ebook img

Physics of Bio-Molecules and Cells PDF

585 Pages·2002·11.044 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics of Bio-Molecules and Cells

CONTENTS Lecturers xi Participants xiii Pr´eface xvii Preface xxi Contents xxv Course 1. Physics of Protein-DNA Interaction by R.F. Bruinsma 1 1 Introduction 3 1.1 The central dogma and bacterial gene expression . . . . . . . . . . 3 1.1.1 Two families . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Prokaryote gene expression . . . . . . . . . . . . . . . . . . 5 1.2 Molecular structure . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Chemical structure of DNA . . . . . . . . . . . . . . . . . . 8 1.2.2 Physical structureof DNA. . . . . . . . . . . . . . . . . . . 10 1.2.3 Chemical structure of proteins . . . . . . . . . . . . . . . . 12 1.2.4 Physical structureof proteins . . . . . . . . . . . . . . . . . 14 2 Thermodynamics and kinetics of repressor-DNA interaction 16 2.1 Thermodynamics and thelac repressor . . . . . . . . . . . . . . . . 16 2.1.1 The law of mass action . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Statistical mechanics and operator occupancy . . . . . . . . 19 2.1.3 Entropy,enthalpy,and direct read-out . . . . . . . . . . . . 20 2.1.4 The lac repressor complex: A molecular machine . . . . . . 23 2.2 Kinetics of repressor-DNA interaction . . . . . . . . . . . . . . . . 26 2.2.1 Reaction kinetics . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Debye–Smoluchowski theory. . . . . . . . . . . . . . . . . . 28 2.2.3 BWH theory . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4 Indirect read-out and induced fit . . . . . . . . . . . . . . . 32 xxvi 3 DNA deformability and protein-DNA interaction 34 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 Eukaryotic gene expression and Chromatin condensation . . 34 3.1.2 A mathematical experiment and White’s theorem. . . . . . 37 3.2 The worm-like chain . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Circular DNA and thepersistence length . . . . . . . . . . 42 3.2.2 Nucleosomes and theMarky–Manning transition . . . . . . 42 3.2.3 Protein-DNA interaction undertension . . . . . . . . . . . 45 3.2.4 Force-Extension Curves . . . . . . . . . . . . . . . . . . . . 47 3.3 The RSTmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Structural sequencesensitivity . . . . . . . . . . . . . . . . 50 3.3.2 Thermal fluctuations . . . . . . . . . . . . . . . . . . . . . . 52 4 Electrostatics in water and protein-DNA interaction 53 4.1 Macro-ions and aqueous electrostatics . . . . . . . . . . . . . . . . 54 4.2 The primitivemodel . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.1 The primitive model: Ion-free . . . . . . . . . . . . . . . . . 57 4.2.2 The primitive model: DH regime . . . . . . . . . . . . . . . 57 4.3 Manning condensation . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Charge renormalization . . . . . . . . . . . . . . . . . . . . 58 4.3.2 Primitive model: Oosawa theory . . . . . . . . . . . . . . . 59 4.3.3 Primitive model: Free energy . . . . . . . . . . . . . . . . . 61 4.4 Counter-ion release and non-specificprotein-DNAinteraction . . . 63 4.4.1 Counter-ion release . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.2 Nucleosome formation and theisoelectric instability . . . . 64 Course 2. Mechanics of Motor Proteins by J. Howard 69 1 Introduction 71 2 Cell motility and motor proteins 72 3 Motility assays 73 4 Single-molecules assays 75 5 Atomic structures 77 6 Proteins as machines 78 7 Chemical forces 80 8 Effect of force on chemical equilibria 81 9 Effect of force on the rates of chemical reactions 82 xxvii 10 Absolute rate theories 85 11 Role of thermal fluctuations in motor reactions 87 12 A mechanochemical model for kinesin 89 13 Conclusions and outlook 92 Course 3. Modelling Motor Protein Systems by T. Duke 95 1 Making a move: Principles of energy transduction 98 1.1 Motor proteins and Carnot engines . . . . . . . . . . . . . . . . . . 98 1.2 Simple Brownian ratchet . . . . . . . . . . . . . . . . . . . . . . . . 99 1.3 Polymerization ratchet . . . . . . . . . . . . . . . . . . . . . . . . . 100 1.4 Isothermal ratchets . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 1.5 Motor proteins as isothermal ratchets . . . . . . . . . . . . . . . . 104 1.6 Design principles for effective motors . . . . . . . . . . . . . . . . . 105 2 Pulling together: Mechano-chemical model of actomyosin 108 2.1 Swinging lever-arm model . . . . . . . . . . . . . . . . . . . . . . . 108 2.2 Mechano-chemical coupling . . . . . . . . . . . . . . . . . . . . . . 110 2.3 Equivalent isothermal ratchet . . . . . . . . . . . . . . . . . . . . . 111 2.4 Many motors working together . . . . . . . . . . . . . . . . . . . . 112 2.5 Designed to work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.6 Force-velocity relation . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.7 Dynamical instability and biochemical synchronization . . . . . . . 118 2.8 Transient response of muscle . . . . . . . . . . . . . . . . . . . . . 119 3 Motors at work: Collective properties of motor proteins 119 3.1 Dynamical instabilities . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.2 Bidirectional movement . . . . . . . . . . . . . . . . . . . . . . . . 120 3.3 Critical behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.4 Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.5 Dynamic bucklinginstability . . . . . . . . . . . . . . . . . . . . . 125 3.6 Undulation of flagella . . . . . . . . . . . . . . . . . . . . . . . . . 127 4 Sense and sensitivity: Mechano-sensation in hearing 129 4.1 System performance . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.2 Mechano-sensors: Hair bundles . . . . . . . . . . . . . . . . . . . . 130 4.3 Activeamplification . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.4 Self-tuned criticality . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5 Motor-driven oscillations . . . . . . . . . . . . . . . . . . . . . . . . 134 4.6 Channel compliance and relaxation oscillations . . . . . . . . . . . 136 xxviii 4.7 Channel-driven oscillations . . . . . . . . . . . . . . . . . . . . . . 138 4.8 Hearing at thenoise limit . . . . . . . . . . . . . . . . . . . . . . . 139 Course 4. Dynamic Force Spectroscopy by E. Evans and P. Williams 145 Part 1: E. Evans and P. Williams 147 1 Dynamic force spectroscopy. I. Single bonds 147 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 1.1.1 Intrinsic dependenceof bond strength on time frame for breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 1.1.2 Biomolecular complexity and role for dynamic force spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 148 1.1.3 Biochemical and mechanical perspectives of bond strength . 150 1.1.4 Relevant scales for length, force, energy, and time. . . . . . 153 1.2 Brownian kineticsin condensed liquids: Old-timephysics . . . . . 154 1.2.1 Two-state transitions in a liquid . . . . . . . . . . . . . . . 155 1.2.2 Kinetics of first-orderreactions in solution . . . . . . . . . . 156 1.3 Link between force – time – and bond chemistry . . . . . . . . . . 158 1.3.1 Dissociation of a simple bond underforce . . . . . . . . . . 158 1.3.2 Dissociation of a complex bond underforce: Stationary rate approximation . . . . . . . . . . . . . . . . 159 1.3.3 Evolution of states in complex bonds . . . . . . . . . . . . . 163 1.4 Testing bond strength and themethod of dynamic force spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 1.4.1 Probe mechanics and bond loading dynamics . . . . . . . . 165 1.4.2 Stochastic process of bond failure underrising force . . . . 168 1.4.3 Distributions of bond lifetime and ruptureforce. . . . . . . 169 1.4.4 Crossover from near equilibrium to far from equilibrium unbonding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 1.4.5 Effect of soft-polymer linkages on dynamic strengths of bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 1.4.6 Failure of a complex bond and unexpected transitions in strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Part 2: P. Williams and E. Evans 186 2 Dynamic force spectroscopy. II. Multiple bonds 187 2.1 Hiddenmechanics in detachment of multiplebonds . . . . . . . . . 187 2.2 Impact of cooperativity . . . . . . . . . . . . . . . . . . . . . . . . 188 2.3 Uncorrelated failure of bonds loaded in series . . . . . . . . . . . . 191 2.3.1 Markov sequenceof random failures . . . . . . . . . . . . . 191 2.3.2 Multiple-complex bonds . . . . . . . . . . . . . . . . . . . . 193 xxix 2.3.3 Multiple-ideal bonds . . . . . . . . . . . . . . . . . . . . . . 194 2.3.4 Equivalent single-bond approximation . . . . . . . . . . . . 195 2.4 Uncorrelated failure of bondsloaded in parallel . . . . . . . . . . . 198 2.4.1 Markov sequenceof random failures . . . . . . . . . . . . . 198 2.4.2 Equivalent single-bond approximation . . . . . . . . . . . . 198 2.5 Poisson statistics and bond formation . . . . . . . . . . . . . . . . 199 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Seminar 1. Polymerization Forces by M. Dogterom 205 Course 5. The Physics of Listeria Propulsion by J. Prost 215 1 Introduction 217 2 A genuine gel 218 2.1 A little chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 2.2 Elastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 3 Hydrodynamics and mechanics 220 3.1 Motion in thelaboratory frame . . . . . . . . . . . . . . . . . . . . 220 3.2 Propulsion and steady velocity regimes . . . . . . . . . . . . . . . . 221 3.3 Gel/bacterium friction and saltatory behaviour . . . . . . . . . . . 223 4 Biomimetic approach 225 4.1 A spherical Listeria. . . . . . . . . . . . . . . . . . . . . . . . . . . 225 4.2 Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 226 4.3 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 4.4 Growth with spherical symmetry . . . . . . . . . . . . . . . . . . . 229 4.5 Symmetry breaking. . . . . . . . . . . . . . . . . . . . . . . . . . . 229 4.6 Limitations of theapproach and possible improvements . . . . . . 231 5 Conclusion 234 xxx Course 6. Physics of Composite Cell Membrane and Actin Based Cytoskeleton by E. Sackmann, A.R. Bausch and L. Vonna 237 1 Architecture of composite cell membranes 239 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture . . . . . . . . . . . . . . . . . . . . . 239 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer . . . 242 1.3 The actin cortex: Architectureand function . . . . . . . . . . . . . 245 2 Physics of the actin based cytoskeleton 249 2.1 Actin is a living semiflexible polymer . . . . . . . . . . . . . . . . . 249 2.2 Actin network as viscoelastic body . . . . . . . . . . . . . . . . . . 253 2.3 Correlation between macroscopic viscoelasticity and molecular motional processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 3 Heterogeneous actin gels in cells and biological function 260 3.1 Manipulation of actin gels . . . . . . . . . . . . . . . . . . . . . . . 260 3.2 Control of organization and function of actin cortex bycell signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 4 Micromechanics and microrheometry of cells 267 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 271 6 On cells as adaptive viscoplastic bodies 274 7 Controll of cellular protrusions controlled by actin/myosin cortex 278 Course 7. Cell Adhesion as Wetting Transition? by E. Sackmann and R. Bruinsma 285 1 Introduction 287 2 Mimicking cell adhesion 292 3 Microinterferometry: A versatile tool to evaluate adhesion strength and forces 294 4 Soft shell adhesion is controlled by a double well interfacial potential 294 xxxi 5 How is adhesion controlled by membrane elasticity? 297 6 Measurement of adhesion strength by interferometric contour analysis 299 7 Switching on specific forces: Adhesion as localized dewetting process 300 8 Measurement of unbinding forces, receptor-ligand leverage and a new role for stress fibers 300 9 An application: Modification of cellular adhesion strength by cytoskeletal mutations 303 10 Conclusions 303 A Appendix: Generic interfacial forces 304 Course 8. Biological Physics in Silico by R.H. Austin 311 1 Why micro/nanofabrication? 315 Lecture 1a: Hydrodynamic Transport 319 1 Introduction: The need to control flows in 2 1/2 D 319 2 Somewhat simple hydrodynamics in 2 1/2 D 321 3 The N-port injector idea 328 4 Conclusion 333 Lecture 1b: Dielectrophoresis and Microfabrication 335 1 Introduction 335 2 Methods 337 2.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 2.2 Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 2.3 Electronics and imaging . . . . . . . . . . . . . . . . . . . . . . . . 338 2.4 DNA samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 3 Results 339 3.1 Basic results and dielectrophoretic force extraction . . . . . . . . . 339 4 Data and analysis 343 xxxii 5 Origin of the low frequency dielectrophoretic force in DNA 347 6 Conclusion 353 Lecture 2a: Hex Arrays 356 1 Introduction 356 2 Experimental approach 360 3 Conclusions 364 Lecture 2b: The DNA Prism 366 1 Introduction 366 2 Design 366 3 Results 367 4 Conclusions 372 Lecture 2c: Bigger is Better in Rachets 374 1 The problems with insulators in rachets 374 2 An experimental test 375 3 Conclusions 381 Lecture 3: Going After Epigenetics 382 1 Introduction 382 2 The nearfield scanner 383 3 The chip 384 4 Experiments with molecules 387 5 Conclusions 391 Lecture 4: Fractionating Cells 392 1 Introduction 392 2 Blood specifics 392 3 Magnetic separation 397 xxxiii 4 Microfabrication 398 5 Magnetic field gradients 399 6 Device interface 401 7 A preliminary blood cell run 406 8 Conclusions 409 Lecture 5: Protein Folding on a Chip 411 1 Introduction 411 2 Technology 412 3 Experiments 415 4 Conclusions 418 Course 9. Some Physical Problems in Bioinformatics by E.D. Siggia 421 1 Introduction 423 2 New technologies 425 3 Sequence comparison 427 4 Clustering 430 5 Gene regulation 432 Course 10. Three Lectures on Biological Networks by M.O. Magnasco 435 1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 438 1.1 Length scales and energy scales . . . . . . . . . . . . . . . . . . . . 439 1.2 DNA topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 1.3 Topoisomerases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 1.4 Knots and supercoils . . . . . . . . . . . . . . . . . . . . . . . . . . 444 1.5 Topological equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 446 1.6 Can topoisomerases recognize topology? . . . . . . . . . . . . . . . 447 1.7 Proposal: Kinetic proofreading . . . . . . . . . . . . . . . . . . . . 448 xxxiv 1.8 How todo it twice . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 1.9 The care and proofreading of knots . . . . . . . . . . . . . . . . . . 451 1.10 Suppression of supercoils. . . . . . . . . . . . . . . . . . . . . . . . 453 1.11 Problems and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 455 1.12 Disquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 2 Gene expression networks. Methods for analysis of DNA chip experiments 457 2.1 The regulation of gene expression . . . . . . . . . . . . . . . . . . 457 2.2 Gene expression arrays . . . . . . . . . . . . . . . . . . . . . . . . . 460 2.3 Analysis of array data . . . . . . . . . . . . . . . . . . . . . . . . . 463 2.4 Some simplifying assumptions . . . . . . . . . . . . . . . . . . . . . 464 2.5 Probeset analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 471 3.1 The studyof songbirds . . . . . . . . . . . . . . . . . . . . . . . . . 472 3.2 Canary song. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 3.3 ZENK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 3.4 The blush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 3.5 Histological analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 476 3.6 Natural vs. artificial . . . . . . . . . . . . . . . . . . . . . . . . . . 479 3.7 The Blush II:gAP . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 3.8 Meditation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 Course 11. Thinking About the Brain by W. Bialek 485 1 Introduction 487 2 Photon counting 491 3 Optimal performance at more complex tasks 501 4 Toward a general principle? 518 5 Learning and complexity 538 6 A little bit about molecules 552 7 Speculative thoughts about the hard problems 564 Seminars by participants 579

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.