ebook img

Physics Models of Earthquake PDF

0.76 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics Models of Earthquake

Physi s Models of Earthquake ∗ Srutarshi Pradhan Department of Physi s, Norwegian University of S ien e and Te hnology, N(cid:21)7491 Trondheim, Norway 7 Sin elongba k,s ientistshavebeenputtingenormouse(cid:27)orttounderstandearthquakedynami s 0 -thegoalistodevelopasu essfulpredi tions hemewhi h anprovidereliablealarmthatanearth- 0 quakeisimminent. Modelstudiessometimeshelptounderstandinsomeextendthebasi dynami s 2 of the real systems and therefore is an important part of earthquake resear h. In this report, we n reviewseveralphysi smodelswhi h apturesomeessentialfeaturesofearthquakephenomenonand a also suggest methods to predi t atastrophi eventsbeing within the range of model parameters. J 0 100000 1 Introdu tion entire Japan 1985-1998 10000 ] y h c c `Earthquake' is a long standing problem to the s ientist uen 1000 slope = 0.90 e ommunity as it is a subje t of many unknowns. Strong q e m earthquakes often auses huge devastation in terms of nt fr 100 - livesandpropertiesandthereforethissubje talwaysde- e v at mands high priority. But so far, little advan ement has e 10 t beenmadetounderstandtheentireearthquake-dynami s s . and the hallenge still remains -to develop a su essful 1 at predi tion s heme whi h an provide exa t spa e-time 2 3 4 5 6 7 8 m information of future earthquakes and their expe ted m magnitudes. However, several models and hypothesis - d [1, 2, 3, 4, 5, 6℄ have been proposed and some re ent n studiessuggestpotentialmethodstopredi t atastrophi (froFmiguJrUe.N1E:CT haetamloagg)n[i2tu7℄d.eTdihsetrisbtruatiigohntolfineearwthitqhuaskloepsein−J0a.p9ains o m>3 events in some earthquake models. In this short report thebest(cid:28)ttothedatapointsfor andsupportsGutenberg- c wedis usssu hphysi smodelsofearthquake,givingim- Ri hterlaw. [ portan e to their apability of predi tion. 1 Physi s models v 4 Geologi al fa ts 0 The overall frequen y distribution of earthquakes in- 2 luding foresho ks, mainsho ks and aftersho ks, seems 1 0 Plate-te toni theoryexplainstheoriginofearthquake to follow the empiri al Gutenberg-Ri hter law [5℄: 7 through a sti k-slip dynami s: Earth's solid outer rust lnN(m)=constant−bm, 0 (about 20 km thi k) rests on a te toni shell whi h is / divided into numbers (about 12) of mobile plates, hav- N(m) t where isthenumberofearthquakeshavingmagni- a ing relativevelo ities of the orderof few entimeters per m b m year. This motion of the plates arises due to the power- tude(inRi hters ale)greaterthanoreqbualto , isthe powerexponent. Theobservedvalueof rangesbetween - ful onve tive(cid:29)owoftheearth'smantleattheinner ore 0.7 1.0 ǫ d and (Fig.1). The amount of energy released in of earth. On the other hand solid-solid fri tional for e n an earthquake is related to the magnitude as arises at the rust-plate boundary and it sti ks them to- o lnǫ=constant+am. c gether. This kind of sti king developselasti strains and : the strain energy graduallyin reases be ause of the uni- v i form motion of the te toni plates. Therefore a ompe- ThereforeGutenberg-Ri hterlaw anbe expressedasan X tition omes to play between the sti king fri tional for e alternative form: ar and the restoring elasti for e (stress). When the a u- N(ǫ)=ǫ−α, mulated stress ex eeds the fri tional for e, a slip (earth- quake) o ursand it releasesthe stored elasti energy in N(ǫ) the form of sound, heat and me hani al vibrations. It where isthenumberǫofearαth=quba/kaesreleasingenergy has been observed that generally a series of small earth- greaterthan or equal to and . The Gutenberg- quakesappearbefore(foresho ks)andafter(aftersho ks) Ri hter law is being onsidered as one of the most fun- a big quake (main sho k). damental observations by the physi ists. Severalmodelshavebeenproposedtostudythenature oftheearthquakephenomenon. Themainintensionisto ∗ apture the Gutenberg-Ri hter type power law for the Ele troni address: pradhan.srutarshintnu.no frequen y distribution of failures (quakes) by modelling 2 di(cid:27)erentaspe tsoffaults(cid:21)stru ture,materialproperties, and dynami phase begins. Due to the presen e of fri - geometry et . These models an be lassi(cid:28)ed into four tional for e this dynami phase is de(cid:28)nitely dissipative groups a ording to their basi assumptions: (A) Fri - in nature. This dissipation redu es the relative velo ity tion models, in orporatethe sti k-slipdynami sthrough oftheblo kandthesystemagaingoesba kto thestati the olle tivemotionof anassemblyoflo ally onne ted phase. The dynami fri tion is assumed as a velo ity f elementssubje ttoslowdrivingfor e(B) Fra turemod- weakening fun tion (shown in the Fig.2 ). Presen e of els, look at earthquake phenomena as a fra ture-failure spring for e and velo ity weakening fri tion for e leads pro ess of deformable materials that break under ex- the system to a omplex dynami al state. At the initial ternal loading through slow build-up of stress (C) Self- stage, individual small slip o urs. But due to onstant organised riti al (SOC) models, onsider earthquake as pulling, the springs are gradually stret hed and attain a self-driven slow pro ess and (D) Fra tal models, give the limit of total fri tional stability of the blo ks where importan e to fra tal natureof the rust-plateinterfa es the olle tiveslipsofalmostalltheblo kso ur. Clearly and address the phenomenon as a two-fra tal overlap this is a big event and a large amount of elastij thenergy problem. isreleased here. The equationofmotion of the blo k of the system is (A) Fri tion models mx¨j =kc(xj+1−2xj +xj−1)−kpxj −f(x˙j −V) t m In 1967 Burridge and Knopo(cid:27) [7℄ introdu ed model where dots denote di(cid:27)erentiation with respe t to , is k k studies in earthquakeresear h. They proposed a spring- p c themassofablo k, and arespring onstantsofthe f blo k model to mimi the typi al sti k-slip dynami s of onne ting springs and represents the nonlinear velo - x earthquake phenomena, whi h has been extended later ity weakening fri tion for e. The position oordinate V by Carlson and Langer [8℄. The Burridge-Knopo(cid:27) type m ismeasured alongthe hainlength and the velo ity of x model ontainsalineararrayofblo ksofmass oupled the platform is in the in reasing dire tion. The total t to ea h other by identi al harmoni springs of strength k energyofthe system at time anbe al ulatedby solv- c and also atta hed to a (cid:28)xed surfa e at the top by a k ing the above equation. A sudden drops in the energy p di(cid:27)erent set of identi al springshaving strength . The of the system is identi(cid:28)ed as the released energy during blo ks are kept on a horizontal platform (rough surfa e) V a slip event and the distribution of su h energies follows whi h moves with a uniform velo ity (Fig.2). Here power-law: qualitativelytheblo ks anbethoughtofasthepointsVof N(ǫ)∼ǫ−c,c∼1, onta tbetweentwoplatesmovingatarelativespeed , k k c p wherethespring onstants and representsthelinear N(ǫ) where isthenumberofslipsreleasingenergygreater elasti responseofthe onta tregionto ompressionand ǫ than or equal to . shear respe tively. kp Predi tion possibility of major events (slips) k c Re ently Dey et al. [9℄ developed a method to predi t m the major slip event in Burridge-Knopo(cid:27) type spring- V f blo k model. Introdu ing an additional dissipative for e in the spring-blo k arrangement they identi(cid:28)ed the dis- R(t) sipative fun tional as energy bursts similar to the v v a ousti emission signals [10, 11℄ observed in experi- 0 R(t) ments. The distribution of shows power laws if one re ords all slip events in luding the major slips. Figure 2: TheBurridge-Knopo(cid:27) model(above) and twodi(cid:27)er- entformsofvelo ityweakening fri tionfor e(below)[9℄. -4 Starting from unstrained ondition, when the system is 1)0 t ( pulled slowly (at onstant rate), the blo ks initially re- R main stu k to the surfa e due to fri tion between sur- fa es. A slip of a blo k o urs when the orrespond- -8 ing spring for e over omes the threshold value (maxi- 10 mum stati fri tional for e between that blo k and the rough surfa e). The dynami s of ea h blo k is basi ally 5240 t 5255 5270 the resultant of two phases: a stati phase and a dy- R(t) t Figure 3: The dissipative fun tional vs. time ( ) in nami phase. Duringstati phasetheblo kremainsstu k Burridge-Knopo(cid:27)model[9℄. on the rough surfa e and the elasti strain ontinuously R(t) t growsup. The stati phase omes to a sudden end when The plot of vs. shows a gradual in rease in driving for e on that blo k attains the threshold value a tivity (Fig.3) prior to the o urren e of a major slip. 3 R(t) But as is noisy it an not help mu h to predi t the dynami sandtheavalan hestatisti sareexpe ted to be majorslipetvent,′rat′herthe umulativeenergydissipated extremely useful in analysingfra ture and breakdownin E (t) ∼ R R(t )dt ae 0 grows in steps and it seems to di- real materials, in luding earthquakes [15, 16, 17, 18℄. verge as a major slip event is approa hed (Fig.4). From t c su h divergen e one anpredi t the o urren e time ( ) of a major slip through proper extrapolation. −8 −2 10 R (t) δ −12 −8 F 10 e 4250 t 4450 a E g o Figure 5: The(cid:28)berbundlemodel. l −16 When external load is applied, the surviving fra tion 0 25 50 t 75 100 of total (cid:28)bers follows a simple re ursion relation Eae t Ut+1(σ)=1−P(σ/Ut), Figure 4: Cumulative energy versus time ( ) plot. Inset R(t) showsthetimeseriesof in ludingtwomajorslipevents[9℄. Ut = Nt/N0 σ P where , is the external stress and is (B) Fra ture models umulative probability fun tion. The re ursion relation Ut+1 =Y(Ut) hastheformofaniterativemap and(cid:28)nally Ut+1 =Ut the dynami s stops at a (cid:28)xed point where . Earthquake anbe onsideredasafra ture-failurephe- nomenon through slow build up of stress at the plate- ∆FIf external load is in reased in steps by equal amount rustboundarywith themovementofthe plateasexter- , then the entire failure pro ess an be formulated naldrivingfor e. The deformationpropertiesof the ma- throughthere ursivedynami s[19℄mentionedaboveand terialssittingattheboundaryplay ru ialroleonspatial tσhe (cid:28)xed point solution gives the value of riti al stress c redistribution of the stress around a broken region and above whi h the bundle ollapses. It an be shown this a tually de ides in whi h dire tion the ra k front that the bundle undergoes a phase transition from par- should propagate. Fiber bundle model and random fuse tiallybrokenOstateto ompletelχybrokenstate. Theordτer model address su h s enario in material breakdown and parameter( ), sus eptibility( )andrelaxationtime( ) sometimestheyaretreatedasmodelsofearthquakesin e follow robust power laws with universal exponent values theyprodu etimeseriesofavalan heswhi hfollowpower [20℄. law distribution similar to Gutenberg-Ri hter law. In aseofquasi-stati loadin rement,onlytheweakest (cid:28)ber(amongtheinta t(cid:28)bers)failsafterloadingandthen thebundleundergoesloadredistributiontilla(cid:28)xedpoint Fiber bundle model isrea hed. The(cid:29)u tuationsinstrengthdistributionspro- du esdi(cid:27)erentsizeofavalan hesduringtheentirefailure Fiber bundle (RFB) model onsists of many (N0) (cid:28)bers pro essand theavalan −he5/d2istributionfollowspowerlaw onne ted in parallel to ea h other and lamped at their (Fig.6) with exponent . Hemmer and Hansen [14℄ two ends and having randomly distributed strengths. has analyti al proved that this exponent is universal un- Themodelexhibitsatypi alrelaxationaldynami swhen der mild restri tion on strength distributions. external load is applied uniformly at the bottom end 10000 100 (Fig.5). In the global load-sharing approximation [12, 13, 14℄, surviving (cid:28)bersFshare equally the external load. 1000 10-2 ∆−5/2 Initially, after theload isapplied on the bundle, (cid:28)bers having strength less than the applied stress σ = F/N0 ∆ 10-4 100 D(∆) fail immediately. After this, the total load on the bun- N 10-6 dleredistributesgloballyasthestressistransferredfrom 10 broken (cid:28)bers to the remaining unbroken ones. This re- 10-8 distribution auses se ondary failures whi h in general 1 10-10 ausesfurtherfailuresandprodu esan(cid:16)avalan he(cid:17) whi h 50000 s15t0e00p0 300000 1 10 1∆00 1000 10000 denotes simultaneous failure of several elements. With steady in rease of external load, avalan hes of di(cid:27)erent size appear before the global breakdown where the bun- Figure 6: Avalan he time series in a (cid:28)ber bundle model (left) dle ollapses. The s aling properties of su h mean-(cid:28)eld andthe orresponding avalan hedistribution(right). 4 106 Random fuse model 100 105 D(∆) 10-1 x0 = 0.9 xc 104 ∆−3 I D(1) 10-2 ∆) 103 ( D ∆−2 V 10-3 x0 = 0 102 101 10-4 100 1 ∆ 10 1 ∆10 100 Figure 9: Crossover signature inavalan he power law. In (cid:28)ber x0 Figure 7: Therandomfusemodel. bundxlce model: is the starting position of re ording avalan 5h/e2s and istheglobalfailurepoint;exponentvalue hangesfrom 3/2 Thefusemodel[21,22,23℄ onsistsofalatti einwhi h to 3(left2) and in random fuse model: exponent value hanges from to when the system omes loser to breakdown point ea h bond is a fuse, i.e., an ohmi resistoras long as the (right). ele tri urrentit arriesisbelowathresholdvalue. Ifthe threshold its passed, the fuse burns out irreversibly. The Re ently Kawamura [27℄ observed similar rossover threshold opf(eta) h bond is drawn from an u45n◦ orrelated behavior for the lo al magnitude distribution of earth- distribution . The latti e is pla ed at with re- quakesinJapan(Fig.10). Thisobservationhasstrength- gardsto the ele tri albusbars (Fig.7) and an in reasing ened the possibility of using rossoversignal as a tool of urrent is passed through it. Numeri ally, the Kir hho(cid:27) predi ting atastrophi events. equations are solved at ea h node. 4.5 When a bond breaks, urrent value on the neighbor- entire Japan 1985-1998 ing bonds in reases and sometimes it triggers se ondary 4 rmax=30km, mc=4 3.5 y failures. Finally the system omes to a state where no nc 3 slope = 0.60 e slope = 0.88 urrent passes through the latti e; that means there is qu 2.5 e agr ardau aklwinh ir ehasseepoafr autrersentth/evloaltttaig eeainsetrwieospoifei netse.rmWeidtih- ent fr 1 .25 0-100 days ate avalan hes appear before the (cid:28)nal breakdown. The ev 1 100-200 days 200-300 days distribution of su 3h avalan hes follows power law with 0.5 all period exponent lose to (Fig.8). 0 2 3 4 5 6 7 10000 106 m 105 1000 ∆−3 Figure 10: Crossoversignatureinthemagnitudedistributionof ∆ D(∆)104 earthquakes withinJapan[27℄. 100 103 102 (C) Self-organised riti al models 10 101 In various thermodynami s systems, there is a (cid:16) riti- 1 100 0 1000 2000 30t00 4000 5000 6000 1 ∆10 100 al(cid:17) point where the systems be ome totally orrelated and show s ale free (power law) behaviour. Apart from the riti al point the average mi ros opi quantities of Figure 8: Avalan he time series in a fuse model (left) and the thesystemsfollows alingbehaviour. Generallysu h rit- orresponding avalan he distribution(right). i al states are a hieved through the (cid:28)ne-tuning of phys- i al parameters, su h as temperature, pressure et . and thepowerlawbehavioris onsideredto beasignatureof Crossover behavior: signature of imminent breakdown the (cid:16) riti al(cid:17) state of the system. However, it has been observed that some omplex systems evolve olle tively Arobust rossoverbehaviorhasbeenobserved[24,25, to su h riti al state only through mutual intera tions 26℄ re ently in the two very di(cid:27)erent models des ribed and show power law behavior there. These systems do abovewhere the system graduallyapproa hesthe global notneedany(cid:28)netuningofphysi alparameterandthere- failure through several intermediate failure events. If in- foreare onsideredas(cid:16)self-organised riti al(cid:17) (SOC)sys- termediate avalan hes are re orded, avalan he distribu- tems. The term SOC was (cid:28)rst introdu ed by Bak, Tang tion follows a power law with an exponent that rosses and Wiesenfeld in 1987. over from one value to a very di(cid:27)erent value when the The magnitude distribution of earthquake shows system is lose to the global failure or breakdown point power-law(Gutenberg-Ri hterlaw),thereforeitistempt- (Fig.9). Therefore, this rossoveris a signature of immi- ing to assume that earthquake happens through a self- nent breakdown. organiseddynami s: thebuildupofstressduetote toni 5 h c motionisaselforganisedslowpro ess;graduallythe rit- ultimatelysettlesat a riti alstatehavingheight and i al state is a hieved where the stress releases in bursts exhibits s ale free behavior in terms of avalan he and of various sizes. Extensive resear h have been going on life time distributions. But the power law exponents are to establish relation between earthquake and SOC sys- di(cid:27)erent ompared to those in BTW model and there- tems, for whi h several models have been proposed. So foreMannamodelbelongstoadi(cid:27)erentuniversality lass far,sandpilemodelsarethebestexampleofSOCsystem. [30℄. BTW sandpile model 100000 10000 Critical state Critical state The(cid:28)rstattempttostudySOCthroughmodelsystems 10000 was made by Bak, Tang and Wiesenfeld [28℄. This is 1000 ∆ a model of sandpile whose natural dynami s drives it 1000 towards the riti al state. The model an be des ribed ∆ 100 (oin,ja)two dimensional square latti eh. At ea h latti e site 100 i,j , there is an integer variable whi h represents 10 the height of the sand olumn at that site. A unit of 10 height (one sand grain) is added at a randomly hosen site at ea h time step and the system evolves in dis rete 1 1 (i,j) 5000 15000 30000 0 500 1000 1500 2000 2500 3000 time. The dynami s starts as soon as any site has t t h 4 th got a height equal to the threshold value ( = ): that h i,j sitetopples,i.e., be omeszerothere,andtheheights of the four neighbouring sites in rease by one unit hi,j →hi,j −4,hi±1,j →hi±1,j +1,hi,j±1 →hi,j±1+1. Figure 12: Avalan hetimeseriesinaBTWmodel(left)andin aMannamodel(right). 1 3 3 3 3 3 3 3 4 3 5 0 4 1 2 0 1 2 1 3 3 2 3 4 2 4 0 3 0 2 3 1 2 4 1 3 0 Pre ursory a tivities 2 0 1 2 0 1 2 1 1 3 1 1 3 1 1 3 1 2 On onstant adding of grains, sandpile models gradu- Figure 11: BTWmodelonsquarelatti e[29℄. ally attains riti al state from sub- riti al states. Now the question is: an one predi t the riti al state from The pro ess ontinues till all sites be ome stable the sub- riti al response of the pile? A pulse perturba- (Fig.11).4 In ase of toppling at the boundary of the tion method [31, 32℄ gives the answer: latti e ( nearest neighbours are not available), grains h av At an average height , a (cid:28)xed number of height falling outside the latti e are removed and onsidered h p units (pulse of sand grains) is added at any entral to be absorbed/ olle ted at the boundary. Gradually h h av c point of the system. Just after this addition, the lo al the average height attains a riti al value , be- dynami s starts and it takes a (cid:28)nite time or iterations yond whi h it does not in rease at all - on an average to return ba k to the stable state after several toppling the additional sand grains are (cid:29)own away from the lat- ∆ → events. One anmeasurethe response parameters: ti e . Total number of toppling between two su essive τ → ξ → number of toppling number of iteration and stable states, determines the size of an avalan he and at orrelation length whi h is the distan e of the furthest the rinti a∼lstsa−tΓeavalan hnesizedistributionfollowspsower hp s s toppled site from the site where has been dropped. laws: , where denotes the density of size Γ Γ≃1.15±0.10 avalan hes. Theexponent hasthevalue To ensure toppling at the target site, the pulse hight h = 4 h = in 2D [29℄. has been hosen as p for BTW model and p 2 for Manna model. Simulation studies on lude [32℄ h c that all the resp∆ons∝e p(hara−mehter)−foλlloτw∝pow(her−lawh a)s−µ Manna model iξs∝ap(phroa− hhed:)−ν λ ∼= 2c.0 µav∼= 1.,2 ν ∼=c 1.0av , c av ∆−1/λ τ−1/µ ; ξ−1/ν, and h. Now av Manna proposed the sto hasti sand-pile model [29℄ if , and are plotted against , all by introdu ing randomness in the dynami s of sand-pile the urve follow straight line and they should tou h the 2 h = h av c growth. Here, the riti al height is . Therefore at ea h x axis at . A proper extrapolation estimates h = 2.13±.01 c toppling,thetworeje tedgrains hoosetheirhostamong the riti al hight for BTW model and h =0.72±.01 c the four availableneighbours randomlywith equalprob- for Manna model, whi h agree well with ability. After onstantadding ofsand grains,the system dire t estimates [29℄. 6 Self-a(cid:30)ne asperity model 30 0.5 0.4 V. De Rubies et. al. [34℄ has proposed a new model for earthquakeswherethes aleinvarian eoftheGutenberg- 0.4 20 0.3 Ri hter law is laimed to ome from the fra tal geome- 20 0.3 −1.0ξ 0.2 −1.0ξ 0.2 try of the fault surfa es. In this model the sliding fault ξ ξ 0.1 surfa es have been represented b|hy(xfr+a tri)o−nahl(Bxr)o|w∼niraζn 0.1 surfa es, whose height s ales as . 10 10 0 0 The roughness of the surfa es are determined from the 1.8 1.9 2 2.1 2.2 0.55 0.6 0.65 0.7 ζ 0 1 h h value ofthe exponent whi h liesbetween and . Two av av surfa esaresimulatedby twostatisti ally self-a(cid:30)nepro- h1(x) h2(x) (cid:28)les, say, and , one drifting overotherwith a 01 1.2 1.4 1.6 1.8 2 2.2 00.4 0.5 0.6 0.7 onstant speed v su h that h1(x,t)=h2(x−vt). An in- h h av av tera tionbetweentwopro(cid:28)lesrepresentsasingle seismi event and the energy released is assumed to be propor- ξ tional to the breaking area of the asperities. At the on- Figure 13: Sub- riti al response: Correlation length ( )versus hav ta tpointofthesurfa esthe`surfa eroughness'prevents average hight ( ) in BTW model (left) and in Manna model (right). Inset shows the plot of inverse ξ versus hav and predi ts slipping and the stress is a umulated there. When the the riti alhightthrough extrapolation. stressex eedsa ertainthresholdvalue,breaking(earth- quake) o urs. TPhi(sEm)o∼deEl p−rβo−d1u es GutPen(bEe)rdgE-Ri hter Therefore, although BTW and Manna models belong type power law: , where is the todi(cid:27)erentuniversality lasseswithrespe ttotheirprop- probability that an earthquake releases energy between E E + dE β erties at the riti al state, both the models show similar and and the exponent is dire tly related ζ β = 1−ζ/(d−1) = sub- riti al response or pre ursors. A proper extrapola- to the roughness exponent as : (D −1)/(d−1) D d tion method an estimate the respe tive riti al heights f f , where and are respe tively the of the models quite a urately. fra tal dimension and the embedding dimension of the surfa es. (D) Fra tal models Chakrabarti-Stin h ombe model The surfa es of earth's rust and te toni plate at the fault zone are not ompa t rather fra tal in nature. In Thisisananalyti almodel,proposedbyChakrabartiand fa t, these surfa esarethe resultsof the larges alefra - Stin h ombe[35℄, whi h in orporatesthe self-similarna- tureseparatingthe rustfromthemovingte toni plate. ture of both the rust and the te toni plate. They used It has been observed that these surfa es are self sim- self-similar fra tals to represent fault surfa es (Fig.15). ihla(λrxf,rλa yt)a∼ls λ[3ζ3h℄(xh,ayv)ing the she(lfx-)a(cid:30)ne s aling property Crust , where denotes the height of x ζ the ra k surfa e at the point and is the roughness exponent. It has been laimed re ently that sin e the fra tured surfa es have got well- hara terized self-a(cid:30)ne (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) properties,thedistributionoftheelasti energiesreleased (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) during the slips (earthquake events) between two rough (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) surfa es ( rust and plate) may follow the overlap distri- (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)T(cid:0)(cid:0)(cid:1)(cid:1)ec(cid:0)(cid:0)(cid:1)(cid:1)to(cid:0)(cid:0)(cid:1)(cid:1)nic(cid:0)(cid:0)(cid:1)(cid:1) P(cid:0)(cid:0)(cid:1)(cid:1)la(cid:0)(cid:0)(cid:1)(cid:1)te(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) bution of two fra tal surfa es [34, 35℄ (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (a) (b) Figure 15: S hemati representation of the rough surfa es of earth's rustandmovingte toni plate[35℄. The total onta t area between the surfa es is assumed to be proportional to the elasti strain energy that an be grown during the sti king period, as the solid-solid fri tion for e arises from the elasti strain at the on- ta ts between the asperities. This energy is onsidered to be released as one surfa e slips over the other and sti ks again to the next onta t between the rough sur- 2+1 Figure14: Atypi alself-a(cid:30)nefra turesurfa ein( )dimen- fa es. Chakrabarti and Sti h ombe have shown analyti- ζ=0.8 sionwithroughnessexponent . allythroughrenormalizationgroup al ulationsthatfor 7 regular fra tals (Cantor sets and arpets) the onta t 00000.....22222 9999000000000000 area follows power law distribution: ρ(s)∼s−γ;γ =1, 00000.....1111155555 )))) mmmm5555000000000000 (((( PPPP ))))) ’’’’’ whi h is omparable to that of Gutenberg-Ri hter law. mmmmm ((((( 00000.....11111 ’’’’’ 00000000 0000....0000000000003333 0000....0000000000006666 PPPPP mmmm 00000.....0000055555 Numeri al veri(cid:28) ation The laim of Chakrabarti-Sti h ombemodel has been 00000 00000 22222 44444 66666 mmmmm’’’’’88888 1111100000 1111122222 1111144444 veri(cid:28)ed by extensive numeri al simulations [36℄ taking di(cid:27)erent type of syntheti fra tals: regular or non- P′(m′) m′ Figure 17: The plotof against for Cantor sets with random Cantor sets, random Cantor sets (in one dimen- df =ln2/ln3at(cid:28)nitegenerations: n=10(square),n=11(plus), n=12 n=13 sion), regular and random gaskets on square latti e and ( ross) and (as(txar−) abn)−ddthedottedd=lin1esindi atethe per olating lusters embedded in two dimensions. bPe(smt)(cid:28)t umrves of the form ; where . Inset shows vs. plots. (a) (b) Predi tion possibility of large events n=1 Ifone antorsetmovesuniformlyoverother,theover- lapbetweenthetwofra tals hangequasi-randomlywith m(t) n=2 timeand produ es atime seriesofoverlaps . Su h a time series is shown in Fig.18, for Cantor sets of dimen- ln2/ln3 sions . While most of the overlaps are small in n=3 n=3 magnitude, some areretally big, where as the umulative Q(t) = R mdt overlap size o `on average' grows linearly with time. Is it possible to predi t a large future over- lap analysing the time series data? A re ent study [38℄ ln2/ln3 Figure 16: (a)AregularCantorsetofdimension ;only suggests a method: three(cid:28)nitegenerationsareshown. (b)Theoverlapoftwoidenti al n = 3 (regular) Cantor sets, at , when one slips over other; the 200 overlap sets are indi ated withintheverti al lines,where periodi boundary onditionhasbeenused. )150 (t m P(m,L) e The onta t areadistributions seem to follow z a universal s aling: p si100 a P(m,L)∼LαP′(m′);m′ =mLα, verl O 50 L α = 2(d− where denotes the size of the fra tal and d ) d d f ; f being the mass dimension of the fra tal and is 00 1000 2000 3000 4000 5000 6000 7000 Time (t) the embedding dimension. Also the overlap′dist′ribution P(m) P (m) m, and mhe′n e the s aled distribution , de ay t m with or following a power law (Fig.17) for both Figure 18: The time( )series dlna2ta/lonf3overl8apsize ( )for regular and random Cantor sets and gaskets: regularCantorsets: ofdimension ,at thgeneration. t P(m)=m−β;β =d. One anidentifythe`largeevents'o urringat time i m(t) m(t )≥M i inthe series,where ,apre-assignednum- Q(t) = Rbetir+,1tmhednt al ulate the umulative overlap size A very re ent report [37℄ analyti ally explains the ori- ti , where the su essive large events o ur at ti ti+1 Q(t) 0 gin of su h asymptoti power laws in ase of Cantor set times and . Obviously is reset to value Q i overlap. after every large event. The behavior of with time is 8 shown in Fig.19 for regular antor sets . It appears that haoti -thereforete hni ally unpredi tablewhi hagrees Q i therearedis retevaluesuptowhi h growswithtime. well with the o urren e of earthquakes. However, the method proposed by Dey et. al [9℄ to predi t a major 18000 1200 e Q(t)i1146000000 (a) e Q(t)i1000 (b) smliapyeovpenentbuypmaowniidteorsi nogptehoef fuumtuurlearteivseeaern ehrginytfhuins (cid:28)tieolnd,. ap siz12000 ap siz800 hOanvethbeeeonthdeervhelaonpde,d(cid:28)bbaesri baullnydtloe mstuoddyelbarnedakfduoswenmpohdee-l verl10000 verl600 nomena in omposite materials. As earthquake is a ma- o8000 o e e jor breakdown phenomenon, these models an be used ativ6000 ativ400 as earthquake models due to their inherent mean-(cid:28)eld umul4000 umul200 nature. Avalan hedistributionsshowpowerlawsinboth C2000 C themodelsanda rossoverinexponentvalueappears[25℄ 00 1000 2000 3000 4000 5000 6000 7000 00 1000 2000 3000 4000 5000 6000 7000 near breakdown point, whi h an be treated as a rite- Time (t) Time (t) rionforimminentbreakdown. SOCmodelsassumeaself- drivenslowdynami sandreprodu esGutenberg-Ri hter law at the riti al point. Although the riti al state an Figure19: The umulativeoverlaplsniz2e/vlnar3iation8withtime be predi ted a urately from the sub- riti al response of (forregularCantorsetsofdimension ,at thg0enera- the systems, the behavior remains unpredi table at the tion), wherethe umulativeoverlapha≥sbMeenreset tMo =va1l2u8e riti al state. Fra tal overlap models are di(cid:27)erent (from after32every big event (of overlap size where the other three types) modelling approa hesin the sense and respe tively). that they fo us on the fra tal nature of the fault inter- fa es and not on the dynami s. The onta t area distri- bution follows asymptoti power law and this suggests a possibility that fra tal geometry of the faults might be M Therefore, if one (cid:28)xes a magnitude of the overlap the true origin of Gutenberg-Ri hter law. m m≥M sizes , so that overlapswith are alled `events' There are several di(cid:30) ulties in studying earthquake Q i (or earthquake), then the umulative overlapQi ∼=grloQw0s phenomenon,asiti3sa(cid:16)Nbody(cid:17) omplexproblem. While linearly with time up to some dis rete levels , exa tsolutionofa -bodyproblemneeds rigorousmath- Q0 M where is the minimal overlap size, dependent on emati al al ulations and it does not work for a mutu- l 3 and is an integer. This information ertainly does not ally intera ting system having more than bodies, nat- helptopredi tafuturelargeeventa urately,butitgives urally, theoreti al physi s an not help to formulate the Q i some hints by identifying dis rete levels of where a entire earthquake dynami s. Again, as the dynami s of 20 large overlap is likely to happen. earthquake happens at a depth more than km from earth surfa e -experimental observation of su h dynam- Dis ussions and on luding remarks i sisalmostimpossible. Moreover,earthquakedynami s involves rust and plates whi harehighly heterogeneous at many s ales from the atomi s ale to the s ale of te - TheGutenberg-Ri hterlawisawellestablishedlawin toni plates,with thepresen eofdislo ation, impurities, earthquakeresear h. ItshouldbementionedthatGuten- grains, water et and the s enario be omes very mu h berg and Ri hter obtained this law from the statisti s of ompli ated. Inthissituation,modelstudiesareveryim- earthquake events observed throughout the world. Also, portantinearthquakeresear hinthesensethatthey an earthquakes within a te toni ally a tive region (Japan, produ esyntheti earthquakeevents,allowustomonitor California et ) follow similar power law. It is still a on- thedynami sandanalysetheeventstatisti sto ompare troversial issue whether the exponent of the Gutenberg- with the real earthquake data. Moreover, su h studies Ri hter power law is an universal onstant or it varies 0.8 1.2 suggest potential methods to predi t a major event. It in a narrow range ( to ) depending upon the na- will be a real breakthrough if any of su h methods an ture of the fault zone. As the motion of the te toni help a little to predi t a future earthquake. plates is surely an observed fa t, the sti k-slip pro ess should be a major ingredient of earthquake models. Al- though Burridge-Knopo(cid:27) type spring-blo k model su - A knowledgment: essfully apturesthesti k-slipdynami sandreprodu es Gutenberg-Ri hter type power law in the size distribu- tionofevents,itisfarfromthea uraterepresentationof We are grateful to Bikas. K. Chakrabarti for impor- earthquakedynami s-asitdoesnot ontainame hanism tant ollaborations and useful suggestions. Thanks to for aftersho kswhi h areobserved fa ts. But this model Resear hCoun ilofNorway(NFR) for(cid:28)nan ialsupport hassomeimportantfeatures: Thedynami sisinherently through grant No. 166720/V30. 9 [1℄ H.J.HerrmannandS.Roux(Eds),Statisti alModelsfor Phys. Rev. E 67 046122 (2003). the Fra ture of Disordered Media, North Holland, Ams- [21℄ A. Hansen and P. C. Hemmer, Phys. Lett. A 184, 394 terdam(1990). (1994). [2℄ B. K. Chakrabarti and L. G. Benguigui, Statisti al [22℄ S. Zapperi, P. Ray, H. E. Stanley and A. Vespignani, Physi s of Fra ture and Breakdown inDisorder Systems, Phys. Rev. Lett. 78 1408 (1997). Oxford Univ. Press, Oxford(1997). [23℄ S. Zapperi, P. Nukala and S. Simunovi , Phys. Rev. E [3℄ D. Sornette, Criti al Phenomena in Natural S ien es, 71, 026106 (2005). Springer-Verlag,Berlin Heidelberg (2000). [24℄ S. Pradhan and A. Hansen Phys. Rev. E 72, 026111 [4℄ M. Sahimi, Heterogeneous Materials II: Nonlinear and (2005). Breakdown Properties, Springer-Verlag, Berlin (2003). [25℄ S. Pradhan, A. Hansen and P. C. Hemmer Phys. Rev. [5℄ B.GutenbergandC. F.Ri hter,Seismi ity of the Earth Lett. 95, 125501 (2005). and Asso iated phenomena, Prin eton University Press, [26℄ S. Pradhan, A. Hansenand P.C. HemmerPhys.Rev. E Prin eton, N.J. (1954). 74, 016122 (2006). [6℄ P. Bhatta haryya and B. K. Chakrabarti (Eds), Mod- [27℄ H. Kawamura,arXiv: ond-mat/0603335 (2006). elling Criti al and Catastrophi Phenomena in Geo- [28℄ P.Bak, C.Tang, K.Weisenfeld, Phys.Rev.Lett.59381 s ien e, Springer, Berlin (2006). (1987); Phys.Rev. A 38 364 (1988). [7℄ R. Burridge, L. Knopo(cid:27), Bull. Seis. So . Am. 57 341 [29℄ S. S. Manna, J. Stat. Phys. 59, 509 (1990); P. Grass- (1967). bergerandS.S.Manna,J.Phys.Fran e51,1077(1990); [8℄ J. M. Carlson, J. S. Langer, Phys. Rev. Lett. 62 (1989) S. S. Manna, J. Phys. A: Math. Gen 24, L363 (1991). 2632-2635. [30℄ D. Dhar, Physi a A 186, 82 (1992); Physi a A 263, 4 [9℄ R.DeyandG.Ananthakrishna,Europhys.Lett.66,715 (1999);Physi a A 270, 69 (1999). (2004). [31℄ M.A haryyaandB.K.Chakrabarti,Physi aA224,254 [10℄ A. Petri, G. Paparo, A. Vespignani, A. Alippi and M. (1996); Phys.Rev. E 53, 140 (1996). Costantini, Phys.Rev. Lett 73 3423 (1994). [32℄ S. Pradhan and B. K. Chakrabarti, Phys. Rev. E 65 [11℄ A. Gar imartin, A. Guarino, L. Bellon and S. Ciliberto, 016113 (2002). Phys.Rev. Lett. 79 3202 (1997). [33℄ A. L. Barabasi and H. E. Stanley, (1995). Fra tal Con- [12℄ F. T. Peir e, J. Textile Inst. 17, T355 (1926). epts in Surfa e Growth, Cambridge University Press, [13℄ H. E. Daniels, Pro . R. So . London A 183 405 (1945). Cambridge. [14℄ P.C.HemmerandA.Hansen,ASMEJ.Appl.Me h.59, [34℄ V. De Rubeis, R. Hallgass, V. Loreto, G. Paladin, L. 909 (1992). Pietronero and P.Tosi, Phys. Lett. 76 2599 (1996). [15℄ D.Sornette, J. Phys. I (Fran e) 2 2089 (1992). [35℄ B. K. Chakrabarti, R. B. Stin h ombe, Physi a A, 270 [16℄ D.Sornette,J.Phys.A22L243(1989);A.T.Bernardes 27 (1999). and J. G. Moreira, Phys. Rev. B 49 15035 (1994). [36℄ S. Pradhan, B. K. Chakrabarti, P. Ray and M. K. Dey, [17℄ M.Kloster, A.Hansenand P.C. Hemmer,Phys.Rev.E Phys. S r. T 106 77 (2003). 56 2615 (1997). [37℄ P. Bhatta haryya, Physi a A 348, 199 (2005). [18℄ J.V.Andersen,D.SornetteandK.T.Leung,Phys.Rev. [38℄ S.Pradhan,P.ChaudhuriandB.K.Chakrabarti,inCon- Lett. 78 2140 (1997). tinuum Models and Dis rete Systems, Ed. D. Bergman, [19℄ S. Pradhan, P. Bhatta haryya and B. K. Chakrabarti, E. Inan, Nato S , Series, Kluwer A ademi Publishers Phys.Rev. E 66 016116 (2002). (Dordre ht)245 (2004). [20℄ P. Bhatta haryya, S. Pradhan and B. K. Chakrabarti,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.