SOCIETA` ITALIANA DI FISICA RENDICONTI DELLA SCUOLA INTERNAZIONALE DI FISICA “ENRICO FERMI” CLXXIV Corso a cura di A. Dupasquier e A. P. Mills jr. Direttori del Corso e di R. S. Brusa VARENNA SUL LAGO DI COMO VILLA MONASTERO 7 – 17 Luglio 2009 Fisica con molti positroni 2010 SOCIETA` ITALIANA DI FISICA BOLOGNA-ITALY ITALIAN PHYSICAL SOCIETY PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS “ENRICO FERMI” Course CLXXIV edited by A. Dupasquier and A. P. Mills jr. Directors of the Course and R. S. Brusa VARENNA ON LAKE COMO VILLA MONASTERO 7 – 17 July 2009 Physics with Many Positrons 2010 AMSTERDAM, OXFORD, TOKIO, WASHINGTON DC Copyright (cid:2)c 2010 by Societa` Italiana di Fisica All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISSN 0074-784X (print) ISSN 1879-8195 (online) ISBN 978-1-60750-646-1 (print) (IOS Press) ISBN 978-1-60750-647-8 (online) (IOS Press) ISBN 978-88-7438-059-6 (SIF) LCCN 2010939898 Production Manager Copy Editor A. Oleandri M. Missiroli jointly published and distributed by: IOS PRESS SOCIETA` ITALIANA DI FISICA Nieuwe Hemweg 6B Via Saragozza 12 1013 BG Amsterdam 40123 Bologna The Netherlands Italy fax: +31 20 687 0019 fax: +39 051 581340 [email protected] [email protected] Distributor in the USA and Canada IOS Press, Inc. 4502 Rachael Manor Drive Fairfax, VA 22032 USA fax: +1 703 323 3668 [email protected] Proprieta` Letteraria Riservata Printed in Italy Supported by Istituto Nazionale di Fisica Nucleare (INFN) Dipartimento di Fisica, Politecnico di Milano Dipartimento di Fisica, Universita` di Trento First Point Scientific, Inc. (www.firstpsi.com) Washington State University University of California - Riverside This page intentionally left blank INDICE R. S. Brusa, A. Dupasquier and A. P. Mills jr. – Preface........... pag.XVII Gruppo fotografico dei partecipanti al Corso .......................... XX (cid:0) D. B. Cassidy – Experiments with many-positron systems ............. 1 (cid:0) 1. Introduction.................................................... 1 (cid:0) 2. Positron accumulation............................................ 5 . (cid:0) 21. Positron beam ............................................. 7 . (cid:0) 22. Positron accumulator ....................................... 10 . (cid:0) 23. Positron plasma compression ................................. 13 (cid:0) 3. Productionand detection of intense positron pulses ................... 23 . (cid:0) 31. Single-shot positron annihilationlifetime spectroscopy ............ 23 . (cid:0) 32. Fast detectors.............................................. 27 . (cid:0) 32.1. Lead tungstate: PbWO4 .............................. 28 . (cid:0) 32.2. Lead fluoride: PbF2 .................................. 28 . (cid:0) 33. Spatiotemporalcompression.................................. 32 (cid:0) 4. Experiments with intense positron pulses............................ 33 . (cid:0) 41. Positroniumformation in porous materials...................... 35 . (cid:0) 41.1. Ps diffusion ......................................... 36 . (cid:0) 41.2. Ps cooling .......................................... 38 . (cid:0) 42. Laser spectroscopyof positronium............................. 40 . (cid:0) 43. Interactionsbetween positroniumatoms........................ 45 . (cid:0) 43.1. The effect of Ps-Ps quenching on lifetime spectra .......... 47 . (cid:0) 43.2. Spin exchange quenching .............................. 50 . (cid:0) 43.3. Molecular positroniumformation ....................... 55 . (cid:0) 44. Positroniumas a probe of transient phenomena ................. 59 (cid:0) 5. Concludingremarks and future work ............................... 64 (cid:0) A. P. Mills jr. – Physics with many positrons........................ 77 (cid:0) 1. Physics with many positrons ...................................... 77 . (cid:0) 11. Introduction............................................... 77 . (cid:0) 11.1. Last of the polyelectrons .............................. 79 . (cid:0) 11.2. Observation of positroniummolecules.................... 81 . (cid:0) 11.3. Dreams of the gamma-ray laser......................... 81 . (cid:0) 11.4. Many-positronphysics ................................ 82 (cid:0) VII indice VIII . 12. Many-positronstates........................................ pag. 89 . 12.1. Introduction......................................... 89 . (cid:0) 12.2. Positron surface states ................................ 91 . (cid:0) 12.3. Many positrons in a solid.............................. 95 . (cid:0) 13. Ps-Ps Scattering and Ps2 molecule formation from Ps surface states 96 . (cid:0) 13.1. Ps2 formation interaction radius for dense positronium (Ps) on an insulator surface ................................ 96 . (cid:0) 13.2. ScatteringstatesoftwoPsatomswithgiventotalspinangular momentum.......................................... 100 . (cid:0) 13.3. ModelforthermalinactivationofPs2formationinporoussilica 104 . (cid:0) 13.4. Model for thermal dissociation of Ps2 in a cavity neglecting wall interactions ..................................... 105 . (cid:0) 13.5. Thermal desorption of positroniumfrom an insulator surface 109 . (cid:0) 14. Neutral plasmas............................................ 112 . + − (cid:0) 14.1. Low density e -e plasmas ............................ 112 . (cid:0) 14.2. Long-term storage of low-density neutral electron-positron plasmas ............................................ 116 . (cid:0) 14.3. Thermalizationof the positronsand electrons............. 119 . + − (cid:0) 14.4. High density e -e plasmas............................ 121 (cid:0) 2. PositroniumBose-Einstein condensation............................. 121 . (cid:0) 21. Introductorymaterial ....................................... 121 . (cid:0) 21.1. Identicalparticles .................................... 121 . (cid:0) 21.2. Consequences of particle identity ....................... 123 . (cid:0) 21.3. Stimulated emission .................................. 123 . (cid:0) 22. Formation of polarized positronium............................ 124 . (cid:0) 23. Laser cooling of positronium ................................. 124 . (cid:0) 23.1. Introduction......................................... 124 . (cid:0) 23.2. Pulsed laser cooling................................... 126 . (cid:0) 23.3. Sub-recoilcooling .................................... 128 . (cid:0) 24. BEC physics............................................... 129 . (cid:0) 24.1. Introduction......................................... 129 . (cid:0) 24.2. Importanceof positroniumBose-Einstein condensation ..... 130 . (cid:0) 24.3. Approach to thermal equilibrium in a Ps BEC ............ 131 . (cid:0) 24.4. Approach to phase coherence in a Ps BEC ............... 133 . (cid:0) 24.5. Effects of a fixed randompotential ...................... 133 . (cid:0) 25. BEC in alternate geometries ................................. 133 . (cid:0) 25.1. Introduction......................................... 133 . (cid:0) 25.2. Condensation........................................ 135 . (cid:0) 25.3. Spin exchange quenching .............................. 139 . (cid:0) 25.4. Special geometries.................................... 141 . (cid:0) 25.5. Superfluidity ........................................ 142 (cid:0) 3. Optical experiments on positronium ................................ 143 . (cid:0) 31. Motivation for measurements on antimatter..................... 143 . (cid:0) 32. Inducing triplet-to-singlet transitionsin positronium ............. 144 . (cid:0) 32.1. Ground-statehyperfine transitions ...................... 144 . (cid:0) 32.2. Triplet-singlet mixing via a pulsed magnetic field .......... 145 . (cid:0) 33. Laser requirements for experiments on positronium .............. 145 . (cid:0) 33.1. Laser excitation of Ps 1S-2P transitionsin vacuum ........ 145 3.3.2. Measurement of the 1So to 1Pe interval of Ps2 ............ (cid:0) 146 . (cid:0) 33.3. Laser cooling of a cloud of Ps atoms..................... 147 (cid:0) indice IX . 33.4. Photographthe Ps molasses ........................... pag. 148 . 33.5. Measurement of the first-order Doppler-free cold Ps 1S-2S linewidth ........................................... 149 . (cid:0) 33.6. First-orderDoppler-freetwo-photon(452nm)measurementof the 1So to 1So∗ interval of Ps2 ......................... 149 . (cid:0) 33.7. Laser cooling of Ps atoms confined in a small cavity........ 149 . (cid:0) 33.8. Formationofalaser-cooledpositroniumBose-Einsteinconden- sate (BEC) in a cavity ................................ 150 . (cid:0) 33.9. Optical observationsof cavity positronium ............... 151 . (cid:0) 33.10. Observation of the Bose-Einstein condensationof positronium 154 . (cid:0) 33.11. Demonstration of positroniumtunneling into vacuum ...... 155 . (cid:0) 33.12. Other experiments ................................... 156 . (cid:0) 34. Laser spectroscopyof di-positroniummolecules.................. 156 . (cid:0) 35. Experiments on positronic compounds ......................... 157 (cid:0) 4. Stimulated annihilationand the annihilationgamma-ray laser .......... 158 . (cid:0) 41. Introduction............................................... 158 . (cid:0) 41.1. Why would one wish to make a gamma-ray laser? ......... 159 . (cid:0) 41.2. Why is an annihilationlaser possible? ................... 160 . (cid:0) 41.3. Details of the Ps BEC ground state ..................... 161 . (cid:0) 42. Positron sources............................................ 163 . 79 (cid:0) 42.1. Isotope separation of Kr ............................. 163 . (cid:0) 42.2. Space charge limit to the focusing of a cylindricalcurrent... 166 . (cid:0) 42.3. Space charge limit to the focusing of a flat sheet of current.. 167 . (cid:0) 42.4. Anannihilationlaserrequiresaslow-positronlinefocusinzero field................................................ 169 . (cid:0) 42.5. Heat dissipation...................................... 169 . (cid:0) 43. Thresholdsfor stimulated emission and lasing ................... 169 . (cid:0) 44. Fusion.................................................... 171 . (cid:0) 44.1. Deposition of gamma-ray energy in a DT plasma .......... 171 . (cid:0) 44.2. Fusion threshold ..................................... 172 . (cid:0) 45. Power generation........................................... 173 (cid:0) AppendixA. Problems.............................................. 176 (cid:0) M. Charlton and D. P. van der Werf – Antihydrogen physics ....... 189 (cid:0) 1. Introduction.................................................... 189 (cid:0) 2. Motivation for antihydrogenexperimentation ........................ 190 . (cid:0) 21. The CPT theorem.......................................... 190 . (cid:0) 22. Gravity ................................................... 191 (cid:0) 3. IntroductoryPenning trap and plasma physics ....................... 192 . (cid:0) 31. The Penning trap .......................................... 192 . (cid:0) 32. Plasma physics............................................. 194 (cid:0) 4. Antiparticletrapping and manipulationfor antihydrogen............... 197 . (cid:0) 41. Antiprotontrapping and cooling .............................. 197 . (cid:0) 42. Antiprotonstacking and manipulation ......................... 201 . (cid:0) 43. Positron trapping and manipulation ........................... 203 . (cid:0) 44. Positron accumulator—operationalissues....................... 206 (cid:0) 5. Antihydrogenformation .......................................... 208 (cid:0) indice X . 51. Mechanisms ............................................... pag. 208 . 52. Positron-antiprotonmixinginanestedtrapandantihydrogenforma- tion ...................................................... 209 . (cid:0) 53. Field ionization of antihydrogen............................... 213 . (cid:0) 54. Insights from simulations .................................... 214 (cid:0) 6. Antihydrogentrapping ........................................... 215 . (cid:0) 61. The magnetic minimum neutral trap—generalconsiderations ...... 215 . (cid:0) 62. Plasma stability in multipolar magnetic fields ................... 217 . (cid:0) 63. The ALPHA antihydrogentrap............................... 217 (cid:0) 7. Concludingremarks.............................................. 219 (cid:0) E. Lodi Rizzini – Antihydrogen production in the ATHENA apparatus... 223 (cid:0) 1. Introduction.................................................... 223 (cid:0) 2. Experimental data............................................... 223 (cid:0) 3. Conclusions .................................................... 227 (cid:0) J. Walz – Towards antihydrogen spectroscopy ........................ 229 (cid:0) 1. Introduction.................................................... 229 (cid:0) 2. Tests of the symmetry between matter and antimatter................. 231 (cid:0) 3. Laser-spectroscopyof the 1S–2S transition.......................... 232 . (cid:0) 31. Ultrahigh-resolutionlaserspectroscopyusingordinaryhydrogenatoms 233 . (cid:0) 32. Towards laser spectroscopyof antihydrogen..................... 234 (cid:0) 4. Microwave spectroscopyof the hyperfine splitting..................... 236 (cid:0) 5. Beyond antihydrogenspectroscopy ................................. 237 (cid:0) 6. Conclusions .................................................... 238 (cid:0) R. S. Brusa and A. Dupasquier – Positronium emission and cooling.... 245 (cid:0) Introduction ....................................................... 245 (cid:0) 1. Positroniumemission from solids................................... 246 . (cid:0) 11. Positroniumemission from metals............................. 247 . (cid:0) 11.1. Positroniumformed by backscattered positrons ........... 247 . (cid:0) 11.2. Positroniumformed by epithermal positrons .............. 249 . (cid:0) 11.3. Direct positroniumformation by thermal positrons ........ 250 . (cid:0) 11.4. Thermal emission of positronium ....................... 256 . (cid:0) 12. Positroniumemission from dielectrics .......................... 258 . (cid:0) 12.1. Small band gap dielectrics ............................. 259 . (cid:0) 12.2. Large band gap dielectrics ............................. 261 (cid:0) 2. Positroniumthermalizationand cooling ............................. 268 . (cid:0) 21. Ps emission at low temperature from modified metal surfaces ...... 268 . (cid:0) 22. Collisionalcooling of Ps (theory).............................. 270 . (cid:0) 23. Collisionalcooling of Ps (experiments) ......................... 276 . (cid:0) 23.1. Ps cooling in gases ................................... 276 . (cid:0) 23.2. Ps cooling in silica powders ............................ 281 (cid:0)
Description: