ebook img

Picard curves with small conductor PDF

0.22 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Picard curves with small conductor

Picard curves with small conductor MichelBo¨rner,IreneI.Bouw,andStefanWewers 7 1 0 2 n a J 8 Abstract We study the conductorof Picard curves over Q, which is a product of ] local factors. Our results are based on previous results on stable reduction of su- G perellipticcurvesthatallowtocomputetheconductorexponent f attheprimes p p A ofbadreduction.Acarefulanalysisofthepossibilitiesofthestablereductionat p . yieldsrestrictionsontheconductorexponent f .We provethatPicardcurvesover h p t Q always have bad reductionat p=3, with f3 4. As an applicationwe discuss a ≥ thequestionoffindingPicardcurveswithsmallconductor. m [ Keywords: 2010MathematicsSubjectClassification.Primary14H25.Secondary: 1 11G30,14H45. v 6 8 9 1 Introduction 1 0 . LetY bea smoothprojectivecurveofgenusgovera numberfield K. Tosimplify 1 0 the exposition, let us assume that K =Q. WithY we can associate an L-function 7 L(Y,s)andaconductorN N.Conjecturally,theL-functionsatisfiesafunctional Y 1 equationoftheform ∈ v: L (Y,s)= L (Y,2 s), ± − i X where r L (Y,s):=√NYs (2p )−gs G (s)g L(Y,s). a · · · Bydefinition,bothL(Y,s)andN areaproductoflocalfactors.Inthispaperweare Y reallyonlyconcernedwiththeconductor,whichcanbewrittenas N =(cid:213) pfp. Y p Institutfu¨rReineMathematik,Universita¨tUlm e-mail:[email protected],e-mail:[email protected] 1 2 Bo¨rner,Bouw,Wewers Theexponent f iscalledtheconductorexponentofY at p.Itisknownthat f only p p depends on the ramification of the local Galois representation associated with Y. Inparticular,ifY hasgoodreductionat pthen f =0.IfY hasbadreductionat p p thenthecomputationof f canbequitedifficult.Untilrecently,aneffectivemethod p forcomputing f wasonlyknownforellipticcurves([24], IV.10)andforgenus2 p § curvesif p=2([11]). 6 Itwasshownin[2]that f caneffectivelybecomputedfromthestablereduction p ofY atp.Moreover,forcertainfamiliesofcurves(thesuperellipticcurves)wegave a rathersimple recipe forcomputingthe stable reduction.The latter resultneeded theassumptionthatpdoesnotdividethedegreen.In[18]thisrestrictionisremoved forsuperellipticcurvesofprimedegree. InthepresentpaperwesystematicallystudythecaseofPicardcurves.Theseare superellipticcurvesofgenus3anddegree3,givenbyanequationoftheform Y : y3= f(x)=x4+a x3+a x2+a x+a , 3 2 1 0 with f Q[x]separable.Picardcurvesforminsomesensethenextfamilyofcurves ∈ tostudyafterhyperellipticcurves.Theyareinterestingformanyreasonsandhave beenintensivelystudied,seee.g.[14],[8],[9],and[16]. Our main results classify all possible configurationsfor the stable reduction of aPicardcurveataprime p,andusethistodeterminerestrictionsontheconductor exponents.Forinstance,weprovethefollowing. Theorem1.1.LetY beaPicardcurveoverQ. (a)ThenY hasbadreductionat p=3,and f 4. 3 ≥ (b)For p=2wehave f =1. 2 6 (c)For p 5wehave f 0,2,4,6 . p ≥ ∈{ } Theorem3.6isasomewhatstrongerversionofthefirststatement.Theorem4.4 contains the last two statements. We also give explicit examples, showing that at least part of our results are sharp. Our result can be seen as a complement, for Picardcurves,toaresultofBrumer–Kramer([3],Theorem6.2),whoproveanupper boundfor f forabelianvarietiesoffixeddimension.Sincetheconductorofacurve p coincides with that of its Jacobian, the result applies to our situation, as well. A morecarefulcase-by-caseanalysis,combinedwithideasfrom[3],couldprobably beusedtoobtainamorepreciselistofpossiblevaluesfortheconductorexponent at p=2,3,aswell. In the last section we discuss the problem of constructing Picard curves with smallconductor.AsaconsequenceoftheShafarevichconjecture(akaFaltings’The- orem),thereareatmostafinitenumberofnonisomorphiccurvesofgivengenusand of boundedconductor.But except in very special cases, no effective proof of this theoremisknown. InhisrecentPhDthesis,thefirstnamedauthorhasmadeanextensivesearchfor Picardcurveswithgoodreductionoutsideasmallsetofsmallprimes,andcomputed theirconductor.ThePicardcurvewiththesmallestconductorthatwasfoundisthe curve Picardcurveswithsmallconductor 3 Y : y3=x4 1, − whichhasconductor N =2636=46656. Y Weproposeasasubjectforfurtherresearchtoeitherprovethattheaboveexample is thePicard curveoverQ with thesmallest possibleconductor,orto find (oneor all) counterexamples.We believethat the methodspresentedin thispaper maybe veryhelpfultoachievethisgoal. 2 Semistable reduction We first introduce the general setup concerning the stable reduction and the con- ductorexponentsofPicardcurves.Asexplainedintheintroduction,theconductor exponentisalocalinvariant,encodinginformationabouttheramificationofthelo- calGaloisrepresentationassociatedwiththecurve.Therefore,wemayreplacethe number field K by its strict henselization. In other words, we may work from the startoverahenselianfieldofmixedcharacteristicwithalgebraicallyclosedresidue field. 2.1 Setup andnotation ThroughoutSection2-4theletterKwilldenoteafieldofcharacteristiczerothatis henselianwithrespecttoadiscretevaluation.WedenotethevaluationringbyO , K themaximalidealofO bypandtheresiduefieldbyk=O /p.Weassumethatk K K isalgebraicallyclosedofcharacteristicp>0.Themostimportantexampleforusis whenK=Qnr isthemaximallyunramifiedextensionofthe p-adicnumbers.Then p p=(p)andk=F¯ . p LetY/KbeaPicardcurve,givenbytheequation Y : y3= f(x), (1) where f K[x]isaseparablepolynomialofdegree4.WesetX :=P1 andinterpret (1)asafi∈nitecoverf :Y X, (x,y) x,ofdegree3. K → 7→ By the Semistable Reduction Theorem (see [5]), there exists a finite extension L/KsuchthatthecurveY :=Y Lhassemistablereduction.Sinceg(Y)=3 2, L K thereevenexistsa(unique)distin⊗guishedsemistablemodelY SpecO ofY ≥,the L L stablemodel([5],Corollary2.7).ThespecialfiberY¯ :=Y ofY→iscalledthestable s reductionofY.Itisastablecurveoverk([5], 1),anditonlydependsonY,upto § uniqueisomorphism. ItisnorestrictiontoassumethattheextensionL/KisGaloisandcontainsathird rootofunityz L. Thenthe coverf :Y X (thebasechangeoff to L) isa 3 L L L ∈ → 4 Bo¨rner,Bouw,Wewers Galois cover. Its Galois group G is cyclic of order 3, generated by the element s whichisdeterminedby s (y)=z y. 3 Let G :=Gal(L/K) denote the Galois group of the extension L/K. The group G acts faithfully and in a natural way on the schemeY =Y L. We denote by G˜ L K thesubgroupofAut(Y )generatedbyGandtheimageofG⊗.By definition,G˜ isa L semidirectproduct, G˜ =G⋊G . TheactionofG onGviaconjugationisdeterminedbythefollowingformula:fort inG wehave s ift (z )=z , tst 1= 3 3 (2) − (s 2 ift (z 3)=z 32. Becauseoftheuniquenesspropertiesofthestablemodel,theactionofG˜ onY L extendstoanactiononY.Byrestriction,weseethatG˜ hasanatural,k-linearaction onY¯.ThisactionwillplayadecisiveroleinouranalysisofthestablereductionY¯. FortherestofthissubsectionwefocusontheactionofthesubgroupG G˜. The roleofthesubgroupG G˜ willbecomeimportantlater. ⊂ ⊂ Remark2.1. (a)ThequotientschemeX :=Y/GisasemistablemodelofX =P1, L L seee.g.[17],Cor.1.3.3.i.SincethemapY X isfiniteandY isnormal,Y is the normalization of X in the function→field of Y . This means that Y is L uniquelydeterminedbyasuitablesemistablemodelX ofX . L (b)LetX¯ :=X kdenotethespecialfiberofX andf¯ :Y¯ X¯ theinducedmap. Wenotethat⊗f¯ isafiniteG-invariantmap.Itisnottruein→generalthatY¯/G=X¯. However,the naturalmapY¯/G X¯ is radicialandin particulara homeomor- → phism(seee.g.[17],Prop.2.4.11). (c)EveryirreduciblecomponentW Y¯ issmooth.Toseethisnotethatthequotient ofW byitsstabilizerinGishom⊂eomorphictoanirreduciblecomponentZ X¯, whichisasmoothcurveofgenus0.IfW hasasingularpoint,thens actso⊂nW andpermutesthetwobranchesofW passingthroughthispoint.Butsinces has order3,thisisimpossible. LetD Y¯ denotethecomponentgraphofY¯:theverticesaretheirreduciblecomponents ofY¯ andtheedgescorrespondto thesingularpoints.ThestabilityconditionforY¯ means that an irreducible componentof genus0 correspondsto a vertex of D Y¯ of degree≥3.ThenumberofloopsofD Y¯ isgivenbythewellknownformula g (Y¯):=dimQH1(D Y¯,Q)=r−s+1, (3) whereristhenumberofedgesandsthenumberverticesofD Y¯. ThecurveX¯ isalsosemistable,butingeneralnotstable.SinceX¯ hasarithmetic genus0,thecomponentgraphD X¯ isatree,andeveryvertexcorrespondstoasmooth curveofgenus0.ItfollowsfromRemark2.1thatD X¯ =D Y¯/G. Lemma2.2.IfW Y¯ isanirreduciblecomponent,thens (W)=W. ⊂ Picardcurveswithsmallconductor 5 Proof. To deriveacontradiction,weassumethatW ,W ,W Y¯ arethreedistinct 1 2 3 componentsthatforma singleG-orbit.ThenWi ∼ Z:=f¯(W⊂i). SinceZ isa com- ponentofX¯,weconcludethatg(W)=0,fori=→1,2,3.Thestabilityconditionon i Y¯ implies that each W contains at least three singular points of Y¯. Hence Z also i containsatleastthreesingularpointsofX¯. LetY¯ Y¯ denote the unique morphism which contracts all componentsofY¯ 0 → except the W and which is an isomorphism on the intersection of W with the i i i smoothlocusofY¯.Similarly,letX¯ X¯ bethemapcontractingallc∪omponentsof 0 X¯ exceptZ.Thesemapsfitintoaco→mmutativediagram Y¯ //Y¯ 0 (cid:15)(cid:15) (cid:15)(cid:15) X¯ //X¯ , 0 wheretheverticalarrowsarequotientmapsbythegroupG(atleastfortheunder- lyingtopologicalspaces).Also,X¯0∼=Z. Letx¯ Z beoneofthesingularpointofX¯ lyingonZ,andletT X¯ theclosed subset w∈hich is contracted to x¯ Z =X¯ . Then T is a nonempty⊂and connected 0 unionofirreduciblecomponents∈ofX¯ andhenceasemistablecurveofgenus0.In particular,thecomponentgraphofT isatree.LetZ T beatailcomponent.Asa ′ componentofX¯,Z intersectstherestofX¯ inatmost⊂twopoints.LetW Y¯ bean ′ ′ irreduciblecomponentlyingaboveZ .ThestabilityofY¯ impliesthats (⊂W )=W ′ ′ ′ andthattheactionofs onW isnontrivial.(OtherwiseW wouldbehomeomorphic ′ ′ to Z, and henceW would be a component of genus 0 intersecting the rest ofY¯ ′ ′ in atmosttwo points.) Itfollowsthatthe inverseimageS Y¯ ofT isconnected. ⊂ NotethatS meetsthe componentW inthe uniquepointonW abovex¯. SinceS is i i connected,itfollowsthatthemapY¯ Y¯ contractsStoasinglepoint. 0 WeconcludethatthecurveY¯ has→atleastthreedistinctsingularpointswhereall 0 three componentsW meet. Equation(3) impliesthatg (Y¯ ) is atleast 1. It follows i 0 thatthearithmeticgenusofY¯ is 4,andhenceg(Y¯) 4aswell.Thisisacontra- 0 ≥ ≥ diction,andthelemmafollows. ⊓⊔ 2.2 Theconductor exponent Letcp be the conductorof the Gal(K¯/K)-representationHe1t(YK¯,Qℓ), see [22]. By definition,thisisanidealofO oftheform K c =pfp, p with f 0.Theinteger f iscalledtheconductorexponentofY/K.1 p p ≥ 1Whenworkinginalocalcontext, f isoftensimplycalledtheconductorofY. p 6 Bo¨rner,Bouw,Wewers We recall from [2] an explicit formula for f , in terms of the action of G = p Gal(L/K)onY¯.ForthisweletG u G ,foru 0,denotetheuthhigherramification group(inthe uppernumbering).W⊂e setY¯u:≥=Y¯/G u.NotethatY¯u isasemistable curveforallu.NotealsothatG =G 0 becausetheresiduefieldk isassumedtobe algebraicallyclosed. Proposition2.3.TheconductorexponentofthecurveY/Kisgivenby f =e +d , (4) p where e :=6 dimH1(Y¯0,Q ) (5) − et ℓ and ¥ d := 6 2g(Y¯u) du. (6) 0 − Z (cid:0) (cid:1) Proof. See[2],Theorem2.9and[1],Corollary2.14. ⊓⊔ Thee´talecohomologygroupH1(Y¯u,Q )decomposesas et ℓ He1t(Y¯u,Qℓ)=⊕WHe1t(W,Qℓ)⊕H1(D Y¯u,Qℓ), where the first sum runs overthe set of irreduciblecomponentsW of the normal- izationofY¯u andD Y¯u isthegraphofcomponentsofY¯u.(See[2],Lemma2.7.(1).) Therefore,thesecondtermin(5)canbewrittenas dimHe1t(Y¯0,Qℓ)=(cid:229) dimHe1t(W,Qℓ) + dimH1(D Y¯0). (7) W ThearithmeticgenusofY¯u,whichoccursin(6),isgivenbytheformula g(Y¯u)=(cid:229) g(W) + dimH1(D Y¯u). (8) W For future reference we note that dimH1(W,Q )=2g(W). The integer g (Y¯0):= et ℓ dimH1(D Y¯0) can be interpreted as the number of loops of the graph D Y¯0. It is boundedbyg(Y¯0),andhencebyg(Y)=3. Lemma2.4.Thefollowingstatementsareequivalent. (a)d =0. (b)G u actstriviallyonY¯,forallu>0. (c)ThecurveY hassemistablereductionoveratamelyramifiedextensionofK. Proof. Assumethatd =0.By(6)thismeansthat3=g(Y¯)=g(Y¯u)forallu>0. Using(8)oneeasilyshowsthatthismeansthatG u actstriviallyonthecomponent IgtrafoplhloDwY¯sothfaY¯t.GMuoarcetosvterirv,ifaolrlyevoenryY¯.coWmephoanveenptrWov⊂edY¯thweeimhapvliecagt(iWon)(=a)g(W(b)/.GTuh)e. ⇒ implication(b) (c)followsfrom[12],Theorem4.44.Theimplication(c) (a)fol- lowsimmediate⇒lyfromthedefinitionofd . ⇒ ⊓⊔ Picardcurveswithsmallconductor 7 3 The wildcase: p=3 Inthissectionweassumethat p=3.Wefirstanalyzethespecialfiberofthestable modelofY ,andshowthatthereareessentiallyfivereductiontypes.From 3.2we L § consider the case where K is absolutely unramified, and derive a lower boundfor theconductorexponent f . 3 3.1 Thestablemodel Wekeepallthenotationintroducedin 2.Inaddition,weassumethatp=3.Lemma § 2.2impliesthatwecandistinguishbetweentwotypesofirreduciblecomponentsof Y¯. Definition3.1.An irreducible componentW Y¯ is called e´tale if the restriction s Aut (W)isnontrivial.Ifs istheiden⊂tity,thenW iscalledaninseparable W k W | ∈ | component. LetW Y¯ be an irreduciblecomponent,and let Z :=f¯(W) X¯ be its image. Then Z is⊂an irreducible component of X¯ and hence a smooth⊂curve of genus 0. Lemma2.2showsthats (W)=W.ItfollowsthatW/G Z isahomeomorphism. → IfW isaninseparablecomponent,thenW Z isapurelyinseparablehomeomor- → phism(sinceW Zhasdegree3,thiscanonlyhappenwhenp=3).Itfollowsthat → everyinseparablecomponenthasgenuszero. IfW isane´talecomponent,thenZ=W/G,andW ZisaG-Galoiscover.For ∼ → future reference we recall that the Riemann–Hurwitz formula for wildly ramified Galoiscoversofcurvesyields (cid:229) 2g(W) 2= 2 3+ 2(h +1), (9) z − − · z wherethesumrunsoverthebranchpointsofW Zandh isthe(unique)jumpin z → thefiltrationofthehigherramificationgroupsinthelowernumbering.Wehavethat h 1isprimeto p([21], IV.2,Cor.2toProp.9). z ≥ § Theorem3.2.Weareinexactlyoneofthefollowingfivecases. (a)ThecurveY¯ issmoothandirreducible. (b)ThereareexactlytwocomponentsW ,W whicharebothe´tale,meetinasingle 1 2 point,andhavegenusg(W )=2,g(W )=1. 1 2 (c)Therearethreee´talecomponentsW ,W ,W ofgenusone,andoneinseparable 1 2 3 componentW ofgenuszero.Fori=1,2,3,W intersectsW inauniquepoint, 0 i 0 andtheseintersectionpointsarepreciselythesingularpointsofY¯. (d)TherearetwocomponentsW ,W whicharee´taleofgenusg(W )=1,g(W )= 1 2 1 2 0.Thereareexactlythreesingularpoints,whichformanorbitundertheaction ofG,andwhereW andW meet. 1 2 8 Bo¨rner,Bouw,Wewers (e)Therearethree componentsW ,W ,W ,whichare e´taleandofgenusg(W )= 1 2 3 1 g(W )=0andg(W )=1,andfoursingularpoints.Threeofthesingularpoints 2 3 are pointsofintersection ofW andW , andform anorbitunderthe actionof 1 2 G.ThefourthsingularpointisthepointofintersectionofW andW . 2 3 Proof. Letr (resp.s )bethenumberofsingularpoints(resp.irreduciblecompo- 1 1 nents) ofY¯ which are fixed by s , and let r (resp. s ) be the number of orbits of 2 2 singular point (resp. irreducible components) of Y¯ of length 3. Lemma 2.2 states thats =0.Therefore,(3)becomes 2 g (Y¯)=r s+1=r +3r s+1. (10) 1 2 − − BecauseD X¯ =D Y¯/Gisatree,wehave g (X¯):=dimH1(D X¯)=r1+r2−s+1=0. (11) Combining(10)and(11)weobtain g (Y¯)=2r . (12) 2 Since0 g (Y¯) 3,weconcludethatg (Y¯) 0,2 andr 0,1 . 2 ≤ ≤ ∈{ } ∈{ } Case1:r =0andg (Y¯)=0. 2 InthiscaseD Y¯ isatree,andthesumofthegeneraofallirreduciblecomponentsis 3.Inparticular,thereareatmost3componentsofgenus>0.Moreover,thestability conditionimpliesthateverycomponentofgenuszerocontainsatleastthreesingular pointsofY¯.Itisaneasycombinatorialexercisetoseethatthisleavesuswithexactly fourpossibilitiesforthetreeD Y¯.Goingthroughthesefourcaseswewillseethatone ofthemisexcluded,whiletheremainingthreecorrespondtoCase(a),(b),and(c) ofTheorem3.2. ThefirstcaseiswhenY¯ hasauniqueirreduciblecomponent.ThenY¯ issmooth. ThisisCase(a)ofthelemma.Secondly,theremaybetwoirreduciblecomponents, ofgenus1and2,andauniquesingularpoint.ThiscorrespondstoCase(b). Thirdly, there may be three irreducible components, each of genus 1, and two singularpoints.Weclaimthatthiscasecannotoccur.Indeed,oneofthethreecom- ponentswouldcontaintwosingularpoints,andeachofthesetwopointsmustbea fixedpointofs .ItfollowsthattheG-coverW Z=W/Gisramifiedinatleast → twopoints.TheRiemann–Hurwitzformula(9)impliesthatg(W) 2.Thisyieldsa ≥ contradiction,andweconcludethatthiscasedoesnotoccur. Finally,inthelastcase,therearefoursingularpointsandfourirreduciblecompo- nents.Threeofthemhavegenus1andonehasgenuszero.Thecomponentofgenus zeronecessarilycontainsallthreesingularpoints.Asimilarargumentasinthepre- viouscaseshowsthatthegenus-0componentcannotbee´tale.Thiscorrespondsto Case(c). Case2:g (Y¯)=2andr =1. 2 Inthiscasethesumofthegeneraofallcomponentsisequalto1.Therefore,there Picardcurveswithsmallconductor 9 mustbeauniquecomponentofgenus1,andallothercomponentshavegenus0.Let W andW betwocomponentswhichmeetinasingularpointy¯suchthats (y¯)=y¯. 1 2 Since s (W)=W for i=1,2 (Lemma 2.2),W andW are e´tale components6and i i 1 2 intersecteachotherinexactlythreepoints(theG-orbitofy¯). Iftherearenofurthercomponents,weareinCase(d).Assumethatthereexists athirdcomponentW .LetT Y¯ bethemaximalconnectedunionofcomponents 3 ⊂ whichcontainsW butneitherW norW .ThenT containsauniquecomponentW 3 1 2 0 which meets eitherW orW in a singular point. The component graph of T is a 1 2 tree,andweconsiderW asitsroot.Bythestabilitycondition,everytailcomponent 0 of T must have positive genus, so T has a unique tail. IfW is not this tail, it has 0 genus0andintersectstherestofY¯ inexactly2points.Thiscontradictsthestability condition. We conclude that Y¯ has exactly three components, of genus g(W )= 1 g(W )=0andg(W )=1.ThisisCase(e)ofthelemma.Nowtheproofiscomplete. 2 3 ⊓⊔ 3.2 Alower bound for f 3 We continue with the assumptions from the previous subsection. In addition, we assume that K is absolutelyunramified.By this we mean thatp=(3). Under this assumption,we provea lowerboundfortheconductorexponent f := f . Infact, 3 p we will give a lower bound for e , where f =e +d is the decomposition from 3 Proposition2.3.IfL/Kisatmosttamelyramified,thend =0(Lemma2.4).Inthis case,ourboundsaresharp. SinceK isabsolutelyunramified,thethirdrootofunityz Lisnotcontained 3 in K. Therefore,there exists an elementt G =Gal(L/K) su∈ch thatt (z )=z 2. Letmbetheorderoft .Afterreplacingt b∈yasuitableoddpowerofitself3wema3y assumethatmisapowerof2.Wekeepthisnotationfixedfortherestofthispaper. RecallthatthesemidirectproductG˜ =G⋊G actsonY¯ inanaturalway. Thefollowingobservationiscrucialforouranalysisoftheconductorexponent. Lemma3.3.LetW Y¯ be an e´tale componentsuch that t (W)=W. Then inside ⊂ theautomorphismgroupofW wehave t s t 1=s 2=s . (13) − ◦ ◦ 6 Inparticular,t isnontrivial. W | Proof. ThestatementfollowsimmediatelyfromEquation(2)andDefinition3.1. ⊓⊔ Despiteitssimplicity,Lemma3.3hasthefollowingstrikingconsequence.Note that we consider potentially good but not good reduction as bad reduction in this paper. Proposition3.4.Assume thatp=(3). Thenevery PicardcurveY overK hasbad reduction. 10 Bo¨rner,Bouw,Wewers Proof. Lemma3.3impliesthatY acquiressemistable reductiononlyafterpassing to a ramified extensionL z . ThereforeY/K doesnothavegoodreduction.The 3 fact that f = 0 follows f∋rom Proposition 2.3, together with the fact that t acts 3 nontriviallyo6 neachirreduciblecomponentofY¯ (Lemma3.3). ⊓⊔ Inordertoprovemorepreciselowerboundsfor f ,weneedtoanalyzetheaction 3 ofs andt onY¯ inmoredetail. Lemma3.5.Let W Y¯ be an e´tale component. Then one of the following cases ⊂ occurs: g(W) r h g(W/G 0) 0 1 1 0 1 1 2 0 2 2 (1,1) 1 3 1 4 0 Here r isthe numberoframificationpointsofthe G-coverW Z:=W/G andh → liststhesetoflowerjumps.Thefourthcolumngivesanupperboundforthegenus ofW/G 0. Proof. Recallthatwehaveassumedthattheordermoft isapowerof2. TheRiemann–Hurwitzformula(9)immediatelyyieldsthecasesforg(W),r,and h stated in the lemma, together with one additional possibility: the curve W has genus3 andf :W Z =P1 isbranchedattwo points,with lowerjump1and 2, → ∼ respectively.Weclaimthatthiscasedoesnotoccur. AssumethatW isane´talecomponentofY¯ suchthatf :W Z isbranchedat2 points.Lemma3.3impliesthatt actsnontriviallyonW.Since→t normalizess and thetwo ramificationpointshavedifferentlowerjumps,itfollowsthatt fixesboth ramificationpointsw off .WeconcludethatH:= s ,t actsonW asanonabelian i h i groupoforder6fixingthev. i Wewriteh forlowerjumpofw.Lemma2.6of[15]impliesthatgcd(h,m)isthe i i i orderoftheprime-to-3partofthecentralizerofH.Sincegcd(h ,m)=gcd(h ,m) 1 2 6 weobtainacontradiction,andconcludethatthiscasedoesnotoccur. We compute an upper bound for the genus ofW/ t in each of the remaining cases.Thisisalsoanupperboundforg(W/G 0). h i In the case thatg(W)=0 there is nothingto prove.In the case thatg(W)=1, theautomorphismt fixestheuniqueramificationpointoff ,henceg(W/G 0)=0. Assumethatg(W)=2.TheRiemann–Hurwitzformulaimmediatelyimpliesthat thatg(W/ t ) 1. h i ≤ Finally,weconsiderthecasethatg(W)=3,i.e.Y haspotentiallygoodreduction. Asbefore,wehavethatt fixestheuniquefixedpointofs .PutH= s ,t .Lemma 3.3togetherwiththeassumptionthattheordermoft isapowerofh2imipliesthat the order of the prime-to-p centralizer of H is gcd(h =4,m)= m/2. It follows that m=8. Since t has at least one fixed point onW, namely the point at ¥ , the Riemann–Hurwitz formula implies that g(W/ t )=0. This finishes the proof of h i thelemma. ⊓⊔

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.