ebook img

Physics Of Semiconductor Devices PDF

648 Pages·2020·4.8 MB·english
by  Unknown
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics Of Semiconductor Devices

Physics of Semiconductor Devices Massimo Rudan Physics of Semiconductor Devices 2123 MassimoRudan UniversityofBologna Bologna Italy ISBN978-1-4939-1150-9 ISBN978-1-4939-1151-6(eBook) DOI10.1007/978-1-4939-1151-6 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2014953969 © SpringerScience+BusinessMediaNewYork2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’s location,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissions forusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliableto prosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) ToRossellaandMorgana Preface ThisvolumeoriginatesfromthelecturesonSolid-StateElectronicsandMicroelec- tronics that I have been giving since 1978 at the School of Engineering of the University of Bologna. Its scope is to provide the reader with a book that, start- ing from the elementary principles of classical mechanics and electromagnetism, introducestheconceptsofquantummechanicsandsolid-statetheory,anddescribes the basic physics of semiconductors including the hierarchy of transport models, endingupwiththestandardmathematicalmodelofsemiconductordevicesandthe analysis of the behavior of basic devices. The ambition of the work has been to writeabook,selfcontainedasfaraspossible,thatwouldbeusefulforbothstudents and researchers; to this purpose, a strong effort has been made to elucidate phys- ical concepts, mathematical derivations, and approximation levels, without being verbose. Thebookisdividedintoeightparts. PartIdealswithanalyticalmechanicsand electromagnetism; purposedly, the material is not given in the form of a resumé: quantum-mechanicsandsolid-statetheory’sconceptsaresorichlyintertwinedwith theclassicalonesthatpresentingthelatterinanabridgedformmaymaketheread- ing unwieldy and the connections more difficult to establish. Part II provides the introductory concepts of statistical mechanics and quantum mechanics, followed by the description of the general methods of quantum mechanics. The problem of bridgingtheclassicalconceptswiththequantumonesisfirsttackledusingthehis- torical perspective, covering the years from 1900 to 1926. The type of statistical description necessary for describing the experiments, and the connection with the limiting case of the same experiments involving massive bodies, is related to the propertiesofthedoubly-stochasticmatrices.PartIIIillustratesanumberofapplica- tionsoftheSchrödingerequation:elementarycases,solutionsbyfactorization,and time-dependent perturbation theory. Part IV analyzes the properties of systems of particles,withspecialattentiontothosemadeofidenticalparticles,andthemethods forseparatingtheequations.TheconceptsaboveareappliedinPartVtotheanalysis ofperiodicstructures, withemphasistocrystalsofthecubictypeandtosiliconin particular,which,sincethelate1960s,hasbeenandstillisthemostimportantma- terialforthefabricationofintegratedcircuits.PartVIillustratesthesingle-electron dynamicsinaperiodicstructureandderivesthesemiclassicalBoltzmannTransport vii viii Preface Equation;fromthelatter,thehydrodynamicanddrift-diffusionmodelsofsemicon- ductordevicesareobtainedusingthemomentsexpansion.Thedrift-diffusionmodel isusedinPartVIItoworkoutanalyticallytheelectricalcharacteristicsfortheba- sicdevicesofthebipolarandMOStype.Finally,PartVIIIpresentsacollectionof itemswhich,althoughimportantperse,arenotinthebook’smainstream:someof the fabrication-process steps of integrated circuits (thermal diffusion, thermal ox- idation, layer deposition, epitaxy), and methods for measuring the semiconductor parameters. In the preparation of the book I have been helped by many colleagues. I wish to thank, in particular, Giorgio Baccarani, Carlo Jacoboni, and Rossella Brunetti, whogavemeimportantsuggestionsaboutthematter’sdistributioninthebook,read the manuscript and, with their observations, helped me to clarify and improve the text;Iwishalsotothank,forreadingthemanuscriptandgivingmetheircomments, Giovanni Betti Beneventi, Fabrizio Buscemi, Gaetano D’Emma, Antonio Gnudi, ElenaGnani,EnricoPiccinini,SusannaReggiani,PaoloSpadini. Last, but not least, I wish to thank the students, undergraduate, graduate, and postdocs,whofordecadeshaveaccompaniedmyteachingandresearchactivitywith stimulatingcuriosity.Manycomments,exercises,andcomplementsofthisbookare thedirectresultofquestionsandcommentsthatcamefromthem. Bologna MassimoRudan September2014 Contents PartI AReviewofAnalyticalMechanicsandElectromagnetism 1 AnalyticalMechanics .......................................... 3 1.1 Introduction ............................................ 3 1.2 VariationalCalculus...................................... 4 1.3 LagrangianFunction ..................................... 6 1.3.1 ForceDerivingfromaPotentialEnergy ............. 7 1.3.2 ElectromagneticForce............................ 7 1.3.3 Work .......................................... 9 1.3.4 HamiltonPrinciple—SynchronousTrajectories ....... 10 1.4 GeneralizedCoordinates .................................. 10 1.5 HamiltonianFunction .................................... 12 1.6 HamiltonEquations ...................................... 13 1.7 Time–EnergyConjugacy—Hamilton–JacobiEquation ......... 15 1.8 PoissonBrackets ........................................ 17 1.9 PhaseSpaceandStateSpace .............................. 18 1.10 Complements ........................................... 19 1.10.1 Higher-OrderVariationalCalculus.................. 19 1.10.2 LagrangianInvarianceandGaugeInvariance ......... 20 1.10.3 VariationalCalculuswithConstraints ............... 20 1.10.4 AnInterestingExampleofExtremumEquation ....... 21 1.10.5 Constant-EnergySurfaces......................... 23 Problems ..................................................... 23 2 CoordinateTransformationsandInvarianceProperties ........... 25 2.1 Introduction ............................................ 25 2.2 CanonicalTransformations ................................ 26 2.3 AnApplicationoftheCanonicalTransformation .............. 29 2.4 Separation—Hamilton’sCharacteristicFunction .............. 30 2.5 PhaseVelocity .......................................... 31 2.6 InvarianceProperties ..................................... 32 2.6.1 TimeReversal................................... 32 2.6.2 TranslationofTime .............................. 33 ix x Contents 2.6.3 TranslationoftheCoordinates ..................... 33 2.6.4 RotationoftheCoordinates........................ 34 2.7 MaupertuisPrinciple ..................................... 35 2.8 SphericalCoordinates—AngularMomentum................. 36 2.9 LinearMotion........................................... 38 2.10 Action-AngleVariables ................................... 39 2.11 Complements ........................................... 41 2.11.1 InfinitesimalCanonicalTransformations............. 41 2.11.2 ConstantsofMotion.............................. 41 Problems ..................................................... 42 3 ApplicationsoftheConceptsofAnalyticalMechanics ............. 43 3.1 Introduction ............................................ 43 3.2 ParticleinaSquareWell .................................. 43 3.3 LinearHarmonicOscillator................................ 44 3.4 CentralMotion .......................................... 45 3.5 Two-ParticleCollision.................................... 47 3.6 EnergyExchangeintheTwo-ParticleCollision ............... 49 3.7 CentralMotionintheTwo-ParticleInteraction................ 51 3.8 CoulombField .......................................... 52 3.9 SystemofParticlesnearanEquilibriumPoint ................ 53 3.10 DiagonalizationoftheHamiltonianFunction................. 55 3.11 PeriodicPotentialEnergy ................................. 57 3.12 Energy-MomentumRelationinaPeriodicPotentialEnergy..... 60 3.13 Complements ........................................... 61 3.13.1 CommentsontheLinearHarmonicOscillator ........ 61 3.13.2 DegreesofFreedomandCoordinateSeparation....... 61 3.13.3 CommentsontheNormalCoordinates .............. 62 3.13.4 ArealVelocityintheCentral-MotionProblem ........ 63 3.13.5 InitialConditionsintheCentral-MotionProblem ..... 64 3.13.6 TheCoulombFieldintheAttractiveCase............ 65 3.13.7 DynamicRelationsofSpecialRelativity............. 67 3.13.8 CollisionofRelativisticParticles ................... 68 3.13.9 EnergyConservationinCharged-Particles’Interaction . 70 Problems ..................................................... 70 4 Electromagnetism............................................. 71 4.1 Introduction ............................................ 71 4.2 ExtensionoftheLagrangianFormalism ..................... 71 4.3 LagrangianFunctionfortheWaveEquation.................. 74 4.4 MaxwellEquations ...................................... 75 4.5 PotentialsandGaugeTransformations ...................... 77 4.6 LagrangianDensityfortheMaxwellEquations ............... 79 4.7 HelmholtzEquation...................................... 80 4.8 HelmholtzEquationinaFiniteDomain ..................... 81 Contents xi 4.9 SolutionoftheHelmholtzEquationinanInfiniteDomain ...... 82 4.10 SolutionoftheWaveEquationinanInfiniteDomain .......... 83 4.11 LorentzForce ........................................... 84 4.12 Complements ........................................... 85 4.12.1 InvarianceoftheEulerEquations................... 85 4.12.2 WaveEquationsfortheEandBFields .............. 85 4.12.3 CommentsontheBoundary-ValueProblem .......... 86 Problems ..................................................... 86 5 ApplicationsoftheConceptsofElectromagnetism ................ 87 5.1 Introduction ............................................ 87 5.2 PotentialsGeneratedbyaPoint-LikeCharge ................. 87 5.3 EnergyContinuity—PoyntingVector........................ 89 5.4 MomentumContinuity ................................... 90 5.5 ModesoftheElectromagneticField ........................ 91 5.6 EnergyoftheElectromagneticFieldinTermsofModes........ 93 5.7 MomentumoftheElectromagneticFieldinTermsofModes.... 95 5.8 ModesoftheElectromagneticFieldinanInfiniteDomain...... 96 5.9 EikonalEquation ........................................ 97 5.10 FermatPrinciple......................................... 99 5.11 Complements ........................................... 99 5.11.1 FieldsGeneratedbyaPoint-LikeCharge ............ 99 5.11.2 PowerRadiatedbyaPoint-LikeCharge ............. 101 5.11.3 DecayofAtomsAccordingtotheClassicalModel .... 102 5.11.4 CommentsabouttheField’sExpansionintoModes.... 104 5.11.5 FinitenessoftheTotalEnergy...................... 105 5.11.6 Analogiesbetween Mechanicsand GeometricalOptics 106 Problems ..................................................... 107 PartII IntroductoryConceptstoStatisticalandQuantumMechanics 6 ClassicalDistributionFunctionandTransportEquation........... 111 6.1 Introduction ............................................ 111 6.2 DistributionFunction..................................... 111 6.3 StatisticalEquilibrium.................................... 113 6.4 Maxwell-BoltzmannDistribution........................... 116 6.5 BoltzmannTransportEquation............................. 119 6.6 Complements ........................................... 120 6.6.1 MomentumandAngularMomentumatEquilibrium ... 120 6.6.2 AveragesBasedontheMaxwell-BoltzmannDistribution 121 6.6.3 Boltzmann’sH-Theorem.......................... 123 6.6.4 Paradoxes—Kac-RingModel..................... 124 6.6.5 EquilibriumLimitoftheBoltzmannTransportEquation 125 Problems ..................................................... 127

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.