ebook img

Physics of Liquid Matter PDF

338 Pages·2021·8.522 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics of Liquid Matter

Soft and Biological Matter Paola Gallo Mauro Rovere Physics of Liquid Matter Soft and Biological Matter SeriesEditors DavidAndelman,SchoolofPhysicsandAstronomy,TelAvivUniversity, TelAviv,Israel WenbingHu,SchoolofChemistryandChemicalEngineering,Departmentof PolymerScienceandEngineering,NanjingUniversity,Nanjing,China ShigeyukiKomura,DepartmentofChemistry,GraduateSchoolofScienceand Engineering,TokyoMetropolitanUniversity,Tokyo,Japan RolandNetz,DepartmentofPhysics,FreeUniversityofBerlin,Berlin,Berlin, Germany RobertoPiazza,DepartmentofChemistry,MaterialsScience,andChemical Engineering“G.Natta”,PolytechnicUniversityofMilan,Milan,Italy PeterSchall,VanderWaals-ZeemanInstitute,UniversityofAmsterdam, Amsterdam,Noord-Holland,TheNetherlands GerardWong,DepartmentofBioengineering,CaliforniaNanoSystemsInstitute, UCLA,LosAngeles,CA,USA “SoftandBiologicalMatter”isaseriesofauthoritativebookscoveringestablished andemergentareasintherealmofsoftmatterscience,includingbiologicalsystems spanningallrelevantlengthscalesfromthemoleculartothemesoscale.Itaimsto serve a broad interdisciplinary community of students and researchers in physics, chemistry,biophysicsandmaterialsscience. Pure research monographs in the series, as well as those of more pedagogi- cal nature, will emphasize topics in fundamental physics, synthesis and design, characterization and new prospective applications of soft and biological matter systems. The series will encompass experimental, theoretical and computational approaches. Topics in the scope of this series include but are not limited to: poly- mers, biopolymers, polyelectrolytes, liquids, glasses, water, solutions, emulsions, foams,gels,ionicliquids,liquidcrystals,colloids,granularmatter,complexfluids, microfluidics,nanofluidics,membranesandinterfaces,activematter,cellmechanics andbiophysics. Bothauthoredandeditedvolumeswillbeconsidered. Moreinformationaboutthisseriesathttp://www.springer.com/series/10783 Paola Gallo (cid:129) Mauro Rovere Physics of Liquid Matter PaolaGallo MauroRovere DepartmentofMathematicsandPhysics DepartmentofMathematicsandPhysics RomaTreUniversity RomaTreUniversity Roma,Italy Roma,Italy ISSN2213-1736 ISSN2213-1744 (electronic) SoftandBiologicalMatter ISBN978-3-030-68348-1 ISBN978-3-030-68349-8 (eBook) https://doi.org/10.1007/978-3-030-68349-8 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisbookintroducesthereadertothefascinatingfieldofliquidstatephysics.The liquid state is located in a restricted zone of the phase diagram in coexistence with the solid and the gas phases. Apart for the special case of helium, the conditions of density and temperature are such that the liquids can be under most circumstances considered as classical melts. The determination of the liquid propertiesstartingfrommicroscopicmodelsisachallengeforstatisticalmechanics due to the disordered arrangement of atoms and high density. An impressive progress in the understanding of the liquid state has been achieved in recent years mainly with the improvement of the experimental techniques and the large use of computer simulations, made possible by the continuous improvement of the computationaltechniques.Thenumericalsimulationisinfactnotanymoreasimple support to theoretical studies, and it can be considered a third relevant column besides approximate theoretical methods and experiments. Computer simulation hasbecomeapredictivemethodologystimulatingexperimentalwork.Animportant example is the study of region of the phase space where metastable states are present. Theexperimental,theoreticalandcomputationalmethodsdevelopedforstudying theliquidstatehaverecentlybeenextendedtotheresearchinthefieldofmaterials with large technological relevance like colloids, biomolecules and amorphous solids. Our opinion is that we are at a turning point in the research in this field. At variance with the old times when it was possible to treat only very simplified microscopicmodel,inthefuturemoresophisticatedmodelswillbeintroducedand studied with more refined techniques. For this reason we believe that liquid state physics will become even more of interest for a large community of researchers in physics, chemistry and other related disciplines. Our intention with this book is to provide an introduction to the liquid state physics for graduate students and researchers and fill the gap between books that contain basic skills in statistical mechanicsandthermodynamicsandveryspecializedbooks. v vi Preface Inthefirstchapter,wegiveanintroductiontotheliquidstatephysicswithsome example of phase diagrams. We discuss the conditions for the classical limit; we describethefeaturesofsometypeoffluidsandthemethodsusedintheexperimental andtheoreticalstudiesinthefield. Basicthermodynamicsconceptsarerecalledinthesecondchapterwherethevan derWaalstheoryisdescribed.Thestatisticalmechanicsensemblesareintroduced. Inthethirdchapter,weintroducethedistributionfunctionsoftheliquidsandthe experimental methods used for determining the structure of liquids. Examples of simpleandmolecularliquidsarepresented. Thefourthchapterisdevotedtothetheoreticalapproachesbasedontheclassical densityfunctionaltheory. In Chap. 5, we present the computer simulation methods, molecular dynamics and Monte Carlo. We discuss in particular how the phase diagram can be studied insimulationwiththeuseofdifferentmethodsderivedfromtheso-calledumbrella sampling. The problem of studying critical phenomena in finite size simulation is alsointroduced. Starting from Chap. 6, we consider the dynamics of liquids. In particular in Chap. 6, the dynamical correlation functions are defined; the linear response theoryandthefluctuation-dissipationtheoremarepresented.Thedensitycorrelation functionsareconsideredwiththeexperimentalmethodsusedtostudythem. InChap.7,wepresentthethermalmotioninliquids.Weconsiderthetheoryof the Brownian motion, the dynamics of liquids in the hydrodynamics limit and the visco-elasticregime.Thememoryfunctionsarealsointroduced. In Chap. 8, we consider the important area of supercooled liquids, the glass transitionandtherelaxationdynamicsuponsupercooling.Thecomplexbehaviour of supercooled liquids in approaching the glassy state is still a challenge in the condensedmatterresearch.Inthisrespectthemodecouplingtheoryintroducedin thischapterprovidestheonlytheoreticaldetailedinterpretationofthedynamicsof supercooledliquids. In the last chapter as a particularly important subject in the research on supercooled liquids, we consider the behaviour of supercooled water, a topic to which we gave our contribution. The anomalies of supercooled water are still an openfieldofresearchforexperimentsandstatisticalmechanics. WewishtothankthestaffoftheSpringereditorialboardfortheirprecioushelp duringtheprocessofpublicationofthisbook. Roma,Italy PaolaGallo Roma,Italy MauroRovere November2020 Contents 1 AnIntroductiontotheLiquidStateofMatter ........................... 1 1.1 LiquidStateofMatter................................................. 1 1.1.1 ExamplesofPhaseDiagramofPureSubstances: CO andWater............................................... 3 2 1.1.2 PhaseDiagramofBinaryMixtures ......................... 5 1.2 Structure and Dynamics of Liquids: Experiments andCorrelationFunctions............................................. 8 1.3 MicroscopicModelsforLiquids...................................... 9 1.3.1 ClassicalApproximation .................................... 10 1.3.2 DifferentModels............................................. 11 1.4 PotentialEnergyLandscape........................................... 12 1.5 ApproximateTheoriesandComputerSimulation ................... 13 1.6 WaterandHydrogenBond............................................ 14 1.7 MetastableStatesandDisorderedSolidMatter ..................... 16 1.8 SoftMatter............................................................. 16 1.8.1 Colloids....................................................... 17 1.8.2 Biomolecules................................................. 18 References..................................................................... 20 2 ThermodynamicsandStatisticalMechanicsofFluidStates............ 23 2.1 ExtensiveandIntensiveFunctions.................................... 23 2.2 EnergyandEntropy ................................................... 24 2.3 Gibbs-DuhemRelation................................................ 26 2.4 EquilibriumConditions ............................................... 27 2.5 EquilibriumConditionsandIntensiveQuantities ................... 29 2.6 MacroscopicResponseFunctionsandStabilityConditions......... 29 2.7 LegendreTransformsandThermodynamicPotentials............... 31 2.7.1 HelmholtzFreeEnergy ..................................... 32 2.7.2 GibbsFreeEnergy........................................... 33 2.7.3 Enthalpy...................................................... 35 2.7.4 GrandCanonicalPotential................................... 36 2.7.5 TabulatedThermodynamicPotentials....................... 37 vii viii Contents 2.8 StabilityConditionsforThermodynamicPotentials................. 37 2.9 CoexistenceandPhaseTransitions ................................... 38 2.10 PhaseTransitionsandTheirClassifications.......................... 39 2.11 VanderWaalsEquation............................................... 41 2.12 General Form of the Van der Waals Equation andCorrespondingStates ............................................. 46 2.13 CriticalBehaviouroftheVanderWaalsEquation................... 47 2.14 EnsemblesinStatisticalMechanics................................... 50 2.14.1 MicrocanonicalEnsemble................................... 51 2.14.2 CanonicalEnsemble ......................................... 52 2.14.3 GrandCanonicalEnsemble.................................. 54 2.14.4 Isobaric-IsothermalEnsemble............................... 56 2.15 FluctuationsandThermodynamics ................................... 57 References..................................................................... 60 3 MicroscopicForcesandStructureofLiquids............................. 61 3.1 ForceFieldforAtomsinLiquids..................................... 61 3.2 LocalStructureofaLiquid............................................ 64 3.3 DistributionFunctionsintheCanonicalEnsemble .................. 65 3.4 RelationoftheRDFwithThermodynamics.......................... 66 3.4.1 Energy........................................................ 66 3.4.2 PressurefromtheVirial...................................... 67 3.5 DistributionFunctionsintheGrandCanonicalEnsemble........... 68 3.6 HierarchicalEquations ................................................ 71 3.7 QualitativeBehaviouroftheRadialDistributionFunction.......... 72 3.8 ExperimentalDeterminationoftheStructureofLiquids............ 73 3.9 NeutronScatteringonLiquids........................................ 75 3.10 StaticLimitandtheStructureofLiquid.............................. 79 3.11 TheStaticStructureFactor............................................ 81 3.12 TheStructureFactorandtheRDFofLiquidArgon ................. 82 3.13 TheStructureFactorClosetoaCriticalPoint........................ 84 3.14 StructureofMulticomponentLiquids ................................ 85 3.14.1 PartialStructureFactorofMulticomponentLiquids....... 86 3.14.2 IsotopicSubstitution......................................... 86 3.14.3 AnExample:MoltenSalts................................... 87 3.15 StructureofMolecularLiquids ....................................... 88 3.15.1 StructureofLiquidWater.................................... 90 References..................................................................... 94 4 TheoreticalStudiesoftheStructureofLiquids .......................... 95 4.1 VirialExpansionintheCanonicalEnsemble......................... 95 4.1.1 FromHardSpherestotheVanderWaalsEquation........ 97 4.2 TheMeanForcePotential............................................. 99 4.3 KirkwoodApproximation............................................. 100 4.4 RadialDistributionFunctionfromtheExcessFreeEnergy......... 101 4.5 DensityDistributionsfromtheGrandPartitionFunction............ 101 4.6 GrandPotentialasGeneratingFunctional............................ 103 Contents ix 4.7 ClassicalDensityFunctionalTheory ................................. 104 4.7.1 EquilibriumConditions...................................... 105 4.7.2 TheOrnstein-ZernikeEquation ............................. 106 4.7.3 TheOrnstein-ZernikeEquationink-Space................. 108 4.7.4 FreeEnergyCalculation..................................... 109 4.7.5 ExpansionfromtheHomogeneousSystem................. 110 4.8 ClosureRelationsfromtheDensityFunctionalTheory ............. 112 4.9 AnExactEquationfortheg(r)....................................... 114 4.10 HNCandPercus-YevickApproximations............................ 115 4.10.1 RPAandMSA................................................ 116 4.11 PropertiesoftheHardSphereFluid .................................. 117 4.12 EquationofStateandLiquid-SolidTransitionofHardSpheres .... 119 4.13 Percus-YevickfortheHardSphereFluid............................. 121 4.14 EquationofStateandThermodynamicInconsistency............... 123 4.15 RoutestoConsistency:ModifiedHNCandReferenceHNC........ 124 4.16 PerturbationTheories:OptimizedRPA............................... 125 4.17 ModelsforColloids ................................................... 126 References..................................................................... 128 5 MethodsofComputerSimulation.......................................... 131 5.1 MolecularDynamicsMethods........................................ 132 5.1.1 MolecularDynamicsandStatisticalMechanics............ 132 5.1.2 AlgorithmsfortheTimeEvolution ......................... 134 5.1.3 Predictor/Corrector........................................... 134 5.1.4 VerletAlgorithms............................................ 135 5.1.5 CalculationoftheForces ................................... 138 5.1.6 InitialConfiguration ......................................... 139 5.1.7 TemperatureintheMicrocanonicalEnsemble ............. 139 5.1.8 EquilibrationProcedure...................................... 140 5.1.9 ThermodynamicandStructure .............................. 143 5.1.10 Long-RangeCorrections..................................... 143 5.1.11 EwaldMethod................................................ 144 5.2 MonteCarloSimulation............................................... 149 5.2.1 MonteCarloIntegrationandImportanceSampling........ 149 5.2.2 IntegralsinStatisticalMechanics ........................... 150 5.2.3 ImportanceSamplinginStatisticalMechanics............. 151 5.2.4 MarkovProcesses............................................ 152 5.2.5 ErgodicityandDetailedBalance............................ 153 5.2.6 MetropolisMethod........................................... 154 5.2.7 AveragingonMonteCarloSteps............................ 156 5.2.8 MCSamplinginOtherEnsembles.......................... 157 5.2.9 MCintheGibbsEnsemble.................................. 160 5.3 MDinDifferentEnsembles........................................... 160 5.3.1 Controlling the Temperature: MD in the CanonicalEnsemble ......................................... 161 5.3.2 PressureControl.............................................. 166

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.