumablydeposited.BIFscanalsoformwithoutfreeO ,via structure,includinga 2 anoxygenicphotosyntheticFe++-oxidizingbacteria(Kappleretal.2005),aswasclearlythecase nucleuscontaining geneticmaterial intheArchean.Thismechanismstillrequireslargepartsoftheoceantobeanoxic,sosolubleiron canbemobilized,andstillrequiressomeopenwaterorthinicewherethebacteriawouldgetan Doushantuo: a formationinChina adequatesupplyoflight. containingawealthof org well-preserved s. multicellularfossils w 2.4.Life e vi e alr Biomarkerevidenceshowsthataflourishinganddiversemicrobialecosystem,includingcomplex u n eukaryotes, was already in place by the beginning of the Proterozoic (Waldbauer et al. 2009), n a w.y. although eukaryotic microfossils do not make their appearance until midway through the Pro- wwonl terozoic.Thesurvivaloftheseeukaryotes,particularlyphotosyntheticones,posesaconsiderable m se challengefortheSnowballhypothesis.Ithasbeenconjecturedthat,inaSnowball,eukaryotessur- ou d frnal viveinsmallandperhapsintermittentopen-wateroases.Ifyouareonlyafewmicronsindiameter, eo wnloador pers apoTnhdecfarnonsde-elmikeliEkediaacwahroanlebuiontiavearpspee.arat575Mya,roughlycontemporaneouswiththeShuram 60. Do2/13. F efoxrcmurastiioonnaanldsowdeallteafbtearckthteoMaatrimineoanneagrlatchiaetioonns.eTtohfetehaerlSyhmuertaamzoaannoemmablyry(oXsioaoft&heKDnooulslh2a0n0t0u)o. 41 7-6/ Mobilebilateriananimals,however,comeinat555Mya,whichisunambiguouslyatthecloseofthe 10 9:4on Shuramanomaly.Metazoansandmulticellularplantsrequirehighlevelsoffreeoxygentosupport 1.311 theirmetabolism,sotheriseofmetazoans(especiallymobileones)inthelateNeoproterozoicalso anet. Sci. 201y 192.54.215. sbguregefoagtreeesrttschahearMlilseeanirgnineoofxoaynrgte(hLneoaSvtenthoeewttbaimla.lle2h.0Hy0p9oo)w.thTeevhseiers,.sbuirovmivaarlkoefrsspsuognggeesst,tihfactosnpfiornmgeesd,mwaoyuhladvepreevsoelnvteda Plb h art 2.5.CapCarbonates E ev. SturtianandMarinoanglacialdepositsoccuraspartofacharacteristiccarbonatesequence,which R u. is striking in that carbonates rarely—if ever—occur in association with glacial deposits during n An thePhanerozoic. Rightabove (i.e., chronologically after) theMarinoan glacial diamictites,one findsacapdolostone.Dolomite(magnesiumcarbonate)isbelievedtobedepositedonlyunder conditionsoflowsulfuravailability,whichprovidesaclueastothestateoftheocean.Thecap dolostonesoftencontaingiantwaveripples.Thesefeaturesresultfromwaveactiononsediments in near-shore environments, and the physical understanding of the deposition process implies that the timescale of formation is quite short. Thus, the giant wave ripples show that the cap dolostonewasprecipitatedrapidly.Othercharacteristictexturesknownaspeloidsalsoconstitute asignatureofrapiddeposition.Abovethecapdolostone,onesometimesfindslimestonecements containinggiantcrystalstructuresknownasaragonitefans.Thesearesymptomaticofdiffusion- limitedcrystalgrowthinsituinahighlysupersaturatedenvironment.Asthecrystalsgrow,they are buried by sedimentation of limestone from the water column, and this, too, suggests rapid deposition.Furtherupinthesequence,onefindseitherathicklimestonelayer(asinNamibia) www.annualreviews.org • NeoproterozoicClimate 425 EA39CH15-Pierrehumbert ARI 30March2011 14:58 orathicklayerofcarbonate-poorshale.Intoto,thestructureisreferredtoasacapcarbonate sequence. Deposits with the features of the cap dolostone and postglacial limestone cements are not seen during the Phanerozoic. All current interpretations of these enigmatic deposits require a mechanismthatallowsarapid,massiveincreaseinthecarbonateioncontentoftheoceanwaters. Thereisaneedforsomethingcatastrophic,somethingwithaswitchthatcancauseanavalanche ofcarbonateintotheocean.TheSnowballEarthscenariodoeshavesuchaswitch.Asdiscussed inSections3and6,onceglobalglaciationoccurs,atmosphericCO mustbuilduptoveryhigh 2 concentrations to make deglaciation possible, but once deglaciation starts, it proceeds rapidly. Infact,Kirschvink’s(1992)proposalthatdeglaciationwouldoccurthroughmassivebuildupof CO afteraglacialshutdownofsilicateweatheringrevivedthehypothesisofatrulyglobalSnow- 2 ballglaciation.Later,Hoffmanetal.(1998)connectedKirschvink’sscenariowiththecarbonate g depositionandcarbonisotopestory. or s. In the Snowball scenario, cap dolostones are deposited when deglaciation leaves Earth in a w vie hot,highCO2state.Theresultingdelugeofhotacidrainoverexposedcarbonateonlandwashes e alr carbonate ion into the ocean, leading to supersaturation and precipitation. Cap dolostones are u n transgressive—thatis,theyarelaiddownastheseainvadesinlandprogressivelyduringaperiodof n a w.y. rapidsea-levelrisefollowingdeglaciation(Hoffmanetal.2007).Therapidcarbonateweathering wwonl continuesforatime,leadingtothedepositionoflimestonecementsandaragonitefans.Assealevel m se rises,however,exposedcarbonateplatformsarefloodedandarenolongersubjecttoweathering ou d frnal byrainfall.Therefollowsalonger,moregradualperiodinwhichcarbonateisgeneratedonland eo wnloador pers lbeyvesillsi.caTtehewepartehseernicnegoinfampargonceetsiscthreavtedrrsaawlssitnhesoatmmeoscpahpecriacrbCoOna2tbesa,ckhodwowevnerto, pmoosreesmaosdereiroautes 60. Do2/13. F crahpaildlelnyg(Tertiondthadeeoetthaelr.w2i0se03c)o.mpelling evidence that cap carbonate sequences were deposited 41 7-6/ Pleistocene-type partial glaciations—even extreme versions with low-latitude sea-ice 10 9:4on margins—donothavethekindofswitchthattheSnowballstateexhibitsbecausetheice-albedo 1.311 feedback operates more continuously when there are major stretches of open water. As CO2 Planet. Sci. 201by 192.54.215. btitnhruaceinrldeSsiantusioepowsnt,boftaohellelxltomsrweeiamgin-hiegctelapervmmoeavlosriddgaeeinnsdttheitneihtcherrneeeqraausvmeiareleoaldftnscCchbaOearbc2cko.anTrgbarhtoaeindsaausvtaieatlulliyananttoicoorh,nteha,oetpffomeecrroehssaatnnp,o.suAtnohpdmrpeoerougcrghothuaennssiioastymmdfeeoogtrslhwaCecirtiOcatht2hioatinnno h oceancirculationmodesaffectingtheoceanstratification.Atthetimeofwriting,however,nosuch Eart mechanism admitting of a sound physical quantification has been put forth. Shields (2005) put ev. forthaninterestingconjectureontheformationofcapcarbonateswithoutaSnowballepisode,but R u. extensivecoupledgeochemical/climatesimulationswouldhavetobecarriedouttotestwhether n An theideaisviable. The cap carbonate sequences found after the Sturtian glaciation share some of the features oftheMarinoancasebutgenerallylackclearindicationsofrapiddeposition.Moreinformation aboutthestratigraphicsequenceandthedifferencesbetweentheSturtianandMarinoancanbe foundinHoffman&Schrag(2002),Shields(2005),andPrussetal.(2010). 2.6.NeoproterozoicWeirdness:WhatNeedstoBeExplained EvenmorebasicthanthequestionofwhetherEarthexperiencedaSnowballstateintheNeopro- terozoicisthequestionofwhyglaciationsresumedafterabillion-yearabsence—andthereafter becamequitecommonintherestofEarthhistory.Thereappearanceofglaciationsisanindication ofsomemajorreorganizationofthebiogeochemicalcycle,involvingcarbon,oxygen,andpossibly 426 Pierrehumbertetal.
Description: