ebook img

Pierrehumbert - Annu Rev Earth Pl Sc 2011 PDF

46 Pages·2013·1.64 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pierrehumbert - Annu Rev Earth Pl Sc 2011

EA39CH15-Pierrehumbert ARI 30March2011 14:58 Climate of the Neoproterozoic R.T. Pierrehumbert,1 D.S. Abbot,1 A. Voigt,2 and D. Koll3 g or 1DepartmentofGeophysicalSciences,UniversityofChicago,Chicago,Illinois60637; ws. email:[email protected] e vi 2Max-Planck-Institutfu¨rMeteorologie,20146Hamburg,Germany e alr 3DepartmentofEarthandPlanetarySciences,HarvardUniversity,Cambridge, u n Massachusetts02138 n a w.y. wnl wo m se ou d frnal eo ds wnloaor per oF 60. D2/13. 41 Annu.Rev.EarthPlanet.Sci.2011.39:417–60 Keywords 7-6/ 10 1.39:411 on oTnhleinAenantueaalrRthe.vainewnuoaflrEeavritehwasn.odrPglanetarySciencesis SnowballEarth,Cryogenian,carboncycle,astrobiology,habitability Planet. Sci. 201by 192.54.215. T1CA0lohl.p1irs1yigar4hri6gtt/ihscatlnree(cid:2)n’cssuedrr2evo0vei1:-d1eabrythA-0n4n0u8a0l9R-e1v5i2e4w4s7. ATwtoohbpreesltdflNruaaenccotdtupatrhtoietoenPrsohazanondiecrgoilsazcoaiiactti,mimoneaarokffteetdrraabnybsiialtliirooennsu-bymeetpawtrieaoebnnseotnfhceeex.taTrnechmieeencactrambrboiconrncoyibsciolae-l h 0084-6597/11/0530-0417$20.00 disruptionsareprobablyaccompaniedbychangesinthestockofoxidants art E and connect to glaciations via changes in theatmospheric greenhouse gas v. e content.TwooftheglaciationsreachlowlatitudesandmayhavebeenSnow- R u. balleventswithnear-globalicecover.Thisreviewdealsprimarilywiththe n An CryogenianportionoftheNeoproterozoic,duringwhichtheseglaciations occurred.TheinitiationanddeglaciationofSnowballstatesarediscussedin lightofasuiteofgeneralcirculationmodelsimulationsdesignedtofacilitate intercomparison between different models. Snow cover and the nature of thefrozensurfaceemergeaskeyfactorsgoverninginitiationanddeglacia- tion.Themostcomprehensivemodeldiscussedconfirmsthepossibilityof initiatingaSnowballeventwithaplausiblereductionofCO .Deglaciation 2 requires a combination of elevated CO and tropical dust accumulation, 2 aidedbysomecloudwarming.ThecauseofNeoproterozoicbiogeochemi- calturbulence,anditspreciseconnectionwithSnowballglaciations,remains obscure. 417 EA39CH15-Pierrehumbert ARI 30March2011 14:58 1.INTRODUCTION TheNeoproterozoicistheeraextendingfrom1,000millionyearsago(1,000Mya)to540million Phanerozoic: the yearsago(540Mya),astretchoftimeessentiallyaslongasthePhanerozoic.Untilneartheendof timefrom542million theNeoproterozoic,however,muchoftheNeoproterozoicshowplayedoutonthemicrobialstage yearsagotothe andwasrecordedonlydimlyinthefossilrecord.TheNeoproterozoicislikeadarktunnel.The present,duringwhich ancientmicrobialworldentersthefarend,enduresthebiogeochemicalandclimaticturbulence abundantanimallife oftheNeoproterozoic,andcomesoutintothelightofthemetazoan-richPhanerozoicworldon appearsinthefossil record theotherside. ThemiddleoftheNeoproterozoicmarksthereturnofglaciationtoEarthafterabillion-year Metazoa: multicellularanimal absence,whichiswhythisspanissometimestermedtheCryogenian.Intwooftheseglaciations, life therewerecontinentalicesheetsinlowlatitudes,andaplausiblecasecanbemadethattheoceans Cryogenian: the werealmostentirelyfrozenover.ThisstateofaffairsisknownasaSnowballEarthandhassparked org portionofthe muchintenseinquiry.MuchdiscussionoftheNeoproterozoichasfocusedontheSnowballEarth ws. Neoproterozoic question.However,biogeochemicalproxiesfortheNeoproterozoicshowthattherewasalotmore vie containingthemajor goingonatthetimethanjustthecharismaticSnowball-typeevents.ThenominalSnowballevents alre glaciations mayindeedbejustoneofthemorevisiblemanifestationsofthegeneralbiogeochemicalturbulence u n Snowballstate: a n oftheNeoproterozoic.ThePhanerozoicseems,bycomparison,tobearatherquiescentplace. w.ay. stateinwhichoceans Is the biogeochemical sturm und drang of the Neoproterozoic safely behind us? Is it that the wnl arecompletelycovered m wse o withice,allthewayto biogeochemicalcyclingassociatedwithcomplexbiotahassomehowstabilizedtheEarthsystem ou theequator (atleastupuntiltechnologicallifecameonthescene)?OrdoesthesettlingdownoftheEarth ed fronal Waterbelt(formerly systemintoacomfortablemiddleagehavemoretodowithEarth’slong-termgeologicalevolution ds wnloaor per SSolufsthSbnaollw)bstaallteo:ra twhoaunldwpituhttuhseinemaeprogseinticoenotofcaopmprpolaecxhlisfuecfhordmeesp?Aqubeesttitoenrsu.nderstandingoftheNeoproterozoic 60. Do2/13. F sictaetmewarigthinlsobwu-tlaatitude withInatshpiescrtesvoiefwth,ewegeaorelopgricinacliapnadllybcioognecoecrhneemdwiciatlhrtehceorcdlimthaattehdayvneamabicesaorifntgheonCrcyliomgaetnei.anFoarnda 41 substantialbandof 17-06/ openwaterinthe morecomprehensivereviewofthegeologicalrecord,thereaderisreferredtoreviewsbyHoffman 9:4on tropics &Li(2009),Fairchild&Kennedy(2007),andHoffman&Schrag(2002).TheNeoproterozoic anet. Sci. 2011.3y 192.54.215.11 gitgnoleafnteceerilaerlatniulocsbenhasscotpkhwgraorthovociudatnneidttbmhieneafdoymrrhamawainvanteiifonbrndeoeimrcnealtsbeiuoevrtanvwniotvefaetlonclocgifmlliavmacatiareaittoeviouasnsrimisfa.obuTrilmlahittseiyo,obnbfisou,mgtiseaaordpicinashrecetumlfisrfsioeec,mdatlhiptnehircSaetteucaartrneieo,danntloho2en.pgGrborwixoviieatenhds Plb thenatureofthedata,theprimetargetsforclimatetheoristsdealingwiththeNeoproterozoichave h art beentheexplanationoftheonsetandterminationsofthemajorglaciationsandthemannerinwhich E v. thesearemanifestinthesedimentaryrecord.Inthisreview,thetermSnowballreferstoasituation e R inwhichtheoceansaregloballyfrozenover,exceptperhapsforlimitedandintermittentopen- nu. wateroases;intheliterature,suchstatesaresometimesdistinguishedbythetermHardSnowball. n A Statesinwhichseaiceandactivelandicesheetsreachthetropicsbutinwhichsubstantialareas ofopentropicaloceanremainaresometimestermedSoftSnowballsorSlushballs.Theseterms areinappropriate,however,becausethereisreallyno“slush”involvedinthesestates.Instead,we refertothemasWaterbeltstates. The basic physical concepts governing transitions into and out of a Snowball or Waterbelt stateareintroducedinSection3.Themainissuesincludethefollowing:theconditionsforentry intoaSnowballorWaterbeltstate(Section4),thenatureoftheclimateduringaSnowballstate (Section5),theconditionsfordeglaciationfromaSnowballstate(Section6),andthenatureofthe climatefollowingdeglaciation(Section7).Weattempttoputthesemattersincontextwithinthe biggerpictureofbiogeochemicalfluctuationswithintheNeoproterozoic,particularlyregarding 418 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 the carbon cycle, the stages of oxygenation of the atmosphere and ocean, and the associated changesinthegreenhousegasinventoryoftheatmosphere. AlthoughthisreviewisconcernedwiththeeventsoftheNeoproterozoicastheyplayedout Luminosity: thenet onEarth,theSnowballglaciationsandassociatedcarboncyclefluctuationsrepresentageneric energyoutputofastar, habitabilitycrisisforplanetswithsubstantialoceans.Thesephenomenagreatlyaffecttheprospects perunittime foroccurrenceofhabitableextrasolarplanetsandalsoprovideanessentialpartoftheframework Solarconstant: the forinterpretationoftherapidlygrowinginventoryofextrasolarplanetobservations. fluxofenergyfromthe Sun,measuredatthe meanorbitofEarth 2.THENEOPROTEROZOICWORLD ppmv: partsper millionbycountof 2.1.PhysicalCharacteristics molecules;equalto molarconcentration org LunartidalstressescauseEarth’srotationratetodecreaseovertime;theNeoproterozoicsolar measuredinpartsper s. dayisestimatedtohavebeenapproximately22hlong(Schmidt&Williams1995).Thisleadsto million w vie amodestincreaseintheCoriolisforceandslightmodificationsinthediurnalcycle,butclimate Dropstones: rocks e alr modelsindicatethattheseeffectsplayaminorroleinNeoproterozoicclimate.Geodynamicmodels transportedintoopen u n indicatethatEarth’sobliquitywasalmostcertainlynearitspresentvalueandthatitfluctuatedin waterbyiceand n w.ay. anarrowrangecomparablewiththatseenoverthemorerecentpast(Levrard&Laskar2003). droppedinto wwonl Similarly,themaximumeccentricityvisitedbyEarth’sorbitoverthepastfourbillionyearsisnot sedimentarylayers m se likelytohavedeviatedmuchfromitsPleistocenerange(Laskar1996). Striations: scratches ou ed fronal Solarluminositywasapproximately94%ofitspresentvalueatthebeginningoftheNeopro- ibnyraogcklascliiekredlyracgaguisnegd wnloador pers tceornosztoanict,oinfc1r,e3a6si7nWgtom9−52%anbdytahpeleanndetoarfythaelbpeedroioodf(G30o%ug,hth1e98ab1s).oOrbnedthseoblaarsirsaodfiaatipornesaevnetrsaogleadr sthmeairll,suhrafradcedsebrisover 60. Do2/13. F colviemraEtearstehn’ssistiuvriftaycoefw0o.5ulKd/h(Wavembe−e2)nyaipepldrsoxaigmloatbeallym14eaWncmoo−l2inlegssofth7aKn—itissoamtepwrehsaetnlta.rAgetrypthicaanl Dsediaimmeicnttiatreys:deposits 41 7-6/ thePleistoceneglacial/interglacialrange.TokeeptheNeoproterozoictemperaturethesameas madeupof Planet. Sci. 2011.39:41by 192.54.215.11 on 0 ilttanaorsnidaStdLahleyevapc,ynatltialdhouanreneptesCl(4atiw..nOo2eotd..2s,uactdylodo.idnMm3cn,e3aeonk6tthet0reaaspnmitlpeiieomcrcnagovtweeu),louwdaunsehlstadiuatlmvhhleoeairvnnsieuggnbtgatoshftltbeiaettseurstitthneehdfecfiercfcecolialoerosnuessdtdeo(mtaoBonfeedatrophnwfpeeartrNhot2eexer0iomr0vep4aaqrp)tou,eotialrreylertr1dhoa2zodCoutiaiiOgmcth.i2veT,iestahtesihesfifeseraepcbdatrsiseserocinennumcdsaesubaeoislnde-f csfignaooliatrmrectleriypapdollrainoenrtergeinsegditzi(snaegps)eaobnnoeedrirnlaoyglfltyoenf h tospeculate thatmicrobial ecosystems existed on land and that they mighthave enhanced sili- Eart cate weathering relative to a completely abiotic land surface. All other things being equal, one ev. wouldthusexpecttheNeoproterozoic,andtheearlyPhanerozoicaswell,tobewarmerthanthe R u. typicalclimatesfollowingthecolonizationoflandbyplantsintheOrdovician(450Mya).The n An typicalnonglacialNeoproterozoicCO2wouldprobablybeinexcessofthe3,360ppmvthatwould maintain the partially glaciated climate of the present. The absence of land plants also affects thealbedo,roughness,andhydrologicalpropertiesoflandsurfacesemployedinNeoproterozoic climatemodels. The Neoproterozoic is punctuated by two great glaciations—the Sturtian at 720 Mya and the Marinoan at 635 Mya—which constitute the most dramatic and charismatic events of the Neoproterozoic,apartfromtheappearanceofmetazoanlifetowardtheendoftheperiod.These arenoordinaryglaciations,suchasthosefromthePleistocene.Paleomagneticdatashowthatthe SturtianandMarinoanglaciationsinvolveactivelandicesheetsdischargingintotheoceannear the equator. Evidence for tropical glaciation includes dropstones, striations, and characteristic sedimentarydepositsknownasdiamictites.Thereisanadditionalwell-documentedglaciation— theGaskiersatapproximately580Mya—butthiseventdoesnothavefeaturesthatdistinguishit www.annualreviews.org • NeoproterozoicClimate 419 EA39CH15-Pierrehumbert ARI 30March2011 14:58 fromthegeneralrunofglaciationsoccurringlaterinEarthhistory.Thereisnoknownglaciation betweentheMakganyeneSnowballglaciationatthebeginningoftheProterozoicandtheSturtian, nearlyabillionyearslater. Makganyene: a Becausetheglacialperiodsrepresentahiatusincarbonatedeposition,gettingapreciseesti- Snowball-type glaciationthat mateofthedurationsoftheglaciationsisdifficult.Bodiselitschetal.(2005)reportlargeiridium occurrednearthe anomaliesinsedimentsofMarinoanage.Becauseiridiumaccumulatesveryslowly,theconcen- beginningofthe tratediridiumanomaliesimplyaccumulationontheicesurfaceofagloballyglaciatedworldovera Paleoproterozoic, greatperiodoftime,followedbyreleaseintothesedimentsduringdeglaciation.Becausetheflow approximately ofseaiceinapartiallyglaciatedstatewouldcarrymostdepositediridiumtothetropicalwater 2.2billionyearsago anddumpittheregradually(seeSection5.3),theiridiumanomalyappearsmostconsistentwith global glaciation of long duration.Onthe basis oflikely accumulation rates,Bodiselitschet al. (2005)estimatetheMarinoanglaciationtohavelastedatleastthreemillionyears,withaprobable g durationof12 millionyears. Beforethis interpretationcan be consideredsecure, however, the or s. iridiumspikeneedstobeconfirmedatothersites. w vie NeoproterozoicpaleogeographyhasbeendiscussedinLietal.(2008)andTrindade&Macouin e alr (2007).DuringtheearliestpartoftheNeoproterozoic,thecontinentsassembledintoatropical u n supercontinentknownasRodinia.Theassemblywasessentiallycompleteby900Mya.By725Mya, n a w.y. Rodiniahadcentereditselfneartheequatorandhadbeguntobreakup.TheSturtianglaciation wwonl occurred during the early stages of the breakup (Figure 1). The geography at the time of the m se Marinoanglaciation(Figure1)representsacontinuationofthebreakupofRodinia,withadrift ou d frnal ofmajorlandmassesintotheSouthernHemisphere.By530Mya,mostofthecontinentalareahad eo wnloador pers rPeoalseseinmtboltehdeintrtooptichse.supercontinentknownasGondwanaland,whichextendedfromtheSouth oF 460. D12/13. 2.2.TheCarbonCycle 7-6/ 10 9:4on Thestableisotopiccompositionofcarbonpreservedinthegeologicalrecordprovidesawindow 1.311 intotheoperationofEarth’scarboncycle.Carbonhastwostableisotopes,12Cand13C;thefirst Planet. Sci. 201by 192.54.215. itibsnhobenwyaihntfieatcsrehrtwihaooelrludolodoufmthEgaiaanvsraestnihtnthgwieniwsttahahmseabeEcaiaolsaromntthcopepsodyiscsibttcieyoomnrm.eoaCpcfoatsδriiob1t3niooCnnw.(i=mtDhoe−ssvit6liliay(cid:2)ctaiiont,enathnrforedocfkmionsrmteaoqsouftofielrCaibmdOryic-u2sa)mtriabstooeornuasatbetgeipaosas,tsriteachdtiweofroncoaromlrd-f h carbonintodistinctreservoirscanleadtocarbonisotopicexcursions.Organiccarbonproduced Eart byphotosyntheticmarinebiotaisshiftedby∼−25(cid:2)relativetothecarbonpoolfromwhichit ev. ismade.Totheextentthatsomeoftheoutgassedcarbonissequesteredaslightorganiccarbon, R u. thecarbonatedepositsareshiftedcorrespondinglytowardpositivevalues.Interpretationofthe n An isotopic record is considerably more complicated when the carbon cycle is substantially out of equilibrium, because one then must consider interchanges of carbon among the many distinct reservoirsinwhichitmayreside.Conventionalthinkingmaintainsthattheorganiccarbonaccu- mulatesinmarinesediments,butRothmanetal.(2003)hypothesizedthatintheProterozoica significantportionmayresideinadissolvedorsuspendedorganiccarbonpool.Suchapoolwould bemuchmoresubjecttooxidationthanburiedsedimentaryorganiccarbon,ifoxidantsbecome availableinsufficientquantities. TheNeoproterozoicisatimeofextremecarbonisotopicexcursions.Figure2showsalong- termrecordofthevariationsofδ13Cincarbonate,withdetailedhigh-resolutiondataforselected sectionsshownintheinsets.OvertheProterozoic,thegeneralpatternconsistsofaperiodofstrong fluctuationsatthedawnoftheProterozoicfollowedbyalongperiodofstasisthatterminateswith resumptionofmassivefluctuationsduringtheNeoproterozoic.AftertheNeoproterozoic,Earth 420 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 720 Mya Sturtian Tarim South Greater China India Siberia North China Australia Seychelles E. Madagascar East Ant. Laurentia Kalahari Arabia Rio de org Nubia la Plata s. Sahara w e Congo- vi Sao Francisco e Amazon alr Baltica u nn West w.ay. Africa wnl Superplume wo m se Land ou d frnal Spreading ridge eo wnloador pers 6M3a0r iMnoyaan oF 60. D2/13. South 41 17-06/ Tarim China anet. Sci. 2011.39:4y 192.54.215.11 on ES. eMyacGIhdneardeglliaeaatssecrar AustraEAlainastt. RiKoa dlaehariLaurentia Siberia North Plb la Plata China h Congo- Eart Arabia Sao Francisco v. Sahara e Nubia nu. R WAferiscta Amazonia n A Baltica Figure1 MarinoanandSturtianpaleogeography.BasedonLietal.(2008). neveragainexhibitssuchlargefluctuationsinδ13C.Therearelongperiodsinwhichcarbonateδ13C ismuchmorepositivethanvaluesprevailinginthePhanerozoic—upto8(cid:2)insomecases.This valuesuggestsahighproportionoforganiccarbonburial,althoughitdoesnotinitselfindicate highbiologicalproductivity.Theseperiodsareinterruptedbymajorexcursionsthatoftentake δ13C to substantially negative values. The Sturtian and Marinoan glaciations are nestled amid www.annualreviews.org • NeoproterozoicClimate 421 EA39CH15-Pierrehumbert ARI 30March2011 14:58 Metazoans (animal life) en O2 g y x o ric ??? e sph SO4 and O2 o m No At oxygen 10 g ‰) 0 ws.or 13C ( Boring Billion e δ vi –10 Approximately dated sample e alr Well-dated sample u Glaciation n n –20 a ownloaded from www.For personal use only. C–514225.4034 ±.,3–0 0 60δ±.601 13Cca0rb (‰A6)g54e2 (.6M1 ±2a 0).3 3,000Pongola MakganyeneGaskier2s,00δ–0183C–ca4rb (‰0 V4PDB8) 12558832..117, 0MM0yy0aa SturtianMarinoanGaskiers 17-460. D06/12/13. 5515.14 ±8. 80 .±7 1 545.1 ± 1 600 Mya diacaranglaciation v. Earth Planet. Sci. 2011.39:4by 192.54.215.11 on Age (Ma) naracaidE Shuram anomaly G(reagskioienrasl g mlaicdi-alatitoitnu de) 700 Mya ESgMaMgTanntrllaaaaueooccirzremmitiionaabianoaatteniiallaooryygnnn 766133155...552 MMMyyyaaa Re Franklin LIP 716.5 Mya u. anIasnlaoymaly 717.4 Mya Ann geni oKaigas Cryg(?l)aciation 635.5 ± 0.5 635.2 ± 0.6 635.5 ± 1.2 Marinoan glaciation (global low-latitude) a My Bitter Springs Oman 0 stage NChaimnaibia 80 811.5 Mya Australia Death Valley Namibia Svalbard Yukon 422 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 two of these negative excursions. The δ13C goes negative before the glaciation and gradually recoverstopositivevaluesafterdeglaciation.TheShuramanomalyofthelateNeoproterozoicis thegreatestδ13CfluctuationinEarthhistory,bottomingoutat−12(cid:2).IncontrasttotheSturtian andMarinoanexcursions,theShuramanomalydoesnothaveaglaciationnestledinitsmidst;in fact,itcomeswellaftertherelativelyminorGaskiersglaciation.Thisposesagreatchallengefor understandingNeoproterozoiccarbonisotopicexcursions.Ifallthreemajorexcursionsarisefrom thesamemechanism,howcanthestrongestofallfailtoproduceaglaciation? The extreme negative values of δ13C in the Shuram anomaly are problematic, because no mechanismscandrivethemmorenegativethanthemantle-outgassingvalueinequilibrium,and comingupwithplausiblemechanismsthatworkoutofequilibriumisnoteasy,either.Arguing onthebasisofthedecorrelationoftheδ13CoforganiccarbonintheShuramdepositfromthatof carbonate,Fikeetal.(2006)proposedthattheanomalyarisesfromtheoxidationoftheisotopically g lightorganiccarbonpoolhypothesizedbyRothmanetal.(2003).Swanson-Hyselletal.(2010) or s. havearguedsimilarlyforthepre-Marinoanexcursion.Analternatepossibility,however,isthat w vie theShuramanomalyresultsfromlocalrock-waterinteractions,asarguedbyDerry(2010),and e alr thatitisnotindicativeofchangesintheglobalcarboncycle.Bristow&Kennedy(2008)pointout u n thattheinterpretationoftheShuramanomalyasaglobal-scaleorganiccarbonoxidationeventis n a w.y. difficulttoreconcilewiththelikelysupplyofoxidants. m wwse onl as oOrgxyangeicniccaprbhoontorsaytnhtehrestihsainntcearrcbeopntsavteo.lcTanhiicsCprOoc2easnsdtuarllnoswCssOom,ewohficthheiscaarbgorneetnohboeusbeurgiaesd, ou 2 d frnal into O2, which is not, and would cause cooling if it happened too rapidly to be buffered by eo wnloador pers athnedslieliacdatteowweaartmheinrign.gEtvheenrmifoasntaot.rCgaonnicvecrasreblyo,nopxiodoaltiwoenreofnoortgtaanpipcecda,rbreodnucwtoiounldinretlheeasreaCteOo2f 60. Do2/13. F woragramniincgc.aTrbhouns,biufrtihaelworogualndiaclcloawrbmonocreycvloelicsainnivcoClvOed2tinoaNcecuompruoltaetreoiznotihcenaetgmatoivseph13eCree,xlecaudrisniogntso, 41 7-6/ accountingfortheextremecoldneededtoproduceSturtianandMarinoanglaciationsbecomes 10 9:4on difficult.However,Swanson-Hyselletal.(2010)notethatthenegativecarbonate13Cexcursion 1.311 comeslongbeforetheMarinoanglaciationandthatδ13Crecoverstozerobythebeginningof Planet. Sci. 201by 192.54.215. sgtthhclaeeacntgiatalhrtaiiecooicnasotstioi,ollalninnb.dgeTgwmshhaitsyyhsetbuheqgeuageseesxssoctticsuoirtanshtieaoodtfnahwfaowiitwlhasr(dtmaornappdwrhdoiafod)sweuthcnieesoatnfeegCmglaOapctoii2varataeinloledynxrcsieuensprtstaohiroceakntSiesnhdagurfoerraofrmmoerlacgttaahesnedei.cgtolcaacsruibabotsinoe.qnTuaehnnidst h Thepreglacialcarbonisotopicexcursionsremainenigmatic,butthehypothesisofaglobally Eart glaciatedSnowballstateprovidesaconsistentexplanationforthenegativepostglacialδ13C.The v. e generalidea,proposedbyHoffmanetal.(1998),isthatphotosynthesislargelyshutsdownwhen R u. theoceanfreezesover,sothattheatmosphere-oceancarbonpoolrevertstotheabioticmantle n An value over the millions of years of the glaciation. Because of the “stickiness” of the Snowball state,CO mustbuilduptoveryhighvaluestotriggerdeglaciation(seeSection3).Resultson 2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Figure2 SummaryoftheNeoproterozoiccarboncycleasrevealedbyδ13Cincarbonates.ThemainframeisbasedonHayes&Waldbauer (2006).Blueverticalbarsonthemainpanelindicateglaciations,withshortbarscorrespondingtononglobalglaciationsandlongbars indicatingSnowballglaciations,whichinvolvelow-latitudeice.AschematichistoryofatmosphericoxygenbasedonCanfield(2005)is sketchedabovethepanel.InsetfortheShuramanomalyisbasedonFikeetal.(2006);insetfortheSturtianandMarinoanaged anomaliesisbasedonMacdonaldetal.(2009).Numbersannotatinghorizontallinesintheinsetsgivetheagesofdatedlayers,inMya. Abbreviations:VPDB,ViennaPeeDeeBelemnite(ageochemicalstandardformeasuringcarbonisotopes);LIP,LargeIgneous Province(ageologicalformationindicativeofmassivevolcanicactivity,forexamplefloodbasalts). www.annualreviews.org • NeoproterozoicClimate 423 EA39CH15-Pierrehumbert ARI 30March2011 14:58 oxygenmass-independentfractionationreportedbyBaoetal.(2009)aremostreadilyinterpreted asaccumulationofveryhighlevelsofCO priortodeglaciationandthereforesupportthispicture. 2 IntheMarinoanevent,forwhichhigh-resolutionpostglacialsectionsareavailable,theδ13Cstarts Mass-independent at−3(cid:2)followingtheglaciationandthendropsto−5(cid:2)beforegraduallyrecoveringtopositive fractionation: aform ofisotopicseparation values.Thecarboncycleinthepostglacialworldisfaroutofequilibrium.Thepatternofδ13Claid thatisonlyweakly downastheisotopicallylightatmosphere-oceaninorganiccarbonpoolisprogressivelytransferred dependenton tocarbonateisaffectedbyRayleighdistillationandbydissolutionoflandcarbonates,aselucidated molecularweight byHiggins&Schrag(2003). Capcarbonates: Methane provides another lever affecting both climate (because it is a greenhouse gas) and carbonatedepositsthat carbon isotopic excursions. Methanogens metabolizing organic carbon produce methane with indicateextreme δ13C ≈ −60(cid:2). When the methane oxidizes to CO in the atmosphere and ocean, it leads carbonate 2 supersaturationinthe to a negative carbon isotopic excursion, but only if the reservoir of heavy carbon left behind g oceanandrapid bymethanogenesisiskeptfromremixingwiththenewinorganiccarbonbeingdeposited.The s.or deposition;themain onlyknownwaytoachievethisistostockmethaneinseafloorsedimentsintheformofhybrid eview iNndeoicpartootretrhoaztotihcelow- methane/watericesknownasclathrates,whichlaterreleasemethanethrougheithercatastrophic alr latitudeglaciationsand destabilizationoramoregradualprocess.Jiangetal.(2003)havefoundevidenceformethaneseeps u nn deglaciationsinvolvea inarguablyMarinoan-agecapcarbonatesfromtheNantuoformationinSouthChina.Kennedy a w.y. switchbetween etal.(2008)alsofoundsupportformethanereleasearoundthetimeoftheMarinoandeglaciation; wwonl extremelydifferent theyestimatethatthereleaseof2,400gigatonnes(Gt)of−60(cid:2)carbonintheformofmethane m se states wouldleadtoa−3(cid:2)excursioninthecarbonates. ou d frnal Sulfurmass- deso independent wnloaor per forfaicstoitoonpaetisoepna:raatfioornm 2.3.Oxygen 60. Do2/13. F pphroodtoucchedembyistryinthe Tofhmeeotxayzgoeannsstaotrtyhiesewnodveonf tthheroNugehoopurotttehreozNoiecowpraosteernoazboleicd.bItyiasnplianucsriebalseetihnatotxhyegeenmteorgneenacre- 7-46/1 upperatmosphereand present levels. Methane connects with the oxygen story because the availability of oxidants in Planet. Sci. 2011.39:41by 192.54.215.11 on 0 poaceotxnrmtenlryscoeeemwsrnpvhethereldeyanrtiliinocownsoesxdyaigrmeenents gboootheerxfegyncsaageuaunerltfasnimucellarcoycaa,sdccrpteucbhhcumoeeimsnruδievulb1ae3leataCliynstoeidfloniqdnuuaoecrecnoteseutftnaiaefinOotreieto2sddanevaawstaneGihcdrloaemrbrnoeeilantnehtietefecOoscrtarxttnothiohdnxeietaodhtrNtaieaobnteoneetosxipEmyairtgnvmoeewtntneehhtdrseioitcaaozhtatrotetymimlhcyte,oehrbstebruphooethauxgnmeigidrenhaeinzs-itsiseohn-dciecgn.eoUbadonnuefnvrpeatsieharmyntlesebdtodePiefgmnrotuotorotrfgerueCaraqsnocOupitzciir2oroo.ceinxcasMai,rettbaosihonoroanndetf h that period, too, exhibits large-amplitude δ13C fluctuations (Canfield 2005). It is reasonable to Eart assumebywayofanalogythattheδ13CfluctuationsoftheNeoproterozoicalsohadsomething ev. to do with adjustment of the carbon cycle to a more oxygenated world, especially in view of R u. the fact that the analogy is strengthened by the occurrence of low-latitude glaciations in both n An theNeoproterozoicandPaleoproterozoic.OxygenneednotaccumulateintheformoffreeO2. Instead,itcanaccumulateintheoceansassulfate(SO2−),producedbyoxidativeweatheringof 4 pyrite (FeS ) on land. Sulfate-reducing bacteria in the ocean can use sulfate to oxidize organic 2 matter and liberate CO and H S. If nutrients limit productivity of sulfate reducers, then an 2 2 oceancanbeanoxicbutrichinbothsulfateandorganiccarbon.Activesulfatereductioninan ocean,whichcanbedetectedthroughsulfurisotopefractionation,indicatestheaccumulationof anamountofoxygenintheatmospheresufficienttopermitoxidativeweatheringofpyrite. Thereappearanceofbandedironformations(BIFs)intheNeoproterozoic,afteralongabsence, alsoindicatesthatsomethinginterestingwasgoingonwithoxygenduringthistime.Formation ofBIFsrequiresthatlargeamountsofsolubleironmustfirstexistintheocean,whichcanhappen only if major portions of the ocean are anoxic. The reservoir also must be low in sulfate; if sulfate is presentin considerable quantities,sulfate-reducing bacteria can use it as an oxidizing 424 Pierrehumbertetal. EA39CH15-Pierrehumbert ARI 30March2011 14:58 agent,leading ultimately tothe depositionofpyritebeforethe ironcan bedeposited as oxides inBIFs.TheBIFsaredepositedwhereiron-richanoxicwatercomesintocontactwithoxygen. NeoproterozoicBIFsdonotformintheaftermathofthemajorglaciations,asmightbeexpected BIF: bandediron fromascenarioinwhichtheoceanreoxygenatesupondeglaciation.Rather,theyareinterbedded formation withorbelowdiamictitesandsometimesexhibitglacialfeaturessuchasdropstones.Thewayto Eukaryote: acellwith fitthisintotheSnowballpictureistoassumethatthedeepoceanisanoxic—andalsolowinsulfate acomplex, becauseofthecessationoflandweathering—butthatlimitedcoastaloasesremainoxygenated;it differentiatedinternal isintheseoasesthattheBIFswerepresumablydeposited.BIFscanalsoformwithoutfreeO ,via structure,includinga 2 anoxygenicphotosyntheticFe++-oxidizingbacteria(Kappleretal.2005),aswasclearlythecase nucleuscontaining geneticmaterial intheArchean.Thismechanismstillrequireslargepartsoftheoceantobeanoxic,sosolubleiron canbemobilized,andstillrequiressomeopenwaterorthinicewherethebacteriawouldgetan Doushantuo: a formationinChina adequatesupplyoflight. containingawealthof org well-preserved s. multicellularfossils w 2.4.Life e vi e alr Biomarkerevidenceshowsthataflourishinganddiversemicrobialecosystem,includingcomplex u n eukaryotes, was already in place by the beginning of the Proterozoic (Waldbauer et al. 2009), n a w.y. although eukaryotic microfossils do not make their appearance until midway through the Pro- wwonl terozoic.Thesurvivaloftheseeukaryotes,particularlyphotosyntheticones,posesaconsiderable m se challengefortheSnowballhypothesis.Ithasbeenconjecturedthat,inaSnowball,eukaryotessur- ou d frnal viveinsmallandperhapsintermittentopen-wateroases.Ifyouareonlyafewmicronsindiameter, eo wnloador pers apoTnhdecfarnonsde-elmikeliEkediaacwahroanlebuiontiavearpspee.arat575Mya,roughlycontemporaneouswiththeShuram 60. Do2/13. F efoxrcmurastiioonnaanldsowdeallteafbtearckthteoMaatrimineoanneagrlatchiaetioonns.eTtohfetehaerlSyhmuertaamzoaannoemmablyry(oXsioaoft&heKDnooulslh2a0n0t0u)o. 41 7-6/ Mobilebilateriananimals,however,comeinat555Mya,whichisunambiguouslyatthecloseofthe 10 9:4on Shuramanomaly.Metazoansandmulticellularplantsrequirehighlevelsoffreeoxygentosupport 1.311 theirmetabolism,sotheriseofmetazoans(especiallymobileones)inthelateNeoproterozoicalso anet. Sci. 201y 192.54.215. sbguregefoagtreeesrttschahearMlilseeanirgnineoofxoaynrgte(hLneoaSvtenthoeewttbaimla.lle2h.0Hy0p9oo)w.thTeevhseiers,.sbuirovmivaarlkoefrsspsuognggeesst,tihfactosnpfiornmgeesd,mwaoyuhladvepreevsoelnvteda Plb h art 2.5.CapCarbonates E ev. SturtianandMarinoanglacialdepositsoccuraspartofacharacteristiccarbonatesequence,which R u. is striking in that carbonates rarely—if ever—occur in association with glacial deposits during n An thePhanerozoic. Rightabove (i.e., chronologically after) theMarinoan glacial diamictites,one findsacapdolostone.Dolomite(magnesiumcarbonate)isbelievedtobedepositedonlyunder conditionsoflowsulfuravailability,whichprovidesaclueastothestateoftheocean.Thecap dolostonesoftencontaingiantwaveripples.Thesefeaturesresultfromwaveactiononsediments in near-shore environments, and the physical understanding of the deposition process implies that the timescale of formation is quite short. Thus, the giant wave ripples show that the cap dolostonewasprecipitatedrapidly.Othercharacteristictexturesknownaspeloidsalsoconstitute asignatureofrapiddeposition.Abovethecapdolostone,onesometimesfindslimestonecements containinggiantcrystalstructuresknownasaragonitefans.Thesearesymptomaticofdiffusion- limitedcrystalgrowthinsituinahighlysupersaturatedenvironment.Asthecrystalsgrow,they are buried by sedimentation of limestone from the water column, and this, too, suggests rapid deposition.Furtherupinthesequence,onefindseitherathicklimestonelayer(asinNamibia) www.annualreviews.org • NeoproterozoicClimate 425 EA39CH15-Pierrehumbert ARI 30March2011 14:58 orathicklayerofcarbonate-poorshale.Intoto,thestructureisreferredtoasacapcarbonate sequence. Deposits with the features of the cap dolostone and postglacial limestone cements are not seen during the Phanerozoic. All current interpretations of these enigmatic deposits require a mechanismthatallowsarapid,massiveincreaseinthecarbonateioncontentoftheoceanwaters. Thereisaneedforsomethingcatastrophic,somethingwithaswitchthatcancauseanavalanche ofcarbonateintotheocean.TheSnowballEarthscenariodoeshavesuchaswitch.Asdiscussed inSections3and6,onceglobalglaciationoccurs,atmosphericCO mustbuilduptoveryhigh 2 concentrations to make deglaciation possible, but once deglaciation starts, it proceeds rapidly. Infact,Kirschvink’s(1992)proposalthatdeglaciationwouldoccurthroughmassivebuildupof CO afteraglacialshutdownofsilicateweatheringrevivedthehypothesisofatrulyglobalSnow- 2 ballglaciation.Later,Hoffmanetal.(1998)connectedKirschvink’sscenariowiththecarbonate g depositionandcarbonisotopestory. or s. In the Snowball scenario, cap dolostones are deposited when deglaciation leaves Earth in a w vie hot,highCO2state.Theresultingdelugeofhotacidrainoverexposedcarbonateonlandwashes e alr carbonate ion into the ocean, leading to supersaturation and precipitation. Cap dolostones are u n transgressive—thatis,theyarelaiddownastheseainvadesinlandprogressivelyduringaperiodof n a w.y. rapidsea-levelrisefollowingdeglaciation(Hoffmanetal.2007).Therapidcarbonateweathering wwonl continuesforatime,leadingtothedepositionoflimestonecementsandaragonitefans.Assealevel m se rises,however,exposedcarbonateplatformsarefloodedandarenolongersubjecttoweathering ou d frnal byrainfall.Therefollowsalonger,moregradualperiodinwhichcarbonateisgeneratedonland eo wnloador pers lbeyvesillsi.caTtehewepartehseernicnegoinfampargonceetsiscthreavtedrrsaawlssitnhesoatmmeoscpahpecriacrbCoOna2tbesa,ckhodwowevnerto, pmoosreesmaosdereiroautes 60. Do2/13. F crahpaildlelnyg(Tertiondthadeeoetthaelr.w2i0se03c)o.mpelling evidence that cap carbonate sequences were deposited 41 7-6/ Pleistocene-type partial glaciations—even extreme versions with low-latitude sea-ice 10 9:4on margins—donothavethekindofswitchthattheSnowballstateexhibitsbecausetheice-albedo 1.311 feedback operates more continuously when there are major stretches of open water. As CO2 Planet. Sci. 201by 192.54.215. btitnhruaceinrldeSsiantusioepowsnt,boftaohellelxltomsrweeiamgin-hiegctelapervmmoeavlosriddgaeeinnsdttheitneihtcherrneeeqraausvmeiareleoaldftnscCchbaOearbc2cko.anTrgbarhtoaeindsaausvtaieatlulliyananttoicoorh,nteha,oetpffomeecrroehssaatnnp,o.suAtnohpdmrpeoerougcrghothuaennssiioastymmdfeeoogtrslhwaCecirtiOcatht2hioatinnno h oceancirculationmodesaffectingtheoceanstratification.Atthetimeofwriting,however,nosuch Eart mechanism admitting of a sound physical quantification has been put forth. Shields (2005) put ev. forthaninterestingconjectureontheformationofcapcarbonateswithoutaSnowballepisode,but R u. extensivecoupledgeochemical/climatesimulationswouldhavetobecarriedouttotestwhether n An theideaisviable. The cap carbonate sequences found after the Sturtian glaciation share some of the features oftheMarinoancasebutgenerallylackclearindicationsofrapiddeposition.Moreinformation aboutthestratigraphicsequenceandthedifferencesbetweentheSturtianandMarinoancanbe foundinHoffman&Schrag(2002),Shields(2005),andPrussetal.(2010). 2.6.NeoproterozoicWeirdness:WhatNeedstoBeExplained EvenmorebasicthanthequestionofwhetherEarthexperiencedaSnowballstateintheNeopro- terozoicisthequestionofwhyglaciationsresumedafterabillion-yearabsence—andthereafter becamequitecommonintherestofEarthhistory.Thereappearanceofglaciationsisanindication ofsomemajorreorganizationofthebiogeochemicalcycle,involvingcarbon,oxygen,andpossibly 426 Pierrehumbertetal.

Description:
Much discussion of the Neoproterozoic has focused on the Snowball Earth .. have argued similarly for the pre-Marinoan excursion. intermediate-temperature solution is unstable and separates the attractor basin of the upper
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.