ebook img

Physics and Finance PDF

292 Pages·2021·6.317 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics and Finance

Undergraduate Lecture Notes in Physics Volker Ziemann Physics and Finance Undergraduate Lecture Notes in Physics Series Editors Neil Ashby, University of Colorado, Boulder, CO, USA WilliamBrantley,DepartmentofPhysics,FurmanUniversity,Greenville,SC,USA MatthewDeady,PhysicsProgram,BardCollege,Annandale-on-Hudson,NY,USA Michael Fowler, Department of Physics, University of Virginia, Charlottesville, VA, USA Morten Hjorth-Jensen, Department of Physics, University of Oslo, Oslo, Norway Michael Inglis, Department of Physical Sciences, SUNY Suffolk County Community College, Selden, NY, USA Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topics throughout pure and applied physics. Each title in the series is suitable as a basis for undergraduate instruction, typically containing practice problems,workedexamples,chaptersummaries,andsuggestionsforfurtherreading. ULNP titles must provide at least one of the following: (cid:129) An exceptionally clear and concise treatment of a standard undergraduate subject. (cid:129) A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject. (cid:129) A novel perspective or an unusual approach to teaching a subject. ULNP especially encourages new, original, and idiosyncratic approaches to physics teachingattheundergraduatelevel. The purpose of ULNP is to provide intriguing, absorbing books that will continue to be the reader’s preferred reference throughout their academic career. More information about this series at http://www.springer.com/series/8917 Volker Ziemann Physics and Finance 123 Volker Ziemann Department ofPhysics andAstronomy Uppsala University Uppsala, Sweden ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-030-63642-5 ISBN978-3-030-63643-2 (eBook) https://doi.org/10.1007/978-3-030-63643-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface One fine day, my son, who was studying economics at the time, brought along books on theuse of stochastic differential equations in finance. Following a dialog alongthelinesof“Oh,Iknowthat,itsaFokker-Planckequation”—“Nodad,that’s Black-Scholes,”Igotcurious.Afterall,theremightbesomefunineconomicsand finance,besidesthemoney.So,IborrowedHull’sbookaboutthebasicsoffinancial economics, because I wanted to understand the basic concepts and the lingo. Just looking through the book, I recognized those differential equations that look so similar to a diffusion equation with a drift term. So, I set out to understand what finance has to do with diffusion. Ilaterpresentedsomelecturesaboutmyexplorationstoafewinterestedstudents and colleagues, which was very stimulating and caused me to explore the subject further.Thatwashowthelaterchapterscameabout.Theyalldealwithsomeaspect of random processes and have some overlap between physics, finance, and other neighboring disciplines. At that point, I prepared a 5 ECTS (European transfer credits) lecture series for masters students at Uppsala University and expanded the manuscript to serve as lecturenotesforthiscourse,whichranforthefirsttimeinthespringof2019,with about15interestedstudents.Thefeedbackafterthecoursewasratherpositivesuch thatIgavethecourseagaininthespringof2020.Thistimewith24students,who providedmuchmorefeedbackandcriticism,whichcausedmetorevisepartsofthe manuscript to bring it to its present form. Obviously,manypeoplehelpedtoimprovethemanuscript.First,Ihavetothank my son Ingvar. He stimulated my interest in finance and also critically read parts of themanuscript. Likewise, Iam indebted to mycolleaguesand thestudents who participated in the early lectures and in the course later. Many of them gave valuable criticism and feedback on the growing manuscript. I want to single out a few students, who were particularly diligent: Joe and Martin from the course in 2019; Friedrich, Sebastian, and Elias from 2020. They helped me weed out many ambiguities and errors. They are, however, not to blame for any remaining bugs, v vi Preface those aremy responsibility alone. I also need to thank our director of studies, Lisa Freyhult, for her support at the faculty to include this course in the curriculum. Finally, I want to thank my family for their patience with me when I was “a bit” overfocused on the manuscript. Uppsala, Sweden Volker Ziemann Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Concepts of Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Stocks and Other Tradeable Goods . . . . . . . . . . . . . . . . . . . . 5 2.2 Hedging and Shorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Discounting and Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Efficient Market Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 Theoretical Markets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.8 Market Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Portfolio Theory and CAPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Variational Calculus and Lagrange Multipliers . . . . . . . . . . . . 16 3.2 Portfolio with Risky Assets Only. . . . . . . . . . . . . . . . . . . . . . 18 3.3 Portfolio with a Risk-Free Asset . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Capital Market Line and Sharpe Ratio . . . . . . . . . . . . . . . . . . 22 3.5 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.6 Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 Binomial Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Wiener Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Diffusion Processes and Green’s Functions. . . . . . . . . . . . . . . 33 4.4 Stochastic Integrals and Ito’s Lemma . . . . . . . . . . . . . . . . . . . 36 4.5 Master and Fokker-Planck Equations . . . . . . . . . . . . . . . . . . . 37 vii viii Contents 4.6 A First Look at Option Pricing . . . . . . . . . . . . . . . . . . . . . . . 40 4.7 Digression on Expectation Values . . . . . . . . . . . . . . . . . . . . . 44 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Black-Scholes Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1 Derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 The Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 Risk-Neutrality and Martingales. . . . . . . . . . . . . . . . . . . . . . . 52 5.4 Dynamic Hedging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.5 Other Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 The Greeks and Risk Management. . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1 The Greeks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Volatility Smile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.4 Tailoring Risk to One’s Desire . . . . . . . . . . . . . . . . . . . . . . . 64 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7 Regression Models and Hypothesis Testing. . . . . . . . . . . . . . . . . . . 69 7.1 Regression and Linear Fitting . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3 Goodness-of-Fit R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 v2-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Student’s t-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.6 Hypothesis Testing and p-Values . . . . . . . . . . . . . . . . . . . . . . 84 7.7 F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.8 Parsimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.1 Trend and Seasonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.2 MA, AR, and ARMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 Auto-Covariance and Autocorrelation. . . . . . . . . . . . . . . . . . . 96 8.4 Partial Autocorrelation Function. . . . . . . . . . . . . . . . . . . . . . . 99 8.5 Determining the Model Coefficients . . . . . . . . . . . . . . . . . . . . 101 8.6 Box-Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.7 Forecasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.8 Zoo of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Contents ix 9 Bubbles, Crashes, Fat Tails and Lévy-Stable Distributions. . . . . . . 113 9.1 Historical Bubbles and Crashes . . . . . . . . . . . . . . . . . . . . . . . 114 9.2 Bubble-Crash Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.3 Behavioral Economics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9.4 Fat-Tailed Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.5 Power Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.6 Fractals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.7 Sums of Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.8 Lévy-Stable Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.9 Extreme-Value Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.10 Finite-Time Divergence and Log-Periodic Oscillations . . . . . . 138 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10 Quantum Finance and Path Integrals . . . . . . . . . . . . . . . . . . . . . . . 145 10.1 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.2 Black-Scholes Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.3 Pricing Kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.4 Barrier Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5 Path Integrals in Quantum Mechanics. . . . . . . . . . . . . . . . . . . 156 10.6 Path Integrals in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.7 Monte-Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.8 Numerical Evaluation of Path Integrals. . . . . . . . . . . . . . . . . . 167 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 11.1 Macroeconomic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.2 Control and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.4 Hamiltonians for Optimal Control . . . . . . . . . . . . . . . . . . . . . 182 11.5 Donkey Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.6 Linear Quadratic Regulators. . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.7 Controlling the Robinson-Crusoe Economy . . . . . . . . . . . . . . 189 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12 Cryptocurrencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.1 Information, Probabilities, and Codes. . . . . . . . . . . . . . . . . . . 195 12.2 Relation to the Thermodynamic Entropy. . . . . . . . . . . . . . . . . 198 12.3 Moving Information Through Discrete Channels. . . . . . . . . . . 199 12.4 Continuous Information Channels . . . . . . . . . . . . . . . . . . . . . 204

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.