ebook img

Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization PDF

19 Pages·2005·0.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization

Systems&ControlLetters54(2005)835–853 www.elsevier.com/locate/sysconle Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization Luis Rodriguesa,∗, Stephen Boydb aDepartmentofMechanicalandIndustrialEngineering,ConcordiaUniversity,2160BBishopSt.,B-304,Montréal,QC,CanadaH3G2E9 bDepartmentofElectricalEngineering,StanfordUniversity,PackardBuilding264,Stanford,CA94305,USA Received31July2003;receivedinrevisedform14December2004;accepted23January2005 Abstract ThispapershowsthatLyapunov-basedstatefeedbackcontrollersynthesisforpiecewise-affine(PWA)slabsystemscanbe cast as an optimization problem subject to a set of linear matrix inequalities (LMIs) analytically parameterized by a vector. Furthermore,itisshownthatcontinuityofthecontrolinputsattheswitchingscanbeguaranteedbyaddingequalityconstraints totheproblemwithoutaffectingitsparameterizationstructure.Finally,itisshownthatpiecewise-affinestatefeedbackcontroller synthesisforpiecewise-affineslabsystemstomaximizethedecayrateofaquadraticcontrolLyapunovfunctioncanbecastas asetofquasi-concaveoptimizationproblemsanalyticallyparameterizedbyavector.Beforecastingthesynthesisintheformat presentedinthispaper,Lyapunov-basedpiecewise-affinestatefeedbackcontrollersynthesiscouldonlybeformulatedasabi- convexoptimizationprogram,whichisveryexpensivetosolveglobally.Thus,thefundamentalimportanceofthecontributions ofthepaperreliesonthefactthat,forthefirsttime,thepiecewise-affinestatefeedbacksynthesisproblemhasbeenformulated asaconvexproblemwithaparameterizedsetofLMIsthatcanberelaxedtoafinitesetofLMIsandsolvedefficientlytoapoint neartheglobaloptimumusingavailablesoftware.Furthermore,itisshownforthefirsttimethat,insomesituations,theglobal canbeexactlyfoundbysolvingonlyoneconcaveproblem. ©2005ElsevierB.V.Allrightsreserved. Keywords:Piecewise-affinesystems;Statefeedback;Convexoptimization;Ellipsoids;Lyapunovfunction 1. Introduction Piecewise-affinesystemsaremulti-modelsystemsthatofferagoodmodelingframeworkforcomplexdynamical systemsinvolvingnonlinearphenomena.Infact,manynonlinearitiesthatappearfrequentlyinengineeringsystems areeitherpiecewise-affine(e.g.,asaturatedlinearactuatorcharacteristic)orcanbeapproximatedaspiecewise-affine functions. Piecewise-affine systems are also a class of hybrid systems, i.e, systems with a continuous-time state ∗ Correspondingauthor.Tel.:+5148482424x3135;fax:+5148484524. E-mailaddresses:[email protected](L.Rodrigues),[email protected](S.Boyd). 0167-6911/$-seefrontmatter©2005ElsevierB.V.Allrightsreserved. doi:10.1016/j.sysconle.2005.01.002 836 L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 andadiscrete-eventstate.Forpiecewise-affinesystemsthediscrete-eventstateisassociatedwithdiscretemodes ofoperation.Thecontinuous-timestateisassociatedwiththeaffine(linearwithoffset)dynamicsvalidwithineach discretemode.Piecewise-affinesystemsposechallengingproblemsbecauseofitsswitchedstructure.Infact,the analysis and control of even some simple piecewise-affine systems have been shown to be either an NP hard problemorundecidable[4]. Stateandoutputfeedbackcontrolofcontinuous-timepiecewise-affinesystemshavereceivedincreasinginterest overthelastyears[10,13,15,21].Theinterestingapproachpresentedin[13,15]reliesoncomputingupperandlower bounds to the optimal cost of the controller obtained as the solution to the Hamilton–Jacobi–Bellman equation. However, the continuous-time controller resulting from the approach in [15] is a patched LQR that cannot be guaranteed to avoid sliding modes at the switching and, therefore, is not provably stabilizing. Previous work of theauthorshasconcentratedonLyapunov-basedcontrollersynthesismethodsforcontinuous-timepiecewise-affine (PWA)systems[10,21].In[21],Lyapunov-basedcontrollersynthesiswasformulatedasabi-convexoptimization problem.Thebi-convexitystructurearisesbecauseofthenegativityconstraintonthederivativeofthepiecewise- quadraticLyapunovfunctionovertime.Thisconstraintleadstoabilinearmatrixinequality(BMI)[8].Bi-convex optimization problems are non-convex, NP hard and, therefore, extremely expensive to solve globally from a computationalpointofview[8].Basedonthisfact,Ref.[21]hasadaptedthreealternativeiterativealgorithmsfor solvingthenon-convexproblemtoasuboptimalsolution.Althoughthecontrollersynthesisproblemforpiecewise- affine systems using piecewise-quadratic Lyapunov functions is non-convex, Hassibi and Boyd [10] have shown thatfortheparticularcaseofpiecewise-linearstatefeedbackofslabpiecewise-linearsystems(withoutaffineterms), globallyquadraticstabilizationcouldbecastasaconvexoptimizationproblem.Unfortunately,ifaffinetermsare included in the controller, as stated in [10], “it does not seem that the condition for stabilizability can be cast asanLMI”,whichapparentlydestroystheconvexstructureoftheproblem,makingithardtosolveglobally.The currentpapershowsthatpiecewise-affinestatefeedbackforpiecewise-affineslabsystemsusingagloballyquadratic LyapunovfunctioncanindeedbesolvedtoapointneartheglobaloptimuminanefficientwaybyasetofLMIs. Building on the result of [10], this paper formulates piecewise-affine state feedback as an optimization problem involving a set of LMIs analytically parameterized by a vector. Three different algorithms will be suggested to solve relaxations of the optimization problem to a point near the global optimum. One is based on gridding of the domain of the parameterizing vector and yields solutions that approach the global optimum as the density of the grid is increased. The others are based on trace maximization to approximately solve an LMI subject to rank constraints [17], a problem that appears frequently in reduced order controller design. Although yielding solutions approaching the global optimum, the algorithm involving gridding increases the computational cost as the grid becomes denser and can be prohibitive for large systems. However, the gridding approach has already been used in other recent research on analysis [9], LPV control [23], gain-scheduling control [1,2] and some techniques already exist to alleviate the computational cost due to the gridding phase [3,22].The algorithms for tracemaximizationareinspiredbytheworkpresentedin[11,7,6].Oneofthesealgorithmsisiterativebuttypically involvesonlyoneortwoiterations,thustypicallybeinglesscomputationallyexpensivethanthegriddingalgorithm. Theotherproposedtracemaximizationalgorithmissimplyaconcaveprogram,whichisthereforeefficientfrom a computational point of view. It is also shown in the paper that constraints for continuity of the control inputs can be added to the PWA state feedback problem without affecting its parameterization structure. Finally, it is shownthatpiecewise-affinestatefeedbackcontrollersynthesisforpiecewise-affineslabsystemstomaximizethe decay rate of a globally quadratic control Lyapunov function can be cast as a set of quasi-concave optimization problems analytically parameterized by a vector. This problem can also be solved numerically using efficient algorithms. In this paper, four controller synthesis problems are formulated, relaxed to a finite set of convex optimization problems and solved. The paper starts by presenting the assumptions that are common to all controller design problems,followedbythestatementsofthefourproblems.Section4formulatesthecontrollersynthesisproblems asoptimizationprograms.Section5presentsseveralalgorithmstosolvetheformulatedproblems.Finally,aftertwo numericalexamples,thepaperfinishesbypresentingtheconclusions L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 837 2. Problemassumptions It is assumed that a PWA system and a corresponding partition of the state space with polytopic cells Ri, i ∈ I={1,...,M}aregiven(see[20]forgeneratingsuchapartition).Following[14,18,10],eachcellisconstructed astheintersectionofafinitenumber(pi)ofhalf-spaces Ri ={x|HiTx−g˜i<0}, (1) whereHi =[hi1 h(cid:1)i2...hipi],g˜i =[g˜i1 g˜i2...g˜ipi]T.Moreover,thesetsRi partitionasubsetofthestatespace X⊂Rn suchthat Mi=1Ri =X,Ri ∩Rj =∅, i (cid:14)=j,whereRi denotestheclosureofRi.Withineachcellthe dynamicsareaffineoftheform x˙(t)=Aix(t)+b˜i +Biu(t), (2) where x(t) ∈ Rn and u(t) ∈ Rm. For system (2), we adopt the following definition of trajectories or solutions presentedin[13]. Definition2.1(Johansson[13]). Letx(t) ∈ Xbeanabsolutelycontinuousfunction.Thenx(t)isatrajectoryof thesystem(2)on[t0,tf]if,foralmostallt ∈[t0,tf]andLebesguemeasurableu(t),theequationx˙(t)=Aix(t)+ b˜i +Biu(t)holdsforx(t)∈Ri. Any two cells sharing a common facet will be called level-1 neighboring cells. Let Ni = {level-1 neighboringcellsof Ri}. It is also assumed that vectors cij ∈ Rn and scalars dij exist such that the facetboundarybetweencellsRi andRj iscontainedinthehyperplanedescribedby{x ∈Rn|ciTjx−dij =0},for i=1,...,M,j ∈Ni.Aparametricdescriptionoftheboundariescanthenbeobtainedas[10] Ri ∩Rj ⊆{x=l˜ij +Fijs|s ∈Rn−1} (3) fori =1,...,M,j ∈ Ni,whereFij ∈ Rn×(n−1) (fullrank)isthematrixwhosecolumnsspanthenullspaceof ciTj,andl˜ij ∈ Rn isgivenbyl˜ij =cij(ciTjcij)−1dij.Forsystemswhosepolytopiccellsareslabs,calledpiecewise- affineslabsystems,eachRi canbeouterapproximatedbyadegenerateellipsoidεi.Thiscoveringwillbeusedto describetheregionsinsteadofthepolytopicdescription.Theellipsoidaldescriptionofpiecewise-affinesystemsis usefulbecauseitoftenrequiresfewerparametersthanthepolytopicdescriptionanditenablestocastthesynthesis problemasanoptimizationprograminvolvingasetofLMIsanalyticallyparameterizedbyavector.Todescribethe ellipsoidalcovering,itisassumedthatmatricesEi andf˜i existsuchthat Ri ⊆εi, (4) where εi ={x|(cid:19)Eix+f˜i(cid:19)(cid:1)1}. (5) This covering is especially useful in the case where Ri is a slab because in this case the matrices Ei and f˜i are guaranteed to exist and the covering (having one degenerate ellipsoid εi) is exact, i.e., εi ⊆ Ri and Ri ⊆ εi. Moreprecisely,ifRi ={x|d1<ciTx<d2},thenthedegenerateellipsoidisdescribedbyEi =2ciT/(d2−d1)and f˜i=−(d2+d1)/(d2−d1).Finally,itisassumedthatthecontrolobjectiveistostabilizethesystemtoagivenpoint x .Withthechangeofcoordinatesz=x−x theproblemistransformedtothestabilizationoftheorigin.Inthese cl cl coordinates,thesystemdynamics(2)are z˙(t)=Aiz(t)+bi +Biu(t), (6) 838 L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 wherebi =b˜i +Aixcl.Theparametricdescriptionofboundaries(3)iswrittenas Ri ∩Rj ⊆{z=lij +Fijs|s ∈Rn−1}, (7) wherelij =l˜ij −xcl fori=1,...,M,j ∈Ni.Thedescriptionofthepolytopiccellsis Ri ={z|HiTz−gi<0}, (8) wheregi =g˜i −HiTxcl,andtheellipsoidalcoveringisdescribedby εi ={z|(cid:19)Eiz+fi(cid:19)(cid:1)1}, (9) wherefi =f˜i +Eixcl. 3. Problemstatement There are four Lyapunov-based controller synthesis problems that will be solved in this paper. For the four problems,thepiecewise-affinestatefeedbackinputsignalisparameterizedbyKi andmi intheform u=Kiz+mi, z∈Ri (10) with−l0(cid:1)mi(cid:1)l0wherel0isavectorofupperboundsfortheentriesofmi,i=1,...,M.Thegloballyquadratic candidatecontrolLyapunovfunctionisparameterizedbyP =PT as V(z)=zTPz. (11) Thefourproblemsare: 1. Problem1.Findapiecewise-affinestatefeedbackcontrollerthatexponentiallystabilizestheoriginof(6)and findagloballyquadraticLyapunovfunctionthatprovesit. 2. Problem2.Thesameasproblem1withcontinuousinputsignalsattheswitchingboundaries. 3. Problem3.Fromthecontrollersthatexponentiallystabilizetheorigin,findtheonethatmaximizesthedecay rateofthegloballyquadraticcontrolLyapunovfunction. 4. Problem4.Thesameasproblem3withcontinuousinputsignalsattheswitchingboundaries. 4. Problemformulation Thissectionformulatesmathematicallythestabilizationproblems1and2asoptimizationprogramsinvolvinga setofLMIsanalyticallyparameterizedbyavector.Thedecayratemaximizationproblems3and4areformulated asasetofquasi-concaveoptimizationprogramsanalyticallyparameterizedbythesamevector. 4.1. Stabilization—problem1 ThecandidatecontrolLyapunovfunction(11)becomesaLyapunovfunctionifforfixed(cid:1)(cid:2)0,V >0andV˙ <− (cid:1)V.Using(6)and(10),sufficientconditionsforexponentialstabilityarethusP =PT>0and z∈R ⇒[(A +B K )z+(b +B m )]TPz i i i i i i i +zTP[(Ai +BiKi)z+(bi +Bimi)]+(cid:1)zTPz<0. (12) L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 839 Thisexpressioncanberecastas (cid:2) (cid:3) (cid:2) (cid:3)(cid:2) (cid:3) z T A¯TP +PA¯ +(cid:1)P Pb¯ z z∈Ri ⇒ 1 i (Pb¯i)Ti 0i 1 <0, (13) whereA¯i=Ai+BiKi andb¯i=bi+Bimi.Iftheconditionz∈Ri in(13)isrelaxedtoz∈εi andifexpression(9) isusedalongwiththeS-procedure[24,5]withmultiplier(cid:2)i<0yieldsthesufficientconditionsP =PT>0and (cid:2) (cid:3) (cid:2) (cid:3)(cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3)(cid:2) (cid:3) z T A¯TP +PA¯ +(cid:1)P Pb¯ z z T E¯TE ETf z 1 i (Pb¯i)Ti 0i 1 <−(cid:2)i 1 fiiTEii fiTfii −i 1 1 , (14) Rearrangingexpression(14)thefollowingsufficientconditionsforquadraticstabilizationarederived: P =PT>0, (cid:2)i<0, i=1,...,M, (cid:2) (cid:3) A¯TP +PA¯ +(cid:1)P +(cid:2) ETE Pb¯ +(cid:2) ETf i (Pb¯i +i (cid:2)iEiTfi)Ti i i −(cid:2)ii(1−ifiTifii) <0. (15) UsingnewvariablesQ=P−1,(cid:3)i =(cid:2)−i 1thissetofconditionsareequivalentto Q=QT>0, (cid:3)i<0, i=1,...,M, (cid:2) (cid:3) A¯TQ−1+Q−1A¯ +(cid:1)Q−1+(cid:3)−1ETE Q−1b¯ +(cid:3)−1ETf i (Q−1b¯i +i (cid:3)−i 1EiTfi)Ti i i −(cid:3)−i 1i(1−ifiTfii)i <0. (16) Thefollowinglemmawillpresentasetofequivalentconditionstoinequalities(16). Lemma4.1. Conditions(16)areequivalenttoQ=QT>0,(cid:3)i<0and 1−fiTfi<0, (17) A¯ Q+QA¯T+(cid:1)Q+(cid:3) b¯ b¯T i i i i i +((cid:3)ib¯ifiT+QETi)(cid:3)−i 1(I −fifiT)−1((cid:3)ib¯ifiT+QETi)T<0 (18) fori=1,...,M. Proof. TheconditionsQ=QT>0,(cid:3)i<0,i=1,...,M arethesameasin(16).Toderiveinequalities(17)and (18),usingSchurcomplement,theLMIin(16)isequivalentto1−fiTfi<0and Q−1A¯ +A¯TQ−1+(cid:1)Q−1+(cid:3)−1ETE i i i i i +(Q−1b¯i +(cid:3)−i 1EiTfi)(cid:3)i(1−fiTfi)−1(Q−1b¯i +(cid:3)−i 1EiTfi)T<0. (19) Leftmultiplyinginequality(19)byQandrightmultiplyingitbyQT=Qyieldstheequivalentcondition A¯ Q+QA¯T+(cid:1)Q+(cid:3)−1QETE QT i i i i i +(b¯i +(cid:3)−i 1QETifi)(cid:3)i(1−fiTfi)−1(b¯i +(cid:3)−i 1QETifi)T<0. (20) TheMatrixInversionLemma[16]statesthat(1−fiTfi)−1=1+fiT(I−fifiT)−1fi.Usingthisresult,expression (20)canberewrittenas A¯ Q+QA¯T+(cid:1)Q+(cid:3)−1QETE QT i i i i i +(b¯i +(cid:3)−i 1QETifi)(cid:3)i[1+fiT(I −fifiT)−1fi](b¯i +(cid:3)−i 1QETifi)T<0. (21) 840 L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 Expression(21)canbeexpandedas A¯ Q+QA¯T+(cid:1)Q+(cid:3)−1QETE QT+(cid:3) b¯ b¯T+(cid:3)−1(QETf )(QETf )T+b¯ fTE Q i i i i i i i i i i i i i i i i +QETifib¯iT+((cid:3)ib¯ifiT+QETififiT)(cid:3)−i 1(I −fifiT)−1((cid:3)ib¯ifiT+QETififiT)T<0. (22) Expression(22)canberewrittenas A¯ Q+QA¯T+(cid:1)Q+(cid:3) b¯ b¯T+(cid:3)−1QET(I +f fT)(QET)T+b¯ fT(QET)T i i i i i i i i i i i i i +QET(b¯ fT)T+((cid:3) b¯ fT+QET i i i i i i i −QETi(I −fifiT))(cid:3)−i 1(I −fifiT)−1((cid:3)ib¯ifiT+QETi −QETi(I −fifiT))T<0. (23) Inequality(23)canberearrangedintheform A¯ Q+QA¯T+(cid:1)Q+(cid:3) b¯ b¯T+((cid:3) b¯ fT+QET)(cid:3)−1(I −f fT)−1((cid:3) b¯ fT+QET)T i i i i i i i i i i i i i i i i +(cid:3)−1QET(I +f fT)(QET)T+b¯ fT(QET)T+QET(b¯ fT)T+(cid:3)−1QET(I −f fT)(QET)T i i i i i i i i i i i i i i i i −((cid:3)ib¯ifiT+QETi)(cid:3)−i 1(QETi)T−(cid:3)−i 1QETi((cid:3)ib¯ifiT+QETi)T<0. (24) Finally,thelasttworowsofexpression(24)cancelandweareleftwiththefollowingconditions: 1−fiTfi<0, (25) A¯iQ+QA¯Ti +(cid:1)Q+(cid:3)ib¯ib¯iT+((cid:3)ib¯ifiT+QETi)(cid:3)−i 1(I −fifiT)−1((cid:3)ib¯ifiT+QETi)T<0. (cid:3) (26) Thefollowingresultcannowbederived. Corollary4.1. Forpiecewise-affineslabsystemsconditions(16)areequivalentto Q=QT>0, (cid:3)i<0, i=1,...,M, (cid:2) (cid:3) A¯ Q+QA¯T+(cid:1)Q+(cid:3) b¯ b¯T (cid:3) b¯ fT+QET i ((cid:3)ib¯ifiiT+QETi)Ti i i −i(cid:3)ii(1i −fifiTi) <0. (27) Proof. Itfollowstriviallyfrom(25)to(26)applyingSchurcomplementandusingthefactthat1−fiTfi<0and I −fifiT<0areequivalentwhenfi isascalar,whichisthecaseforpiecewise-affineslabsystems. (cid:3) Remark1. ForanalternativepaththatenablestoderivesimilarresultsinamoregeneralsettingpleaseseeDuality Lemma4in[12]. Fortheremainderofthepaperwewillconcentrateonpiecewise-affineslabsystems.Performingthesubstitution A¯i =Ai +BiKi andintroducingnewvariablesYi =KiQin(27)yields Q=QT>0, (cid:3)i<0, i=1,...,M, (cid:2) (cid:3) A Q+QAT+B Y +YTBT+(cid:1)Q+(cid:3) b¯ b¯T (cid:3) b¯ fT+QET i i ((cid:3)ib¯iifiiT+Qi EiTi)T i i i −i(cid:3)ii(1i −fifiTi) <0, (28) whereb¯i =bi +Bimi.Thepiecewise-affinestatefeedbackstabilizationproblemisnowformallydefined. Definition4.1. Thepiecewise-affinestatefeedbacksynthesisproblem(problem1)is:forfixed(cid:1)(cid:2)0 find Q,Yi,mi,(cid:3)i s.t. Q=QT>0, (cid:3)i<0, (28), −l1 ≺Yi ≺l1,−l0 ≺mi ≺l0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalitiesandl ,l aregivenvectorbounds. 0 1 L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 841 Section 5 presents three algorithms to (approximately) solve this problem. The feasibility problem 1 can be transformedintoanoptimizationproblemiftheQwithminimumconditionnumberissoughtasfollows: Definition4.2. Theminimumconditionnumberpiecewise-affinestatefeedbackproblemis:forfixed(cid:1)(cid:2)0,(cid:4)>0 min (cid:5) s.t. (cid:5)>0, (cid:4)I<Q<(cid:5)(cid:4)I, Q=QT>0, (cid:3)i<0, (28), −l1 ≺Yi ≺l1,−l0 ≺mi ≺l0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalitiesandl ,l aregivenvectorbounds. 0 1 Usually(cid:4)isselectedtobeunitary. 4.2. Stabilization—problem2 To formulate problem 2, similarly to what was done in [21], the boundary description (7) is used to yield the followingconstraintsforcontinuityofthecontrolsignals: (Ki −Kj)Fij =0, (29) (Ki −Kj)lij +(mi −mj)=0, ∀j ∈Ni. (30) These constraints for continuity cannot be directly used in the problem from Definition 4.1 because Ki, i =1, ...,M, are not variables in that problem since the change of variables Yi =KiQ has been used. To be able to expressconstraints(29)–(30)onthevariablesYi,i=1,...,M,definethematrix Xij =[Fij lij]. (31) NotethatXij isinvertiblebecauseFij isfullrankandlij doesnotbelongtothecolumnspaceofFij byconstruction. Using(31),(29)–(30)canberewrittenas (Ki −Kj)Xij =[0m×(n−1) mj −mi], ∀j ∈Ni. (32) Then,using(32),thechangeofvariablesYi =KiQandinvertingXij,wecanwritetheconstraintsonYi,Yj as Yi =Yj +[0m×(n−1) mj −mi]Xi−j1Q, ∀j ∈Ni. (33) Thestabilizationproblem2isnowformallydefined. Definition4.3. Thestabilizationproblem2is:forfixed(cid:1)(cid:2)0 find Q,Yi,mi,(cid:3)i s.t. Q=QT>0, (cid:3)i<0, (28),(33), −l1 ≺Yi ≺l1,−l0 ≺mi ≺l0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalitiesandl ,l arevectorbounds. 0 1 Insummary,constraints(33)mustbeincludedintheoptimizationproblemtoguaranteethatthecontrolsignals arecontinuousattheswitchingboundaries. 842 L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 4.3. Decayratemaximization—problems3and4 In the problems of Sections 4.1 and 4.2 the parameter (cid:1) was fixed. Let now (cid:1), the desired decay rate for the globallyquadraticcontrolLyapunovfunction,beavariable.Then,wedefinetheperformancecriterion J=(cid:1). (34) Thecontrollerdesignproblemisnowtofindfromtheclassofcontrolsignalsparameterizedintheformu=Kiz+mi ineachregionRi,theonethatmaximizestheperformanceJ.Thisisformallydefinednext. Definition4.4. Thedecayrateoptimizationproblem3is: max (cid:1) s.t. Q=QT>0, (cid:3)i<0, (cid:1)>0, (28), −l1 ≺Yi ≺l1,−l0 ≺mi ≺l0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalitiesandl ,l arevectorbounds. 0 1 Finally, to formulate problem 4, it suffices to include the continuity constraints (33) in the optimization 4.4 yieldingthefollowingnewoptimizationproblem. Definition4.5. Thedecayrateoptimizationproblem4is max (cid:1) s.t. Q=QT>0, (cid:3)i<0, (cid:1)>0, (28),(33), −l1 ≺Yi ≺l1,−l0 ≺mi ≺l0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalitiesandl ,l arevectorbounds. 0 1 5. Solutionalgorithms Previous work [10] stated that piecewise-affine state feedback controller synthesis using a quadratic control Lyapunovfunctiondoesnotseemtobeconvex.Infact,itisclearfrom(28)thatthissynthesisproblemcannotbe formulatedasoneconvexprogrambecause(28)isnotanLMIiftheparametersmi,i=1,...,M areunknownbut ratheraninfinitesetofparameterizedLMIs.However,thissectionshowshowthepiecewise-affinestatefeedback synthesisproblemforpiecewise-affineslabsystemsusingagloballyquadraticLyapunovfunctioncanberelaxed andsolvedtoapointneartheglobaloptimuminanefficientwaybyafinitesetofLMIs.Threedifferentalgorithms willbepresentednext. 5.1. SolutionAlgorithm#1:samplingmethod The interesting observation here is that for fixed mi, i =1,...,M, expression (28) is indeed an LMI and the problemisconvex.Therefore,althoughtheproblemformulatedin(28)cannotbecastasoneconvexprogram,it is an infinite set of convex problems involving an LMI or, equivalently, an infinite number of LMIs analytically parameterizedbythevector(cid:6)=[mT1mT2 ...mTM]T.Sinceeachelementmi,i=1,...,M hasboundedcomponents, (cid:6) belongs to an hypercube. Effective meshing techniques can then be used to sample the hypercube and solve a finitenumberofLMIs.Thefollowingalgorithmissuggestedtosolvethestatefeedbackproblems1and2: Algorithm#1:samplingmethod. 1. Defineagridforthedomainofthevector(cid:6)tosampleitatNpoints, L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 843 2. Forfixed(cid:1)(cid:2)0,solvethecorrespondingfeasibilityDefinition4.1foreachofthepointsinthegriduntilafeasible pointisfound. 3. Ifstep2issuccessfulorifthemaximumnumberofiterationswasreached,stop.Otherwise,increasethegrid densityandgobacktoStep2. Remark2. Algorithm#1canbechangedtosolvetheproblemstatedinDefinition4.2andstoreforallgridpoints theonethatyieldstheminimumvalueof(cid:5).Thealgorithmcanbefurtherimprovedifthederivativeofthecostwith respectto(cid:6)iscomputedateachpoint.Then,foreachselectedsamplepoint,thenextsamplepointshouldbechosen inthedirectionoppositetothevectorderivative.Thisreducesthenumberofpointsfromthegridthatneedtobe used,thusreducingthecomputationalburdenofthealgorithm. Algorithm#1increasesthecomputationalcostasthegridbecomesdenserandcanbeprohibitiveforlargesystems. However,thegriddingapproachhasalreadybeenusedinotherrecentresearchonanalysis[9],LPVcontrol[23], gain-schedulingcontrol[23,1,2]andsometechniquesalreadyexisttoalleviatethecomputationalcostduetothe griddingphase[3,22]. 5.2. SolutionAlgorithms#2and#3:tracemaximizationmethods AnalternativealgorithmcanbedevelopedtosolvethestatefeedbackproblemstatedinDefinition4.1whenthe ellipsoidalcoverforeachregionisformedbyonlyoneellipsoid,whichisthecaseforpiecewise-affineslabsystems. Todevelopalternativealgorithmsforsuchcase,letusreturntoinequality(28)andperformthechangeofvariables Zi =(cid:3)imi, (35) Wi =(cid:3)imimTi =(cid:3)−i 1ZiZiT. (36) Then,inequality(28)canberewrittenas (cid:2) (cid:3) A Q+QAT+B Y +YTBT+(cid:1)Q+(cid:3) b bT+b ZTBT+B Z bT+B W BT (·) i i i i i i i i i i i i i i i i i i <0. (37) (((cid:3)ibi+BiZi)fiT+QETi)T −(cid:3)i(1−fifiT) This inequality is an LMI. Note that (35) is just a change of variables because mi is not involved in (37).After knowing(cid:3)iandZi,micanbeobtainedasmi=(cid:3)−i 1Zi.Therefore,constraint(35)canbehandledafterthesolutionto thecontrollerdesignoptimizationproblemisobtained.However,constraint(36)mustbeincludedinthecontroller designoptimizationproblembecauseitinvolvesvariablesthatappearin(37).Therefore,thefollowingproblemcan bedefined,whichisequivalenttoproblem1: Definition5.1. Thepiecewise-affinestatefeedbacksynthesisproblem(problem1b)is:forfixed(cid:1)(cid:2)0 find Q,Wi,Zi,Yi,mi,(cid:3)i s.t. Q=QT>0, (cid:3)i<0, (36),(37), −l1 ≺Yi ≺l1,−l0 ≺mi ≺l0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalitiesandl ,l aregivenvectorbounds. 0 1 The main obstacle here is that constraint (36) is not convex.Therefore the approach to be followed next is to replacethisconstraintbyasetofconvexconstraintsandformulateaconvexoptimizationproblemwhosesolution will also be a solution to problem 1b whenever the optimal value of the convex problem is zero. To do this, observethatbecause(cid:3)i<0,ifconstraint(36)isverifiedthenrank(Wi)=1andbyaSchurcomplementargument 844 L.Rodrigues,S.Boyd/Systems&ControlLetters54(2005)835–853 thefollowingconstraintsareverified: (cid:2) (cid:3) W Z W˜i = ZTi (cid:3)i (cid:1)0, i=1,...,M. (38) i i Letusnowdefinethefunctional (cid:4) Js=(cid:26) [trace(Wi)−(cid:3)−i 1ZiTZi]. (39) i Ifconstraint(38)isverified,weobservethatJs(cid:1)0andJs=0ifandonlyifWi=(cid:3)−i 1ZiZiT,i=1,...,M,which agreeswith(36).Thisdiscussionmotivatesthedefinitionofthefollowingmaximizationproblem: Definition5.2. Thetracemaximizationproblem(problem1c)is:forfixed(cid:1)(cid:2)0 max Js s.t. Q=QT>0, (cid:3)i<0, (37),(38), −l1 ≺Yi ≺l1,−l˜0 ≺Zi ≺l˜0, i=1,...,M, where(cid:23),≺meancomponent-wiseinequalities,l˜0,l1aregivenvectorboundsandQ,Yi,Zi,Wi,(cid:3)i,i=1,...,M aretheoptimizationvariables. Fromthepreviousdiscussionitisclearthatiftheoptimalvalueofproblem1cinDefinition5.2iszero,thenthe solutiontoproblem1cautomaticallyyieldsastabilizingpiecewise-affinestatefeedbackcontrollerwithguaranteed Lyapunovdecayrate(cid:1),i.e,ityieldsasolutiontoproblem1bandtotheoriginalproblem1inDefinition4.1.Since thefunctionalJsisnotconvex,followingtheideasexpressedin[11,7],anapproximationtothesolutionofproblem 1cisobtainedbythealgorithmthatispresentednext.LetnominalvaluesofthematricesZi ateachiterationk(cid:2)1 begivenbyZi,k−1,i=1,...,M.LetalsonominalvaluesfortheS-proceduremultiplierparametersbegivenas (cid:3)i,0 andlet(cid:1)(cid:3)i =(cid:3)i −(cid:3)i,0,i=1,...,M.Thedescriptionofthealgorithmnowfollows. Algorithm#2:Tracemaximization. 1. find Q,Yi,Zi,Wi,(cid:3)i s.t. Q=QT>0, (cid:3)i<0, (37),(38), −l1 ≺Yi ≺l1,−l˜0 ≺Zi ≺l˜0, i=1,...,M. Iftheproblemisnotfeasiblestop.Otherwise,set(cid:3)i,0=(cid:3)i,Zi,0=Zi,i=1,...,M,k=1andselectatolerance parameter(cid:7)>0. 2. Solve (cid:5) max [trace(Wi,k)−2(cid:3)−i,01ZiT,k−1Zi,k +(cid:3)−i,01ZiT,k−1Zi,k−1] i s.t. Q=QT>0, (cid:3)i<0, (cid:1)(cid:3)i(cid:2)0, (37),(38), −l1 ≺Yi ≺l1,−l˜0 ≺Zi ≺l˜0, i=1,...,M. 3. If the absolute value of Js obtained for the solution parameters of step 2 is less than (cid:7), or if the maximum numberofiterationshasbeenreached,stop.Otherwise,setZi,k−1=Zi,k,i=1,...,M,k=k+1,andgoto step2. (cid:5) Remark3. Notethatanequivalentfunctionaltobemaximizedis i[trace(Wi,k)−2(cid:3)−i,01ZiT,k−1Zi,k]becausethe term(cid:3)−i,01ZiT,k−1Zi,k−1isconstantatiterationk.

Description:
analysis and control of even some simple piecewise-affine systems have been shown to be either an NP hard problem or undecidable [4]. State and the condition for stabilizability can be cast as an LMI”, which apparently destroys the convex structure of the problem, making it hard to solve globall
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.