Picard curves with small conductor MichelBo¨rner,IreneI.Bouw,andStefanWewers 7 1 0 2 n a J 8 Abstract We study the conductorof Picard curves over Q, which is a product of ] local factors. Our results are based on previous results on stable reduction of su- G perellipticcurvesthatallowtocomputetheconductorexponent f attheprimes p p A ofbadreduction.Acarefulanalysisofthepossibilitiesofthestablereductionat p . yieldsrestrictionsontheconductorexponent f .We provethatPicardcurvesover h p t Q always have bad reductionat p=3, with f3 4. As an applicationwe discuss a ≥ thequestionoffindingPicardcurveswithsmallconductor. m [ Keywords: 2010MathematicsSubjectClassification.Primary14H25.Secondary: 1 11G30,14H45. v 6 8 9 1 Introduction 1 0 . LetY bea smoothprojectivecurveofgenusgovera numberfield K. Tosimplify 1 0 the exposition, let us assume that K =Q. WithY we can associate an L-function 7 L(Y,s)andaconductorN N.Conjecturally,theL-functionsatisfiesafunctional Y 1 equationoftheform ∈ v: L (Y,s)= L (Y,2 s), ± − i X where r L (Y,s):=√NYs (2p )−gs G (s)g L(Y,s). a · · · Bydefinition,bothL(Y,s)andN areaproductoflocalfactors.Inthispaperweare Y reallyonlyconcernedwiththeconductor,whichcanbewrittenas N =(cid:213) pfp. Y p Institutfu¨rReineMathematik,Universita¨tUlm e-mail:[email protected],e-mail:[email protected] 1 2 Bo¨rner,Bouw,Wewers Theexponent f iscalledtheconductorexponentofY at p.Itisknownthat f only p p depends on the ramification of the local Galois representation associated with Y. Inparticular,ifY hasgoodreductionat pthen f =0.IfY hasbadreductionat p p thenthecomputationof f canbequitedifficult.Untilrecently,aneffectivemethod p forcomputing f wasonlyknownforellipticcurves([24], IV.10)andforgenus2 p § curvesif p=2([11]). 6 Itwasshownin[2]that f caneffectivelybecomputedfromthestablereduction p ofY atp.Moreover,forcertainfamiliesofcurves(thesuperellipticcurves)wegave a rathersimple recipe forcomputingthe stable reduction.The latter resultneeded theassumptionthatpdoesnotdividethedegreen.In[18]thisrestrictionisremoved forsuperellipticcurvesofprimedegree. InthepresentpaperwesystematicallystudythecaseofPicardcurves.Theseare superellipticcurvesofgenus3anddegree3,givenbyanequationoftheform Y : y3= f(x)=x4+a x3+a x2+a x+a , 3 2 1 0 with f Q[x]separable.Picardcurvesforminsomesensethenextfamilyofcurves ∈ tostudyafterhyperellipticcurves.Theyareinterestingformanyreasonsandhave beenintensivelystudied,seee.g.[14],[8],[9],and[16]. Our main results classify all possible configurationsfor the stable reduction of aPicardcurveataprime p,andusethistodeterminerestrictionsontheconductor exponents.Forinstance,weprovethefollowing. Theorem1.1.LetY beaPicardcurveoverQ. (a)ThenY hasbadreductionat p=3,and f 4. 3 ≥ (b)For p=2wehave f =1. 2 6 (c)For p 5wehave f 0,2,4,6 . p ≥ ∈{ } Theorem3.6isasomewhatstrongerversionofthefirststatement.Theorem4.4 contains the last two statements. We also give explicit examples, showing that at least part of our results are sharp. Our result can be seen as a complement, for Picardcurves,toaresultofBrumer–Kramer([3],Theorem6.2),whoproveanupper boundfor f forabelianvarietiesoffixeddimension.Sincetheconductorofacurve p coincides with that of its Jacobian, the result applies to our situation, as well. A morecarefulcase-by-caseanalysis,combinedwithideasfrom[3],couldprobably beusedtoobtainamorepreciselistofpossiblevaluesfortheconductorexponent at p=2,3,aswell. In the last section we discuss the problem of constructing Picard curves with smallconductor.AsaconsequenceoftheShafarevichconjecture(akaFaltings’The- orem),thereareatmostafinitenumberofnonisomorphiccurvesofgivengenusand of boundedconductor.But except in very special cases, no effective proof of this theoremisknown. InhisrecentPhDthesis,thefirstnamedauthorhasmadeanextensivesearchfor Picardcurveswithgoodreductionoutsideasmallsetofsmallprimes,andcomputed theirconductor.ThePicardcurvewiththesmallestconductorthatwasfoundisthe curve Picardcurveswithsmallconductor 3 Y : y3=x4 1, − whichhasconductor N =2636=46656. Y Weproposeasasubjectforfurtherresearchtoeitherprovethattheaboveexample is thePicard curveoverQ with thesmallest possibleconductor,orto find (oneor all) counterexamples.We believethat the methodspresentedin thispaper maybe veryhelpfultoachievethisgoal. 2 Semistable reduction We first introduce the general setup concerning the stable reduction and the con- ductorexponentsofPicardcurves.Asexplainedintheintroduction,theconductor exponentisalocalinvariant,encodinginformationabouttheramificationofthelo- calGaloisrepresentationassociatedwiththecurve.Therefore,wemayreplacethe number field K by its strict henselization. In other words, we may work from the startoverahenselianfieldofmixedcharacteristicwithalgebraicallyclosedresidue field. 2.1 Setup andnotation ThroughoutSection2-4theletterKwilldenoteafieldofcharacteristiczerothatis henselianwithrespecttoadiscretevaluation.WedenotethevaluationringbyO , K themaximalidealofO bypandtheresiduefieldbyk=O /p.Weassumethatk K K isalgebraicallyclosedofcharacteristicp>0.Themostimportantexampleforusis whenK=Qnr isthemaximallyunramifiedextensionofthe p-adicnumbers.Then p p=(p)andk=F¯ . p LetY/KbeaPicardcurve,givenbytheequation Y : y3= f(x), (1) where f K[x]isaseparablepolynomialofdegree4.WesetX :=P1 andinterpret (1)asafi∈nitecoverf :Y X, (x,y) x,ofdegree3. K → 7→ By the Semistable Reduction Theorem (see [5]), there exists a finite extension L/KsuchthatthecurveY :=Y Lhassemistablereduction.Sinceg(Y)=3 2, L K thereevenexistsa(unique)distin⊗guishedsemistablemodelY SpecO ofY ≥,the L L stablemodel([5],Corollary2.7).ThespecialfiberY¯ :=Y ofY→iscalledthestable s reductionofY.Itisastablecurveoverk([5], 1),anditonlydependsonY,upto § uniqueisomorphism. ItisnorestrictiontoassumethattheextensionL/KisGaloisandcontainsathird rootofunityz L. Thenthe coverf :Y X (thebasechangeoff to L) isa 3 L L L ∈ → 4 Bo¨rner,Bouw,Wewers Galois cover. Its Galois group G is cyclic of order 3, generated by the element s whichisdeterminedby s (y)=z y. 3 Let G :=Gal(L/K) denote the Galois group of the extension L/K. The group G acts faithfully and in a natural way on the schemeY =Y L. We denote by G˜ L K thesubgroupofAut(Y )generatedbyGandtheimageofG⊗.By definition,G˜ isa L semidirectproduct, G˜ =G⋊G . TheactionofG onGviaconjugationisdeterminedbythefollowingformula:fort inG wehave s ift (z )=z , tst 1= 3 3 (2) − (s 2 ift (z 3)=z 32. Becauseoftheuniquenesspropertiesofthestablemodel,theactionofG˜ onY L extendstoanactiononY.Byrestriction,weseethatG˜ hasanatural,k-linearaction onY¯.ThisactionwillplayadecisiveroleinouranalysisofthestablereductionY¯. FortherestofthissubsectionwefocusontheactionofthesubgroupG G˜. The roleofthesubgroupG G˜ willbecomeimportantlater. ⊂ ⊂ Remark2.1. (a)ThequotientschemeX :=Y/GisasemistablemodelofX =P1, L L seee.g.[17],Cor.1.3.3.i.SincethemapY X isfiniteandY isnormal,Y is the normalization of X in the function→field of Y . This means that Y is L uniquelydeterminedbyasuitablesemistablemodelX ofX . L (b)LetX¯ :=X kdenotethespecialfiberofX andf¯ :Y¯ X¯ theinducedmap. Wenotethat⊗f¯ isafiniteG-invariantmap.Itisnottruein→generalthatY¯/G=X¯. However,the naturalmapY¯/G X¯ is radicialandin particulara homeomor- → phism(seee.g.[17],Prop.2.4.11). (c)EveryirreduciblecomponentW Y¯ issmooth.Toseethisnotethatthequotient ofW byitsstabilizerinGishom⊂eomorphictoanirreduciblecomponentZ X¯, whichisasmoothcurveofgenus0.IfW hasasingularpoint,thens actso⊂nW andpermutesthetwobranchesofW passingthroughthispoint.Butsinces has order3,thisisimpossible. LetD Y¯ denotethecomponentgraphofY¯:theverticesaretheirreduciblecomponents ofY¯ andtheedgescorrespondto thesingularpoints.ThestabilityconditionforY¯ means that an irreducible componentof genus0 correspondsto a vertex of D Y¯ of degree≥3.ThenumberofloopsofD Y¯ isgivenbythewellknownformula g (Y¯):=dimQH1(D Y¯,Q)=r−s+1, (3) whereristhenumberofedgesandsthenumberverticesofD Y¯. ThecurveX¯ isalsosemistable,butingeneralnotstable.SinceX¯ hasarithmetic genus0,thecomponentgraphD X¯ isatree,andeveryvertexcorrespondstoasmooth curveofgenus0.ItfollowsfromRemark2.1thatD X¯ =D Y¯/G. Lemma2.2.IfW Y¯ isanirreduciblecomponent,thens (W)=W. ⊂ Picardcurveswithsmallconductor 5 Proof. To deriveacontradiction,weassumethatW ,W ,W Y¯ arethreedistinct 1 2 3 componentsthatforma singleG-orbit.ThenWi ∼ Z:=f¯(W⊂i). SinceZ isa com- ponentofX¯,weconcludethatg(W)=0,fori=→1,2,3.Thestabilityconditionon i Y¯ implies that each W contains at least three singular points of Y¯. Hence Z also i containsatleastthreesingularpointsofX¯. LetY¯ Y¯ denote the unique morphism which contracts all componentsofY¯ 0 → except the W and which is an isomorphism on the intersection of W with the i i i smoothlocusofY¯.Similarly,letX¯ X¯ bethemapcontractingallc∪omponentsof 0 X¯ exceptZ.Thesemapsfitintoaco→mmutativediagram Y¯ //Y¯ 0 (cid:15)(cid:15) (cid:15)(cid:15) X¯ //X¯ , 0 wheretheverticalarrowsarequotientmapsbythegroupG(atleastfortheunder- lyingtopologicalspaces).Also,X¯0∼=Z. Letx¯ Z beoneofthesingularpointofX¯ lyingonZ,andletT X¯ theclosed subset w∈hich is contracted to x¯ Z =X¯ . Then T is a nonempty⊂and connected 0 unionofirreduciblecomponents∈ofX¯ andhenceasemistablecurveofgenus0.In particular,thecomponentgraphofT isatree.LetZ T beatailcomponent.Asa ′ componentofX¯,Z intersectstherestofX¯ inatmost⊂twopoints.LetW Y¯ bean ′ ′ irreduciblecomponentlyingaboveZ .ThestabilityofY¯ impliesthats (⊂W )=W ′ ′ ′ andthattheactionofs onW isnontrivial.(OtherwiseW wouldbehomeomorphic ′ ′ to Z, and henceW would be a component of genus 0 intersecting the rest ofY¯ ′ ′ in atmosttwo points.) Itfollowsthatthe inverseimageS Y¯ ofT isconnected. ⊂ NotethatS meetsthe componentW inthe uniquepointonW abovex¯. SinceS is i i connected,itfollowsthatthemapY¯ Y¯ contractsStoasinglepoint. 0 WeconcludethatthecurveY¯ has→atleastthreedistinctsingularpointswhereall 0 three componentsW meet. Equation(3) impliesthatg (Y¯ ) is atleast 1. It follows i 0 thatthearithmeticgenusofY¯ is 4,andhenceg(Y¯) 4aswell.Thisisacontra- 0 ≥ ≥ diction,andthelemmafollows. ⊓⊔ 2.2 Theconductor exponent Letcp be the conductorof the Gal(K¯/K)-representationHe1t(YK¯,Qℓ), see [22]. By definition,thisisanidealofO oftheform K c =pfp, p with f 0.Theinteger f iscalledtheconductorexponentofY/K.1 p p ≥ 1Whenworkinginalocalcontext, f isoftensimplycalledtheconductorofY. p 6 Bo¨rner,Bouw,Wewers We recall from [2] an explicit formula for f , in terms of the action of G = p Gal(L/K)onY¯.ForthisweletG u G ,foru 0,denotetheuthhigherramification group(inthe uppernumbering).W⊂e setY¯u:≥=Y¯/G u.NotethatY¯u isasemistable curveforallu.NotealsothatG =G 0 becausetheresiduefieldk isassumedtobe algebraicallyclosed. Proposition2.3.TheconductorexponentofthecurveY/Kisgivenby f =e +d , (4) p where e :=6 dimH1(Y¯0,Q ) (5) − et ℓ and ¥ d := 6 2g(Y¯u) du. (6) 0 − Z (cid:0) (cid:1) Proof. See[2],Theorem2.9and[1],Corollary2.14. ⊓⊔ Thee´talecohomologygroupH1(Y¯u,Q )decomposesas et ℓ He1t(Y¯u,Qℓ)=⊕WHe1t(W,Qℓ)⊕H1(D Y¯u,Qℓ), where the first sum runs overthe set of irreduciblecomponentsW of the normal- izationofY¯u andD Y¯u isthegraphofcomponentsofY¯u.(See[2],Lemma2.7.(1).) Therefore,thesecondtermin(5)canbewrittenas dimHe1t(Y¯0,Qℓ)=(cid:229) dimHe1t(W,Qℓ) + dimH1(D Y¯0). (7) W ThearithmeticgenusofY¯u,whichoccursin(6),isgivenbytheformula g(Y¯u)=(cid:229) g(W) + dimH1(D Y¯u). (8) W For future reference we note that dimH1(W,Q )=2g(W). The integer g (Y¯0):= et ℓ dimH1(D Y¯0) can be interpreted as the number of loops of the graph D Y¯0. It is boundedbyg(Y¯0),andhencebyg(Y)=3. Lemma2.4.Thefollowingstatementsareequivalent. (a)d =0. (b)G u actstriviallyonY¯,forallu>0. (c)ThecurveY hassemistablereductionoveratamelyramifiedextensionofK. Proof. Assumethatd =0.By(6)thismeansthat3=g(Y¯)=g(Y¯u)forallu>0. Using(8)oneeasilyshowsthatthismeansthatG u actstriviallyonthecomponent IgtrafoplhloDwY¯sothfaY¯t.GMuoarcetosvterirv,ifaolrlyevoenryY¯.coWmephoanveenptrWov⊂edY¯thweeimhapvliecagt(iWon)(=a)g(W(b)/.GTuh)e. ⇒ implication(b) (c)followsfrom[12],Theorem4.44.Theimplication(c) (a)fol- lowsimmediate⇒lyfromthedefinitionofd . ⇒ ⊓⊔ Picardcurveswithsmallconductor 7 3 The wildcase: p=3 Inthissectionweassumethat p=3.Wefirstanalyzethespecialfiberofthestable modelofY ,andshowthatthereareessentiallyfivereductiontypes.From 3.2we L § consider the case where K is absolutely unramified, and derive a lower boundfor theconductorexponent f . 3 3.1 Thestablemodel Wekeepallthenotationintroducedin 2.Inaddition,weassumethatp=3.Lemma § 2.2impliesthatwecandistinguishbetweentwotypesofirreduciblecomponentsof Y¯. Definition3.1.An irreducible componentW Y¯ is called e´tale if the restriction s Aut (W)isnontrivial.Ifs istheiden⊂tity,thenW iscalledaninseparable W k W | ∈ | component. LetW Y¯ be an irreduciblecomponent,and let Z :=f¯(W) X¯ be its image. Then Z is⊂an irreducible component of X¯ and hence a smooth⊂curve of genus 0. Lemma2.2showsthats (W)=W.ItfollowsthatW/G Z isahomeomorphism. → IfW isaninseparablecomponent,thenW Z isapurelyinseparablehomeomor- → phism(sinceW Zhasdegree3,thiscanonlyhappenwhenp=3).Itfollowsthat → everyinseparablecomponenthasgenuszero. IfW isane´talecomponent,thenZ=W/G,andW ZisaG-Galoiscover.For ∼ → future reference we recall that the Riemann–Hurwitz formula for wildly ramified Galoiscoversofcurvesyields (cid:229) 2g(W) 2= 2 3+ 2(h +1), (9) z − − · z wherethesumrunsoverthebranchpointsofW Zandh isthe(unique)jumpin z → thefiltrationofthehigherramificationgroupsinthelowernumbering.Wehavethat h 1isprimeto p([21], IV.2,Cor.2toProp.9). z ≥ § Theorem3.2.Weareinexactlyoneofthefollowingfivecases. (a)ThecurveY¯ issmoothandirreducible. (b)ThereareexactlytwocomponentsW ,W whicharebothe´tale,meetinasingle 1 2 point,andhavegenusg(W )=2,g(W )=1. 1 2 (c)Therearethreee´talecomponentsW ,W ,W ofgenusone,andoneinseparable 1 2 3 componentW ofgenuszero.Fori=1,2,3,W intersectsW inauniquepoint, 0 i 0 andtheseintersectionpointsarepreciselythesingularpointsofY¯. (d)TherearetwocomponentsW ,W whicharee´taleofgenusg(W )=1,g(W )= 1 2 1 2 0.Thereareexactlythreesingularpoints,whichformanorbitundertheaction ofG,andwhereW andW meet. 1 2 8 Bo¨rner,Bouw,Wewers (e)Therearethree componentsW ,W ,W ,whichare e´taleandofgenusg(W )= 1 2 3 1 g(W )=0andg(W )=1,andfoursingularpoints.Threeofthesingularpoints 2 3 are pointsofintersection ofW andW , andform anorbitunderthe actionof 1 2 G.ThefourthsingularpointisthepointofintersectionofW andW . 2 3 Proof. Letr (resp.s )bethenumberofsingularpoints(resp.irreduciblecompo- 1 1 nents) ofY¯ which are fixed by s , and let r (resp. s ) be the number of orbits of 2 2 singular point (resp. irreducible components) of Y¯ of length 3. Lemma 2.2 states thats =0.Therefore,(3)becomes 2 g (Y¯)=r s+1=r +3r s+1. (10) 1 2 − − BecauseD X¯ =D Y¯/Gisatree,wehave g (X¯):=dimH1(D X¯)=r1+r2−s+1=0. (11) Combining(10)and(11)weobtain g (Y¯)=2r . (12) 2 Since0 g (Y¯) 3,weconcludethatg (Y¯) 0,2 andr 0,1 . 2 ≤ ≤ ∈{ } ∈{ } Case1:r =0andg (Y¯)=0. 2 InthiscaseD Y¯ isatree,andthesumofthegeneraofallirreduciblecomponentsis 3.Inparticular,thereareatmost3componentsofgenus>0.Moreover,thestability conditionimpliesthateverycomponentofgenuszerocontainsatleastthreesingular pointsofY¯.Itisaneasycombinatorialexercisetoseethatthisleavesuswithexactly fourpossibilitiesforthetreeD Y¯.Goingthroughthesefourcaseswewillseethatone ofthemisexcluded,whiletheremainingthreecorrespondtoCase(a),(b),and(c) ofTheorem3.2. ThefirstcaseiswhenY¯ hasauniqueirreduciblecomponent.ThenY¯ issmooth. ThisisCase(a)ofthelemma.Secondly,theremaybetwoirreduciblecomponents, ofgenus1and2,andauniquesingularpoint.ThiscorrespondstoCase(b). Thirdly, there may be three irreducible components, each of genus 1, and two singularpoints.Weclaimthatthiscasecannotoccur.Indeed,oneofthethreecom- ponentswouldcontaintwosingularpoints,andeachofthesetwopointsmustbea fixedpointofs .ItfollowsthattheG-coverW Z=W/Gisramifiedinatleast → twopoints.TheRiemann–Hurwitzformula(9)impliesthatg(W) 2.Thisyieldsa ≥ contradiction,andweconcludethatthiscasedoesnotoccur. Finally,inthelastcase,therearefoursingularpointsandfourirreduciblecompo- nents.Threeofthemhavegenus1andonehasgenuszero.Thecomponentofgenus zeronecessarilycontainsallthreesingularpoints.Asimilarargumentasinthepre- viouscaseshowsthatthegenus-0componentcannotbee´tale.Thiscorrespondsto Case(c). Case2:g (Y¯)=2andr =1. 2 Inthiscasethesumofthegeneraofallcomponentsisequalto1.Therefore,there Picardcurveswithsmallconductor 9 mustbeauniquecomponentofgenus1,andallothercomponentshavegenus0.Let W andW betwocomponentswhichmeetinasingularpointy¯suchthats (y¯)=y¯. 1 2 Since s (W)=W for i=1,2 (Lemma 2.2),W andW are e´tale components6and i i 1 2 intersecteachotherinexactlythreepoints(theG-orbitofy¯). Iftherearenofurthercomponents,weareinCase(d).Assumethatthereexists athirdcomponentW .LetT Y¯ bethemaximalconnectedunionofcomponents 3 ⊂ whichcontainsW butneitherW norW .ThenT containsauniquecomponentW 3 1 2 0 which meets eitherW orW in a singular point. The component graph of T is a 1 2 tree,andweconsiderW asitsroot.Bythestabilitycondition,everytailcomponent 0 of T must have positive genus, so T has a unique tail. IfW is not this tail, it has 0 genus0andintersectstherestofY¯ inexactly2points.Thiscontradictsthestability condition. We conclude that Y¯ has exactly three components, of genus g(W )= 1 g(W )=0andg(W )=1.ThisisCase(e)ofthelemma.Nowtheproofiscomplete. 2 3 ⊓⊔ 3.2 Alower bound for f 3 We continue with the assumptions from the previous subsection. In addition, we assume that K is absolutelyunramified.By this we mean thatp=(3). Under this assumption,we provea lowerboundfortheconductorexponent f := f . Infact, 3 p we will give a lower bound for e , where f =e +d is the decomposition from 3 Proposition2.3.IfL/Kisatmosttamelyramified,thend =0(Lemma2.4).Inthis case,ourboundsaresharp. SinceK isabsolutelyunramified,thethirdrootofunityz Lisnotcontained 3 in K. Therefore,there exists an elementt G =Gal(L/K) su∈ch thatt (z )=z 2. Letmbetheorderoft .Afterreplacingt b∈yasuitableoddpowerofitself3wema3y assumethatmisapowerof2.Wekeepthisnotationfixedfortherestofthispaper. RecallthatthesemidirectproductG˜ =G⋊G actsonY¯ inanaturalway. Thefollowingobservationiscrucialforouranalysisoftheconductorexponent. Lemma3.3.LetW Y¯ be an e´tale componentsuch that t (W)=W. Then inside ⊂ theautomorphismgroupofW wehave t s t 1=s 2=s . (13) − ◦ ◦ 6 Inparticular,t isnontrivial. W | Proof. ThestatementfollowsimmediatelyfromEquation(2)andDefinition3.1. ⊓⊔ Despiteitssimplicity,Lemma3.3hasthefollowingstrikingconsequence.Note that we consider potentially good but not good reduction as bad reduction in this paper. Proposition3.4.Assume thatp=(3). Thenevery PicardcurveY overK hasbad reduction. 10 Bo¨rner,Bouw,Wewers Proof. Lemma3.3impliesthatY acquiressemistable reductiononlyafterpassing to a ramified extensionL z . ThereforeY/K doesnothavegoodreduction.The 3 fact that f = 0 follows f∋rom Proposition 2.3, together with the fact that t acts 3 nontriviallyo6 neachirreduciblecomponentofY¯ (Lemma3.3). ⊓⊔ Inordertoprovemorepreciselowerboundsfor f ,weneedtoanalyzetheaction 3 ofs andt onY¯ inmoredetail. Lemma3.5.Let W Y¯ be an e´tale component. Then one of the following cases ⊂ occurs: g(W) r h g(W/G 0) 0 1 1 0 1 1 2 0 2 2 (1,1) 1 3 1 4 0 Here r isthe numberoframificationpointsofthe G-coverW Z:=W/G andh → liststhesetoflowerjumps.Thefourthcolumngivesanupperboundforthegenus ofW/G 0. Proof. Recallthatwehaveassumedthattheordermoft isapowerof2. TheRiemann–Hurwitzformula(9)immediatelyyieldsthecasesforg(W),r,and h stated in the lemma, together with one additional possibility: the curve W has genus3 andf :W Z =P1 isbranchedattwo points,with lowerjump1and 2, → ∼ respectively.Weclaimthatthiscasedoesnotoccur. AssumethatW isane´talecomponentofY¯ suchthatf :W Z isbranchedat2 points.Lemma3.3impliesthatt actsnontriviallyonW.Since→t normalizess and thetwo ramificationpointshavedifferentlowerjumps,itfollowsthatt fixesboth ramificationpointsw off .WeconcludethatH:= s ,t actsonW asanonabelian i h i groupoforder6fixingthev. i Wewriteh forlowerjumpofw.Lemma2.6of[15]impliesthatgcd(h,m)isthe i i i orderoftheprime-to-3partofthecentralizerofH.Sincegcd(h ,m)=gcd(h ,m) 1 2 6 weobtainacontradiction,andconcludethatthiscasedoesnotoccur. We compute an upper bound for the genus ofW/ t in each of the remaining cases.Thisisalsoanupperboundforg(W/G 0). h i In the case thatg(W)=0 there is nothingto prove.In the case thatg(W)=1, theautomorphismt fixestheuniqueramificationpointoff ,henceg(W/G 0)=0. Assumethatg(W)=2.TheRiemann–Hurwitzformulaimmediatelyimpliesthat thatg(W/ t ) 1. h i ≤ Finally,weconsiderthecasethatg(W)=3,i.e.Y haspotentiallygoodreduction. Asbefore,wehavethatt fixestheuniquefixedpointofs .PutH= s ,t .Lemma 3.3togetherwiththeassumptionthattheordermoft isapowerofh2imipliesthat the order of the prime-to-p centralizer of H is gcd(h =4,m)= m/2. It follows that m=8. Since t has at least one fixed point onW, namely the point at ¥ , the Riemann–Hurwitz formula implies that g(W/ t )=0. This finishes the proof of h i thelemma. ⊓⊔